

Inference for epidemic models

Daniela De Angelis

MRC Biostatistics Unit, University of Cambridge

NORDITA Workshop, Stockholm, 29 May 2023

Outline

- Compartmental models of disease dynamics
 - Deterministic/stochastic
 - Key quantities of interest
- Linking models to data
 - Types of data
- Inference approaches different types of data/models
- Illustration from our COVID19 work

Infectious disease spread

Infectious disease spread

MRC | Medical Research Council

Simple SIR-type models

Delay infectiousness through the addition of a latent infection state: SEIR model

4 of 65

Perhaps infection does not confer lasting immunity: SIS model

∃ many more variations! MRC | Medical Research Council

Deterministic SIR model [Kermack & McKendrick (1927)]

- Closed population of size S(t) + I(t) + R(t) = N + 1
- Initial state *X*(0) = (*S*(0), *I*(0), *R*(0)) = (*N*, 1, 0), ODEs:

$$\begin{array}{ll} \displaystyle \frac{d}{dt} & S(t) & = -\lambda(t)S(t) \\ \displaystyle \frac{d}{dt} & I(t) & = \lambda(t)S(t) - \gamma I(t) \\ \displaystyle \frac{d}{dt} & R(t) & = \gamma I(t) \end{array}$$

where mass action/homogeneous mixing assumption holds:

$$\lambda(t) = \beta \times I(t)$$

incidence = effective contact rate \times # infected

5 of 65

MRC | Medical Research Council

The reproduction number R_0

At time, t = 0, for the epidemic to take off we require:

$$\frac{d}{dt}I(t)|_{t=0} > 0 \quad \Rightarrow \quad S(0) = N > \gamma/\beta$$

Definition

Let $R_0 := N\beta/\gamma$. Then the epidemic will not immediately begin to die out if, at t = 0, $R_0 > 1$.

Interpretation of R_0 :

The number of secondary infections caused by one primary infection in a fully susceptible population.

6

 \cap t

A Deterministic Epidemic

MRC Medical Research Council

Deterministic vs. Stochastic

Deterministic

- Model states X(t) = (S(t), I(t)) and transitions between them are a deterministic function of time, *t*, and a parameter $\theta = (\beta, \gamma, ...)$.
- $R_0 > 1$ or equivalently $S_0 > \gamma/\beta$ and the epidemic will take-off with certainty.

Stochastic

- No longer a 1-1 relationship between parameter and epidemic; X_t = {S_t, I_t} is a stochastic process, dependent on θ, not a function.
- Allows for the possibility of epidemics with $R_0 > 1$ to fail.
- For large *I*_t, dynamics typically approximate deterministic dynamics.
- ∃ many ways to incorporate stochasticity.

 Continuous-time Markov Chain - The SIR model on a closed population can be cast as a bivariate stochastic process X_t = {S_t, I_t}.

- Continuous-time Markov Chain The SIR model on a closed population can be cast as a bivariate stochastic process X_t = {S_t, I_t}.
- Time spent in model compartments is exponentially distributed with transition rates

- Continuous-time Markov Chain The SIR model on a closed population can be cast as a bivariate stochastic process X_t = {S_t, I_t}.
- Time spent in model compartments is exponentially distributed with transition rates

and transition probabilities

$$\mathbb{P}\{S_{t+\delta t} = s - 1, I_{t+\delta t} = i + 1 \mid S_t = s, I_t = i\} = \beta i s \delta t + o(\delta t)$$
$$\mathbb{P}\{S_{t+\delta t} = s, I_{t+\delta t} = i - 1 \mid S_t = s, I_t = i\} = \gamma i \delta t + o(\delta t)$$

- Continuous-time Markov Chain The SIR model on a closed population can be cast as a bivariate stochastic process X_t = {S_t, I_t}.
- Time spent in model compartments is exponentially distributed with transition rates

$$(\boldsymbol{s},i)
ightarrow (\boldsymbol{s}-1,i+1) \quad : \quad eta i \ (\boldsymbol{s},i)
ightarrow (\boldsymbol{s},i-1) \quad : \quad \gamma$$

and transition probabilities

$$\mathbb{P}\{S_{t+\delta t} = s - 1, I_{t+\delta t} = i + 1 \mid S_t = s, I_t = i\} = \beta i s \delta t + o(\delta t)$$
$$\mathbb{P}\{S_{t+\delta t} = s, I_{t+\delta t} = i - 1 \mid S_t = s, I_t = i\} = \gamma i \delta t + o(\delta t)$$

• We refer to this randomness as demographic stochasticity.

Chain-binomial models: In general

Medical Research Council MRC

Chain-binomial models: In general

Chain-binomial models: In general

Environmental Stochasticity

Assume stochastic fluctuation in the rate of effective contact, β_t , absorbing all extraneous, un-modelled effects on transmission:

e.g. the SIR model

$$dS_t/dt = -\beta_t I_t S_t$$

$$dI_t/dt = I_t (\beta_t S_t - \gamma)$$

$$d\beta_t = \beta_t \nu dW_t$$

- W_t is a standard Brownian motion; ν is a volatility parameter
- $\beta_t = \beta \exp(\nu W_t)$ is the instantaneous rate of secondary infections per susceptible per unit time.
- X_t = (S_t, I_t, β_t) is now the extended state vector, a solution of the above stochastic differential equation.

In practice, in discrete time with time-steps of size δt

e.g. the SIR model $S_{t+\delta t} - S_t = -\beta_t l_t S_t \delta_t$ $I_{t+\delta t} - I_t = I_t (\beta_t S_t - \gamma) \delta t$ $\log (\beta_{t+\delta t}) \sim N \left(\log (\beta_t), \nu^2 \delta t \right)$

• Incidence or force of infection $\lambda(t) = \beta I(t)$ or $\lambda(t) = \beta I(t)/N$

MRC | Medical Research Council

- Incidence or force of infection $\lambda(t) = \beta I(t)$ or $\lambda(t) = \beta I(t)/N$
- Prevalence $\pi = I(t)/N$

MRC | Medical Research Council

- Incidence or force of infection $\lambda(t) = \beta I(t)$ or $\lambda(t) = \beta I(t)/N$
- Prevalence $\pi = I(t)/N$
- Reproduction numbers R₀ = f(β, γ) or R₀ = f(r, G(·)) where G(·) is the generation time distribution; and R_t = f(I(t), G(·))

MRC | Medical Research Council

- Incidence or force of infection $\lambda(t) = \beta I(t)$ or $\lambda(t) = \beta I(t)/N$
- Prevalence $\pi = I(t)/N$
- Reproduction numbers R₀ = f(β, γ) or R₀ = f(r, G(·)) where G(·) is the generation time distribution; and R_t = f(I(t), G(·))
- Severity (e.g. infection-fatality risk)

MRC | Medical Research Council

Linking Models To Data

• Direct information on *incidence* of infection hardly ever available (perhaps in small outbreaks)

More typically available

- Final size data
- Temporal data
 - Prevalence data
 - Incidence of sequelae of infection

Our goal is prospective (real-time) or retrospective estimation

Linking models to data

- An observation model required to link data to the SIR system
- An observation model may have inputs:
 - lncidenceof new infections $\lambda(t)S(t)\delta t = \beta I(t)S(t)\delta t$

Linking models to data

- An observation model required to link data to the SIR system
- An observation model may have inputs:
 - Incidence of new infections $\lambda(t)S(t)\delta t = \beta I(t)S(t)\delta t$
 - Prevalence (e.g. I(t)/N)

Linking models to data

- An observation model required to link data to the SIR system
- An observation model may have inputs:
 - lncidenceof new infections $\lambda(t)S(t)\delta t = \beta I(t)S(t)\delta t$
 - Prevalence (e.g. I(t)/N)
 - Severity (e.g. infection-fatality risk): fraction of incidence that experiences a severe event

Prevalence of *current* infection

Here, Y_t could represent the number of infections detected out of n_t individuals sampled at random. Data are related to the *prevalence*, π_t , by being considered a realisation of, typically Binomial, distribution:

$$Y_t \sim {
m Bin}(n_t, \pi_t)$$
 where $\pi_t = I_t/N_t$

Alternatively, for *over-dispersed* data, use the Beta-Binomial distribution, with additional dispersion parameter, τ :

 $Y_t \sim \text{BetaBin}(n_t, \pi_t/\tau, (1 - \pi_t)/\tau)$

Prevalence of having ever been infected

Serological tests/assays measure *antibodies* indicating any previous infection, not necessarily current, informing cumulative incidence

MRC | Medical Research Council

Prevalence of having ever been infected

Serological tests/assays measure antibodies indicating any previous infection, not necessarily current, informing cumulative incidence or, equivalently, population susceptibility:

$$\pi_t = \mathbf{1} - \mathcal{S}_t / \mathcal{N}$$

All prevalence test data can include false positives and false negatives, so consider test sensitivity, *k*_{sens}, and test specificity, *k*_{spec}:

$$\pi_t = k_{\text{sens}} \left(1 - \frac{S_t}{N} \right) + \left(1 - k_{\text{spec}} \right) \frac{S_t}{N}$$
18 of 65

- Troportion of infections that lead to death, p_D .
- Time-to-death governed by discrete distribution $\mathbf{f} = (f_0, f_1, \ldots)$.

- Proportion of infections that lead to death, p_D.
- Time-to-death governed by discrete distribution $\mathbf{f} = (f_0, f_1, \ldots)$.
- Expected number of deaths per day:

$$\mu_{t_k} = p_D \sum_{l=1}^k \Delta_l f_{k-l}$$

• Expected number of deaths per day:

$$\mu_t = p_D \int_0^u \Delta_u f(t-u) du$$

MRC | Medical Research Council

Linking to Data

- Recall the requirement for dispersion parameter η .
- Y_{t_k} the number of cases in $[t_{k-1}, t_k)$

• Discrete-time

$$m{Y}_{t_k} \sim {\sf NegBin}\left(\mu_{t_k},\eta
ight)$$

Continuous-time

$$Y_t \sim \mathsf{NegBin}\left(\int_t^{t+\delta t} \mu_u du, \eta
ight)$$

- Convolutions are relatively expensive to calculate. Can we avoid them?
- Could treat data as removals arrivals into an absorbing model compartment.

- Convolutions are relatively expensive to calculate. Can we avoid them?
- Could treat data as removals arrivals into an absorbing model compartment.

21 of 65

D

- Convolutions are relatively expensive to calculate. Can we avoid them?
- Could treat data as removals arrivals into an absorbing model compartment.

MRC | Medical Research Council

- Convolutions are relatively expensive to calculate. Can we avoid them?
- Could treat data as removals arrivals into an absorbing model compartment.

BUT time to death is the same as the infectious period!

- Convolutions are relatively expensive to calculate. Can we avoid them?
- Could treat data as removals arrivals into an absorbing model compartment.

$$\frac{dS}{dt}(t) = -\lambda(t)S(t)$$

$$\frac{dI}{dt}(t) = (1 - p_D)\lambda(t)S(t) - \gamma I(t)$$

$$\frac{dI_D}{dt}(t) = p_D\lambda(t)S(t) - \gamma I(t)$$

$$\frac{dD_{\text{pre}}}{dt} = \gamma I_D(t) - \upsilon D(t)$$

$$\frac{dR}{dt}(t) = \gamma I(t)$$

$$\frac{dD}{dt}(t) = \upsilon I_D(t)$$

$$\frac{dD}{dt}(t) = \upsilon I_D(t)$$

$$\frac{dD}{dt}(t) = \upsilon I_D(t)$$

$$21 \text{ of }$$

Gamma

- Get more flexible delay times through using composite states.
- Delay time is based on a $\Gamma(m+1, v/(m+1))$.

$$[I_D(t)] \xrightarrow{(m+1)\upsilon} D_1 \xrightarrow{(m+1)\upsilon} \cdots \xrightarrow{(m+1)\upsilon} D_m \xrightarrow{(m+1)\upsilon} \mu_k$$

22 of 65

MRC | Medical Research Council

More generally...

- $\frac{1}{v} = \sum_{i=1}^{m+1} \frac{1}{v_i}$.
- Non-standard distribution overall.

More generally...

- $\frac{1}{v} = \sum_{i=1}^{m+1} \frac{1}{v_i}$.
- Non-standard distribution overall.

• Intermediate states could represent physically meaningful quantities, e.g. layers of severity, about which we may have some useful information.

Composition transition model states

Similarly, composite transmission states can add greater flexibility.

 Useful for longer durations, e.g. the waning of immunity, where it is more likely that those who entered a state longer ago are more likely to move.

Multiple Source of Data

- Observations at time *t* can include a collection of *k* data sources
 y_t = {y_{1,t},..., y_{k,t}} e.g. both prevalence and incidence-type data
- Introduces multiple, simultaneous links between model and data
- Each link has its own observational model *e.g.*

 $\mathsf{Y}_t^{\mathsf{prev}} \sim \mathsf{Bin}\left(n_t, \pi_t\right), \ldots, \mathsf{Y}_t^{\mathsf{hosp}} \sim \mathsf{NegBin}\left(\mu_t, \eta\right)$

where π_t and μ_t may depend on model states \boldsymbol{x}_t and/or system parameters β, γ , and η is component of the observational model.

 Conditionally on the model and parameters, these data are typically treated as independent

24 of 65

• More realistically, dependencies in the data [Corbella *et al* 2022] should be accounted for.

In generality: (Markov) State Space Model formulation

Denote $X_t = \{S_t, I_t, R_t\}$, the system evolution described by the initial density $f_{\theta}(x_0; \theta)$ and the one-step transitions

$$egin{aligned} m{X_t} | m{X_{t-1}}, m{ heta} &\sim f_{m{ heta}}(m{x}_t | m{x}_{t-1}; m{ heta}) \ m{Y_t} | m{X}_t, m{\psi} &\sim f_{m{\psi}}(m{y}_t | m{x}_t; m{\psi}) \end{aligned}$$

- where heta and ψ are system and observational process parameters respectively
- **y**_t data observed at time t
- different degree of noise (system/observational) in both of the above results in models with different level of complexity

In generality: (Markov) State Space Model formulation

Only observational noise

$$egin{aligned} m{X}_t | m{X}_{t-1}, m{ heta} &= m{g}_{m{ heta}}(m{x}_{t-1}) \ m{Y}_t | m{X}_t, m{\psi} &\sim m{f}_{m{\psi}}(m{y}_t | m{x}_t; m{\psi}) \end{aligned}$$

where $g_{\theta}(\cdot)$ is a deterministic function of θ

Both system and observational noise

$$egin{aligned} m{X}_t | m{X}_{t-1}, m{ heta} &\sim f_{m{ heta}}(m{x}_t | m{x}_{t-1}; m{ heta}) \ m{Y}_t | m{X}_t, \psi &\sim f_{\psi}(m{y}_t | m{x}_t; \psi) \end{aligned}$$

26 of 65

MRC | Medical Research Council

Inference

Parameter estimation - only observational noise

$$egin{aligned} oldsymbol{X}_t | oldsymbol{X}_{t-1}, oldsymbol{ heta} = g_{oldsymbol{ heta}}(oldsymbol{x}_{t-1}) \ oldsymbol{Y}_t | oldsymbol{X}_t, oldsymbol{\psi} \sim f_{oldsymbol{\psi}}(oldsymbol{y}_t | oldsymbol{x}_t; oldsymbol{\psi}) \end{aligned}$$

- *Relatively straightforward* to estimate parameters θ , ψ from observed data $y_{1:T}$
- Simplest: minimize the sum of squares of differences between observed data and model prediction

Parameter estimation - only observational noise

Likelihood-based inference

Maximum likelihood estimation

$$\mathcal{L}(oldsymbol{y}_{1:T};oldsymbol{ heta},oldsymbol{\psi})=\mathit{f}_{oldsymbol{ heta},oldsymbol{\psi}}(oldsymbol{y}_{1:T}\midoldsymbol{x}_{1:T};oldsymbol{ heta},oldsymbol{\psi})$$

• Bayesian inference

$$p(heta, \psi \mid oldsymbol{y}_{1:T}) = rac{\mathcal{L}(oldsymbol{y}_{1:T}; oldsymbol{ heta}, \psi) p(oldsymbol{ heta}, \psi)}{p(oldsymbol{y}_{1:T})} \propto \mathcal{L}(oldsymbol{y}_{1:T}; oldsymbol{ heta}, \psi) p(oldsymbol{ heta}, \psi)$$

with $p(\theta, \psi)$ the *prior* distribution for (θ, ψ)

29 of 65

MRC | Medical Research Council

• Apart from trivial cases, the posterior distribution is not a standard distribution

• Apart from trivial cases, the posterior distribution is not a standard distribution

- Apart from trivial cases, the posterior distribution is not a standard distribution
- If we can obtain sample from it, we can generate a large sample $(\theta_1, \psi_1), \ldots, (\theta_N, \psi_N)$.

- Apart from trivial cases, the posterior distribution is not a standard distribution
- If we can obtain sample from it, we can generate a large sample $(\theta_1, \psi_1), \ldots, (\theta_N, \psi_N)$.
- Can then use features of the sample to estimate posterior features of interest *e.g.*:

- Apart from trivial cases, the posterior distribution is not a standard distribution
- If we can obtain sample from it, we can generate a large sample $(\theta_1, \psi_1), \ldots, (\theta_N, \psi_N)$.
- Can then use features of the sample to estimate posterior features of interest *e.g.*:

$$\mathbb{E}\left[\theta|\mathbf{y}\right] \approx \frac{1}{N} \sum_{i=1}^{N} \theta_i$$

- Apart from trivial cases, the posterior distribution is not a standard distribution
- If we can obtain sample from it, we can generate a large sample $(\theta_1, \psi_1), \ldots, (\theta_N, \psi_N)$.
- Can then use features of the sample to estimate posterior features of interest *e.g.*:

$$\mathbb{E}\left[heta| extsf{y}
ight] pprox rac{1}{N} \sum_{i=1}^{N} heta_i$$
 $\mathbb{P}(heta < extsf{c}) pprox rac{1}{N} \sum_{i=1}^{N} 1(heta_i < extsf{c})$

- Apart from trivial cases, the posterior distribution is not a standard distribution
- If we can obtain sample from it, we can generate a large sample $(\theta_1, \psi_1), \ldots, (\theta_N, \psi_N)$.
- Can then use features of the sample to estimate posterior features of interest *e.g.*:

$$\mathbb{E}\left[heta|y
ight] pprox rac{1}{N} \sum_{i=1}^{N} heta_i$$
 $\mathbb{P}(heta < oldsymbol{c}) pprox rac{1}{N} \sum_{i=1}^{N} \mathbf{1}(heta_i < oldsymbol{c})$

This is known as Monte Carlo estimation.

Monte Carlo Sampling from Posteriors

- We cannot obtain independent samples directly from the posterior
- Can instead generate a sequence of *dependent* random variables whose distribution converges to the posterior distribution of interest
- Idea underlying Markov chain Monte Carlo (*MCMC*) (e.g. Gelman et al.2004; Gamerman and Lopes 2006)

Markov chains

- A Markov chain is any random sequence of numbers where the future of the sequence depends only on the current state and not on its history.
- Most simple example is the random walk

Metropolis-Hastings algorithm Metropolis et al. 1953; Hastings 1970

- **1** Initialise: Set i = 0, pick starting state θ_0, ψ_0
- **2 Set:** i = i + 1.
- **3 Sample:** $(\tilde{\theta}, \tilde{\psi}) \sim q(\cdot | \theta_{i-1}, \psi_{i-1}).$
- 4 Calculate: acceptance probability $\alpha = \min \left\{ 1, \frac{p(\tilde{\theta}, \tilde{\psi})q(\theta_{i-1}, \psi_{i-1} | \tilde{\theta}, \tilde{\psi})}{p(\theta_{i-1}, \psi_{i-1})q(\tilde{\theta}, \tilde{\psi} | \theta_{i-1}, \psi_{i-1})} \right\}$
- **5** Sample: $u \sim U[0, 1]$
- 6 Accept/Reject: Set $\theta_i = \tilde{\theta}, \psi_i = \tilde{\psi}$ if $u < \alpha$, else set $\theta_i = \theta_{i-1}$ and $\psi_i = \psi_{i-1}$. Return to 2

Choice of $q(\cdot|\theta_{i-1}, \psi_{i-1})$ crucial for convergence - a vast literature exists on this choice

33 of 65

MRC | Medical Research Council

Parameter estimation - both system and observational noise

 $egin{aligned} m{X}_t | m{X}_{t-1}, m{ heta} &\sim f_{m{ heta}}(m{x}_t | m{x}_{t-1}; m{ heta}) \ m{Y}_t | m{X}_t, m{\psi} &\sim f_{m{\psi}}(m{y}_t | m{x}_t; m{\psi}) \end{aligned}$

 Particularly challenging for both Bayesian and non-Bayesian frameworks as the likelihood L(y_{1:T}; θ, ψ)

$$\mathcal{L}(\boldsymbol{y}_{1:T};\boldsymbol{\theta},\boldsymbol{\psi}) = f_{\boldsymbol{\theta},\boldsymbol{\psi}}(\boldsymbol{y}_{1:T};\boldsymbol{\theta}) = \int f_{\boldsymbol{\theta},\boldsymbol{\psi}}(\boldsymbol{x}_{0:T},\boldsymbol{y}_{1:T};\boldsymbol{\theta}) d\boldsymbol{x}_{0:T}$$

34 of 65

• cannot be typically evaluated (apart from simpler models/data structures) - requiring high dimensional integration over the unknown model states

Intractable likelihoods

Active area of research in *statistics* - approaches include the use of:

• **Data augmentation** to obtain a tractable likelihood (Gibson & Renshaw, 1998; O'Neill & Roberts, 1999) - *Potentially computationally expensive* Active area of research in *statistics* - approaches include the use of:

• **Data augmentation** to obtain a tractable likelihood (Gibson & Renshaw, 1998; O'Neill & Roberts, 1999) - *Potentially computationally expensive*

35 of 65

• Simulation methods *e.g*:

Active area of research in *statistics* - approaches include the use of:

• **Data augmentation** to obtain a tractable likelihood (Gibson & Renshaw, 1998; O'Neill & Roberts, 1999) - *Potentially computationally expensive*

- Simulation methods *e.g*:
 - Approximate Bayesian Computation (*e.g.* Kypraios et al, 2017).
- **Data augmentation** to obtain a tractable likelihood (Gibson & Renshaw, 1998; O'Neill & Roberts, 1999) *Potentially computationally expensive*
- Simulation methods *e.g*:
 - Approximate Bayesian Computation (*e.g.* Kypraios et al, 2017).
 - Synthetic likelihood (Wood, 2010) to provide proxy measures of likelihood based on summary statistics -*Heavily dependent on the choice of appropriate summary* statistics

- **Data augmentation** to obtain a tractable likelihood (Gibson & Renshaw, 1998; O'Neill & Roberts, 1999) *Potentially computationally expensive*
- Simulation methods *e.g*:
 - Approximate Bayesian Computation (*e.g.* Kypraios et al, 2017).
 - Synthetic likelihood (Wood, 2010) to provide proxy measures of likelihood based on summary statistics -*Heavily dependent on the choice of appropriate summary* statistics

35 of 65

• Particle filters to

- **Data augmentation** to obtain a tractable likelihood (Gibson & Renshaw, 1998; O'Neill & Roberts, 1999) *Potentially computationally expensive*
- Simulation methods *e.g*:
 - Approximate Bayesian Computation (*e.g.* Kypraios et al, 2017).
 - Synthetic likelihood (Wood, 2010) to provide proxy measures of likelihood based on summary statistics -*Heavily dependent on the choice of appropriate summary* statistics

35 of 65

• Particle filters to

estimate the likelihood (Arulampalam et al, 2002; Andrieu et al, 2010) - used in particle MCMC (PMCMC) and SMC².

- **Data augmentation** to obtain a tractable likelihood (Gibson & Renshaw, 1998; O'Neill & Roberts, 1999) *Potentially computationally expensive*
- Simulation methods *e.g*:
 - Approximate Bayesian Computation (*e.g.* Kypraios et al, 2017).
 - Synthetic likelihood (Wood, 2010) to provide proxy measures of likelihood based on summary statistics -*Heavily dependent on the choice of appropriate summary* statistics

35 of 65

• Particle filters to

- estimate the likelihood (Arulampalam et al, 2002; Andrieu et al, 2010) used in particle MCMC (PMCMC) and SMC².
- maximise the likelihood via *iterated filtering* (lonides et al, 2006, 2015, 2017).

- **Data augmentation** to obtain a tractable likelihood (Gibson & Renshaw, 1998; O'Neill & Roberts, 1999) *Potentially computationally expensive*
- Simulation methods *e.g*:
 - Approximate Bayesian Computation (*e.g.* Kypraios et al, 2017).
 - Synthetic likelihood (Wood, 2010) to provide proxy measures of likelihood based on summary statistics -*Heavily dependent on the choice of appropriate summary* statistics

35 of 65

• Particle filters to

- estimate the likelihood (Arulampalam et al, 2002; Andrieu et al, 2010) used in particle MCMC (PMCMC) and SMC².
- maximise the likelihood via *iterated filtering* (lonides et al, 2006, 2015, 2017).
- use all data and retain model structure

COVID19 work - involvement in governmental advisory groups

Scientific Pandemic Influenza Advisory Committee on Modelling (SPI-M-O)

COVID19 work - involvement in governmental advisory groups

Scientific Pandemic Influenza Advisory Committee on Modelling (SPI-M-O)

- Commissions received from Cabinet
 Office
- Expressed as a question that can be addressed through 'modelling'
- Swift answers (24/48 hours!) from a number of groups/models
- SPI-M-O discusses results consensus achieved
- Consensus communicated to SAGE
- SAGE discussion translation into advice

Our contribution - Nowcasting & Forecasting

- Now-casting: estimate of the current state of the epidemic
 - level of disease transmission (R numbers)
 - number of new daily infections
 - prevalence of infection
 - proportion of the population ever infected (attack rate)
- Forecasting: prediction of relevant quantities
 - demand on the health system (e.g. hospitalisations), deaths

37 of 65

• Real time: as data become available sequentially

Real-time epidemic monitoring: why it is difficult?

- The transmission process is latent infections are not observable
- Direct data not available
- Plenty of indirect data
 - Noisy, incomplete, often biased data streams on related outcomes (e.g. time series of deaths - hospitalisation - prevalence etc.)
 - Meaningfully integrated in a model of disease transmission
- Analyses to be carried out in a **timely fashion** (within hours) to meet the SPI-M-O deadlines
- Model continuously adapted to tackle emergent challenges

Challenges

- **data integration** (Bayesian approach) (De Angelis, *et al*, 2015; De Angelis, Presanis, 2019)
- efficient algorithms as model becomes more complex and data accumulate

Initial model: March 16th - early July 2020 Birrell et al., 2021

Deterministic Susceptible(S)-Exposed(E)-Infected(I)-Removed(R) model

39 of 65

MRC | Medical Research Council

40 of 65

MRC | Medical Research Council

Current model: additional data - vaccination - waning

41 of 65

MRC

Model details - transmission dynamics

Discrete-time deterministic model for transmission governed by the system of equations

$$S_{r,t_{k},i} = S_{r,t_{k-1},i} \left(1 - \lambda_{r,t_{k-1},i}\delta\right)$$

$$E_{r,t_{k},i}^{1} = E_{r,t_{k-1},i}^{1} \left(1 - \frac{2\delta}{d_{L}}\right) + S_{r,t_{k-1},i}\lambda_{r,t_{k-1},i}\delta$$

$$E_{r,t_{k},i}^{2} = E_{r,t_{k-1},i}^{2} \left(1 - \frac{2\delta}{d_{L}}\right) + E_{r,t_{k-1},i}^{1} \frac{2\delta}{d_{L}}$$

$$I_{r,t_{k},i}^{1} = I_{r,t_{k-1},i}^{1} \left(1 - \frac{2\delta}{d_{I}}\right) + E_{r,t_{k-1},i}^{2} \frac{2\delta}{d_{L}}$$

$$I_{r,t_{k},i}^{2} = I_{r,t_{k-1},i}^{2} \left(1 - \frac{2\delta}{d_{I}}\right) + I_{r,t_{k-1},i}^{1} \frac{2\delta}{d_{I}},$$

$$R_{r,t_{k},i} = R_{r,t_{k-1},i} + I_{r,t_{k-1},i}^{2} \frac{2\delta}{d_{I}}$$

 $r = 1, \dots, R, k = 1, \dots, K$ and $i = 1, \dots, A$.

- *R* regions (7 NHS regions or 9 ONS regions), *K* time points, *A* age groups.
- *d_l*: mean infectious period, *d_L*: mean latent period (known).

• λ_{r,t_k} : rate for $S \rightarrow I$; $\delta = t_k - t_{k-1} = 0.5$. MRC | MedicarResearch Council

Model details - transmission kernel

New infections are generated as

$$\Delta_{r,t_{k},i}^{\text{infec}} = S_{r,t_{k},i} p_{r,t_{k},i}$$
$$= S_{r,t_{k},i} \left(1 - \prod_{j=1}^{A} \left[\left(1 - \mathbf{b}_{r,ij}^{\mathbf{t}_{k}} \right)^{l_{1}^{1},t_{k},j} + l_{r}^{2},t_{k},j} \right] \right) \delta$$

 $\mathbf{b}_{r,ij}^{\mathbf{t}_{k}} = \mathbb{P}(\text{Suscept. aged } i \text{ infected by infectious individual aged } j \text{ at time } t_{k} \text{ in region } r)$ $= \frac{\beta_{\mathbf{t}_{k},\mathbf{r}}R_{0,r}}{R_{0,r}^{*}}\tilde{C}_{r,ij}^{t_{k}},$

43 of 65

depends on $\tilde{C}_{r,ij}^{t_k} = C_{ij}^{t_k} \odot M_{r,ij}^{t_k}$ and $\beta_{t_k,r}$

• $C_{ii}^{t_k}$ - time-varying matrix of contacts between individuals in groups *i* and *j* at time t_k .

MRC | Medical Research Council

Model details - transmission kernel

New infections are generated as

$$\Delta_{r,t_{k},i}^{\text{infec}} = S_{r,t_{k},i} p_{r,t_{k},i}$$
$$= S_{r,t_{k},i} \left(1 - \prod_{j=1}^{A} \left[\left(1 - \mathbf{b}_{r,ij}^{t_{k}} \right)^{l_{r}^{1},t_{k},j} + l_{r,t_{k},i}^{2} \right] \right) \delta$$

 $\begin{aligned} \mathbf{b}_{r,ij}^{\mathbf{t}_{k}} &= \mathbb{P}(\text{Suscept. aged } i \text{ infected by infectious individual aged } j \text{ at time } t_{k} \text{ in region } r) \\ &= \frac{\beta_{\mathbf{t}_{k},\mathbf{r}}R_{0,r}}{R_{0,r}^{*}} \tilde{C}_{r,ij}^{t_{k}}, \end{aligned}$

depends on $\tilde{C}_{r,ij}^{t_k} = C_{ij}^{t_k} \odot M_{r,ij}^{t_k}$ and $\beta_{t_k,r}$

- $C_{ii}^{t_k}$ time-varying matrix of contacts between individuals in groups *i* and *j* at time t_k .
- $M_{r,ij}^{t_k}$ region-specific matrix of relative susceptibility of individual in age-group *i* to an infection from an infectious individual in group *j* given contact

43 of 65

MRC | Medical Research Council

 $\beta_{t_k,r}$ - region-time varying - encapsulate unobserved temporal fluctuations in transmission *e.g.* behavioural aspects

• Let $\tilde{\beta}_{t_k,r} = \log(\beta_{t_k,r})$ and assume

$$\tilde{\beta}_{t_k,r} \sim \mathrm{N}(\tilde{\beta}_{t_{k-1},r}, \sigma_{r,\beta}^2), \quad \tilde{\beta}_{\mathrm{tlock},r} = \mathbf{0},$$

 $\tilde{\beta}_{\mathrm{tlock},r}$ applies in all weeks up to the first lock-down.

- Currently a piecewise constant process, e.g. fortnightly:
 - Let $w_k \equiv w(t_k)$ indicate the week in which time t_k falls.

• Then
$$\tilde{\beta}_{\boldsymbol{w}_{k},\boldsymbol{r}} \sim \mathrm{N}(\tilde{\beta}_{\boldsymbol{w}_{k-1},\boldsymbol{r}},\sigma_{\boldsymbol{r},\beta}^{2}).$$

Initial model: March 16th - early July 2020 Birrell et al., 2021

- time series of COVID19-confirmed deaths
- serology data (NHS Blood&Transplant)
- contact rates POLYMOD/Google mobility/ONS UK Time-Use Survey/DfE schools attendance
- prior information (e.g. age-specific IFR)

The likelihood(s)

Deaths¹: X_{r,t_k,i} number of deaths, p_i age-specific infection-fatality ratio, F_{k-ℓ} (given) prob. of ℓ days from infection to death

$$\mathbf{X}_{\mathbf{r},\mathbf{t}_{\mathbf{k}},\mathbf{i}} \sim \operatorname{NegBin}\left(\mathbf{p}_{i}\sum_{\ell=0}^{k} \mathbf{F}_{\mathbf{k}-\ell}\Delta_{\mathbf{r},t_{\ell},i}^{\operatorname{infec}},\eta\right), \ \eta \text{ to measure over-dispersion}$$

¹Similarly we incorporate hospitalisation data to make projections of hospital burden.

The likelihood(s)

Deaths¹: X_{r,t_k,i} number of deaths, p_i age-specific infection-fatality ratio, F_{k-ℓ} (given) prob. of ℓ days from infection to death

$$\mathbf{X}_{\mathbf{r},\mathbf{t}_{\mathbf{k}},\mathbf{i}} \sim \operatorname{NegBin}\left(\mathbf{p}_{i}\sum_{\ell=0}^{k} \mathbf{F}_{k-\ell}\Delta_{r,t_{\ell},i}^{\operatorname{infec}},\eta\right), \ \eta \text{ to measure over-dispersion}$$

Serological data: k_{sens} and k_{spec} denote sens. and spec. of blood tests, n_{r,t_k,i} test samples, Y_{r,t_k,i} serologically positive tests

$$\mathbf{Y}_{\mathbf{r},\mathbf{t_k},\mathbf{i}} \sim Bin\left(n_{r,t_k,i}, k_{\mathrm{ksens}}\left(1 - \frac{S_{r,t_k,i}}{N_{r,i}}\right) + (1 - k_{\mathrm{kspec}})\frac{S_{r,t_k,i}}{N_{r,i}}\right).$$

¹Similarly we incorporate hospitalisation data to make projections of hospital burden.

Parameters

static parameters

- $\theta_r = (I_{0,r}, \psi_r, m_{1,r}, m_{2,r}, m_{3,r})$ are region-specific parameters
 - \blacktriangleright $I_{0,r}$: initialization of the ODE system.
 - ψ_r : epidemic growth rate parameters
 - $m_{1,r}, m_{2,r}, m_{3,r}$: parameters of the contact matrices $\tilde{C}_r^{t_k}$
- $\theta_g = (\eta, \sigma_{\beta}^2, k_{\text{sens}}, k_{\text{spec}}, d_l, p_{1:n_{\beta}})$ are global (common across regions) parameters

dynamic parameters - realisation of a stochastic process

β̃_r (region-specific) parameters; K̃-dimensional vector where K̃ is the length (in weeks) of the data time series

- We denote by *D* all the data.
- We use highly informative priors for the parameters we have information on (details in Birrell et al., (2021))
- Posterior of interest:

$$\pi(\theta_g, \theta_{1:R}, \tilde{\beta}_{1:R} | \boldsymbol{D}) \propto \boldsymbol{p}(\theta_g) \boldsymbol{p}(\tilde{\beta}_{1:R} | \theta_{1:R}) \boldsymbol{p}(\theta_{1:R}) \boldsymbol{p}(\boldsymbol{D} | \theta, \theta_{1:R}, \tilde{\beta}_{1:R}) \}$$

- We denote by *D* all the data.
- We use highly informative priors for the parameters we have information on (details in Birrell et al., (2021))
- Posterior of interest:

$$\pi(\theta_g, \theta_{1:R}, \tilde{\beta}_{1:R} | D) \propto p(\theta_g) p(\tilde{\beta}_{1:R} | \theta_{1:R}) p(\theta_{1:R}) p(D | \theta, \theta_{1:R}, \tilde{\beta}_{1:R}) \}$$

48 of 65

 High-dimensional problem - dimension increasing over time: from initial 50 parameters to >800 currently in the model

- We denote by *D* all the data.
- We use highly informative priors for the parameters we have information on (details in Birrell et al., (2021))
- Posterior of interest:

$$\pi(\theta_g, \theta_{1:R}, \tilde{\beta}_{1:R} | D) \propto p(\theta_g) p(\tilde{\beta}_{1:R} | \theta_{1:R}) p(\theta_{1:R}) p(D | \theta, \theta_{1:R}, \tilde{\beta}_{1:R}) \}$$

- High-dimensional problem dimension increasing over time: from initial 50 parameters to >800 currently in the model
- Weakly-identifiable parameters partially address through prior information

- We denote by *D* all the data.
- We use highly informative priors for the parameters we have information on (details in Birrell et al., (2021))
- Posterior of interest:

$$\pi(\theta_g, \theta_{1:R}, \tilde{\beta}_{1:R} | D) \propto p(\theta_g) p(\tilde{\beta}_{1:R} | \theta_{1:R}) p(\theta_{1:R}) p(D | \theta, \theta_{1:R}, \tilde{\beta}_{1:R}) \}$$

- High-dimensional problem dimension increasing over time: from initial 50 parameters to >800 currently in the model
- · Weakly-identifiable parameters partially address through prior information
- Bespoke sampling algorithms needed to produce results on time

- We denote by *D* all the data.
- We use highly informative priors for the parameters we have information on (details in Birrell et al., (2021))
- Posterior of interest:

$$\pi(\theta_{g},\theta_{1:R},\tilde{\beta}_{1:R}|D) \propto p(\theta_{g})p(\tilde{\beta}_{1:R}|\theta_{1:R})p(\theta_{1:R})p(D|\theta,\theta_{1:R},\tilde{\beta}_{1:R})\}$$

- High-dimensional problem dimension increasing over time: from initial 50 parameters to >800 currently in the model
- Weakly-identifiable parameters partially address through prior information
- Bespoke sampling algorithms needed to produce results on time
 - quantities improving performance of Bayesian methods are not always tractable or cheap to compute, e.g. likelihood gradients

MCMC: Random Walk Metropolis Hastings (RW-MH)

- February 2020 April 2021: simple RW-MH with block updates.
 - Consider *M* blocks of the parameters where τ_m is the *m*-th d_m -dimensional block.
 - At the *i*-th MCMC iteration propose $\tau_m^{i+1} = \tau_m^i + \sqrt{\lambda_m} N(0, I_d)$.
 - We learn $\sqrt{\lambda_m}$ during the burn-in period to achieve acceptance rate for each block in a desired level (e.g. 0.234)
- 16/04/2021 Estimating \sim 300 parameters in 25 hours

MRC

MCMC: Adaptive Metropolis with Global Scaling (AMGS)

• March 2021 - January 2022:

- ▶ We now consider **region specific blocks** updated **in parallel** and a single block for the global parameters [H] MCMC that targets the posterior of interest. [1] Set the number of iterations ν . $i = 1, ..., \nu$ r = 1, ..., R Draw (θ_r, β_r) from $p(\theta_r, \beta_r | \theta, D_r)$. Draw θ from $p(\theta|_{\theta_{1:R}, \tilde{\beta}_{1:R}, D)$.
- ▶ We have M = R + 1 blocks and we apply the AMGS algorithm (see e.g. Andrieu and Thom, 2008) to update the parameters in τ_m .

50 of 65

• We have to learn the **covariance matrix** of the proposal distribution.

• Let τ the parameters in the *m*-th block at the *i*-th iteration; **Propose** $\tau^{i+1} \sim N(\tau^i, \lambda^i \Sigma_i)$ to accept/reject with MH probability $\alpha(\tau^i, \tau^{i+1})$ and obtain τ^{i+1} .

- Let τ the parameters in the *m*-th block at the *i*-th iteration; **Propose** $\tau^{i+1} \sim N(\tau^i, \lambda^i \Sigma_i)$ to accept/reject with MH probability $\alpha(\tau^i, \tau^{i+1})$ and obtain τ^{i+1} .
- Update λ^i and Σ_i using RM recursions:

- Let τ the parameters in the *m*-th block at the *i*-th iteration; **Propose** $\tau^{i+1} \sim N(\tau^i, \lambda^i \Sigma_i)$ to accept/reject with MH probability $\alpha(\tau^i, \tau^{i+1})$ and obtain τ^{i+1} .
- Update λ^i and Σ_i using RM recursions:

{γ_i} is a sequence of stepsizes ensuring variations of λⁱ, Σ_i vanish wrt MCMC iterations; Vanishing adaptation is required for π-ergodicity of the algorithm.

RW-MH traceplots 16/04/2021

AMGS traceplots 30/04/2021

27/11/2021

• "Over-adapting" proves to be a source of "bad" values for λ and Σ

53 of 65

· Can lead to 'sticky' chains

27/11/2021

- "Over-adapting" proves to be a source of "bad" values for λ and Σ
- · Can lead to 'sticky' chains

MRC | Medical Research Council
Badly tuned λ_i and Σ_i

 η over-dispersion parameter (static, global parameter)

MRC | Medical Research Council

Adaptive MCMC: improved adaptation

- **Prevent over-adapting** by borrowing the **early stopping** regularization from ML applications (e.g. Zhang and Yu, 2005).
 - 1. Calculate the sample average acceptance ratio $\hat{S}_{\lambda,\Sigma}$ based on *m* consecutive MCMC iterations

Adaptive MCMC: improved adaptation

- **Prevent over-adapting** by borrowing the **early stopping** regularization from ML applications (e.g. Zhang and Yu, 2005).
 - 1. Calculate the sample average acceptance ratio $\hat{S}_{\lambda,\Sigma}$ based on *m* consecutive MCMC iterations
 - 2. If $\hat{S}_{\lambda,\Sigma} \in (\alpha_{-}^{\star}, \alpha_{+}^{\star})$ do not update the RM recursions

Adaptive MCMC: improved adaptation

- **Prevent over-adapting** by borrowing the **early stopping** regularization from ML applications (e.g. Zhang and Yu, 2005).
 - 1. Calculate the sample average acceptance ratio $\hat{S}_{\lambda,\Sigma}$ based on *m* consecutive MCMC iterations
 - 2. If $\hat{S}_{\lambda,\Sigma} \in (\alpha_{-}^{\star}, \alpha_{+}^{\star})$ do not update the RM recursions
 - 3. Stop the RM recursions at the end of the burn-in period to ensure π -ergodicity

Improved tuning of λ_i and Σ_i

 η over-dispersion parameter (static, global parameter)

56 of 65

MRC Medical Research Council

Improved tuning of λ_i and Σ_i

MRC | Medical Research Council

Improved tuning of λ_i and Σ_i

57 of 65

MRC | Medical Research Council

Incidence of infection

 Estimation based on over 930 days of data from: hospital admissions, serological surveys and ONS prevalence surveys 58 of 65

Medical Research Council MRC

Incidence of infection

- Estimation based on over 930 days of data from: hospital admissions, serological surveys and ONS prevalence surveys
- MRC | We Wolfeshuge mipact of children in late stage of the delta wave

Transmission: effective reproduction number $R_e(t)$

MRC

Risk of severe event - hospitalisation - mortality

IHR

Risk of severe event - hospitalisation - mortality

IHR and IFR

MRC

Short-term predictions: hospital admissions

Contribution to SPI-M-O consensus as the official Public Health England's model

 Government consensus on relevant indicators (*e.g.* R(t)) - combination of models from across academic institutions

MRC

In conclusion

- Official model of Public Health England (UKHSA) did not have luxury/resources to stop providing results and developing sophisticated MCMC
- Clever tweaking of existing algorithms 'on the fly' never abandoned exact inference produce robust results under extreme time pressure
- Highlights importance of work on reliable/scalable algorithms that can be adapted swiftly in an emergency situation

- Relaxation of non-realistic assumptions e.g. piece-wise constant $\tilde{\beta}_{t_k,r}$ /independence across regions complicates model/inference
 - Approximating the model (e.g. spectral approximation of diffusion processes)
 - Designing more sophisticated MCMC and/or SMC methods to conduct exact inference without making non-realistic assumptions
- Automatic differentiation to employ likelihood derivatives
- Addition of demographic stochasticity approximate inference

Funding from

- UKRI (MRC)
- NIHR
- UKHSA
- Bayes4Health

Analyses regularly published at https://www.mrc-bsu.cam.ac.uk/now-casting/