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> Types of data

Inference approaches - different types of data/models
lllustration from our COVID19 work
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Simple SIR-type models

SIR model:

Incidence

Recovery/removal rate

A(t)

S(t)

1(t)
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S(t)

3 many more variations!
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I(t)

1(t)

Perhaps infection does not confer lasting immunity: SIS model

R(t)

Delay infectiousness through the addition of a latent infection state: SEIR model
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Deterministic SIR model [Kermack & McKendrick (1927)]

* Closed population of size S(t) + I(t) + R(t) = N + 1
e |nitial state X(0) = (S(0), /(0), R(0)) = (N,1,0), ODEs:

d
el Y
5 S =-xDS(0)
d
g @ = A0S —~I(1)
d
el =~/
5 RO =~
where mass action/homogeneous mixing assumption holds:
A = Bx )
incidence = effective contact rate X # infected
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The reproduction number Ry

At time, t = 0, for the epidemic to take off we require:

ho>0 = SO)=N>7/8

Definition
Let Ry :== N5 /~.
Then the epidemic will not immediately begin to die outif, at t =0, Ry > 1.

Interpretation of Ry:
The number of secondary infections caused by one primary infection in a fully
susceptible population.
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A Deterministic Epidemic

B(t) = A(t)S(t)d C(t) =~I(t)o
S(t) (1) = A(t)S(t)ét (1) (1) = yI(t)ét R(1)

Evolution of SIR states

000
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Simulation Details
e N=1000
* Ry=25
e v =0.2days™
0 = 0.5 day
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Deterministic vs. Stochastic

Deterministic

e Model states X(t) = (S(f), /(1)) and transitions between them are a
deterministic function of time, t, and a parameter 8 = (3,7, ..).

* Ry > 1 or equivalently Sy >~/ and the epidemic will take-off with certainty.

Stochastic

¢ No longer a 1-1 relationship between parameter and epidemic; X; = {S;, I;} is a
stochastic process, dependent on 6, not a function.

¢ Allows for the possibility of epidemics with Ry > 1 to fail.
e For large I;, dynamics typically approximate deterministic dynamics.
* 3 many ways to incorporate stochasticity.
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General Stochastic (SIR) Epidemic model

e Continuous-time Markov Chain - The SIR model on a closed population can be
cast as a bivariate stochastic process X; = {St, I1}.
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rates

(s,i)—>(s—1,i+1) : i
(s,i) = (s,i—1) : ~

e and transition probabilities

P{Stist =81, st =i+1[ St =8k =i} = pisot+ o(dt)
P{Stist =8, It =i—1]|St=8 =i} = ~idt+ o(dt)
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General Stochastic (SIR) Epidemic model

e Continuous-time Markov Chain - The SIR model on a closed population can be
cast as a bivariate stochastic process X; = {St, I1}.

¢ Time spent in model compartments is exponentially distributed with transition
rates

(s,i)—>(s—1,i+1) : i
(s,i) = (s,i—1) : ~

e and transition probabilities

P{Stist =81, st =i+1[ St =8k =i} = pisot+ o(dt)
P{Stist =8, It =i—1]|St=8 =i} = ~idt+ o(dt)

e We refer to this randomness as demographic stochasticity.
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Chain-binomial models: In general

Evolution of SIR states

1000

#People

750
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0
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St

B[ ~ BIn(Sf,ﬁ/[(St)

0

It

Ci ~ Bin(lt, 1-— eiryél)
Ry

Simulation Details

20 40

[ ] N = 1000

® = 0.2 day371

e =05 day y
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Chain-binomial models: In general

Evolution of SIR states

1000

#People
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250

0
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St

B, ~ Bin(S;, f15t)

Ci ~ Bin(h,1 — =)
Ry

Simulation Details

e N =1000

e« Ry=25

e v=0.2days™"
e j=0.5day

Epidemic timing the
main difference
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Chain-binomial models: In general

Bt ~ Bln(shﬂltét) Ct ~ Bin(ll,1 — e—'yét) R
t

St

Simulation Details
e N=100
°* Ry=25
* v=0.2days™
e j=0.5day )

Evolution of SIR states

1

Clearer stochastic
—————— effects.
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Environmental Stochasticity

Assume stochastic fluctuation in the rate of effective contact, 5;, absorbing all
extraneous, un-modelled effects on transmission:

e.g. the SIR model

aS/at = —BihS:
dlt/dt = It (BtSt — ’)/)
dgr = pwdW

e W; is a standard Brownian motion; v is a volatility parameter
o 3: = Bexp(vW;) is the instantaneous rate of secondary infections per
susceptible per unit time.
* X: = (S, I+, Bt) is now the extended state vector, a solution of the above
stochastic differential equation. )
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Discrete-time Environmental Stochasticity

In practice, in discrete time with time-steps of size §t
e.g. the SIR model
Strst — St = —BthStor
Irst =1l = I (BtSt — 7)ot
log (Brs) ~ N (log (8r),1251)
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Key quantities to monitor epidemics

e Incidence or force of infection A(t) = SI(t) or A(t) = BI(t)/N
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S(t)

A(f)

I(t)

R()
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Key quantities to monitor epidemics

S(t)

()

I(t)

R()

e Incidence or force of infection A(t) = SI(t) or A(t) = BI(t)/N
® Prevalence = = I(t)/N

e Reproduction numbers Ry = f(3,v) or Ry = f(r,
generation time distribution; and R; = f(I(t), G(-)
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Key quantities to monitor epidemics

S(t)

()

Hos

I(t)

R()

ICU

Dea

e Incidence or force of infection A(t) = SI(t) or A(t) = BI(t)/N
® Prevalence = = I(t)/N

e Reproduction numbers Ry = f(3,v) or Ry = f(r,
generation time distribution; and R; = f(I(t), G(-)
e Severity (e.g. infection-fatality risk)
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Linking Models To Data
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Epidemic data

¢ Direct information on incidence of infection hardly ever available (perhaps in
small outbreaks)

More typically available
¢ Final size data
e Temporal data

» Prevalence data
> Incidence of sequelae of infection

Our goal is prospective (real-time) or retrospective estimation
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Linking models to data

e An observation model required to link data to the SIR system

S(1)

A(t)

s (1)

e An observation model may have inputs:

» Incidenceof new infections A(t)S(t)6t = BI(t)S(t)dt

MRC | Medical Research Council

s R(t)
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Linking models to data
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s (1)
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e An observation model may have inputs:

» Incidenceof new infections A(t)S(t)6t = BI(t)S(t)dt
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Linking models to data

Prev

e An observation model required to link data to the SIR system

S(1)

A(t)

Sym

s (1)

A(1)

Vv

Hos

e An observation model may have inputs:
» Incidenceof new infections A(t)S(t)6t = BI(t)S(t)dt

> Prevalence (e.g. /(f)/N)
> Severity (e.g. infection-fatality risk): fraction of incidence that experiences a severe

event

MRC | Medical Research Council

ICU

Dea

16 of 65



Prevalence of current infection

Here, Y; could represent the number of
infections detected out of n; individuals
sampled at random. Data are related to
the prevalence, =, by being considered a

St @ 7 R; realisation of, typically Binomial,

W

distribution:

Yt ~ Bin(ns, mt) where 7w =1I/N
Alternatively, for over-dispersed data, use
A the Beta-Binomial distribution, with
S E; A Ry additional dispersion parameter, 7:
\/ Y; ~ BetaBin (ny, /7, (1 — ) /7)
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Prevalence of having ever been infected

St

St

E;

Rt

MRC | Medical Research Council

Serological tests/assays measure
antibodies indicating any previous
infection, not necessarily current,

informing cumulative incidence
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Prevalence of having ever been infected

St

At

E;

It

Rt

@
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Serological tests/assays measure
antibodies indicating any previous
infection, not necessarily current,
informing cumulative incidence or,
equivalently, population susceptibility:

m=1-8/N

All prevalence test data can include false
positives and false negatives, so
consider test sensitivity, ksens, and test
specificity, Kspec:

S S
Tt = Ksens <1 - Nt> + (1 — Kspec) Nt
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Temporal data on sequelae of infection
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Temporal data on sequelae of infection

St

At

v

Discrete-time dynamics

MRC | Medical Research Council

It

R;

Dea

19 of 65



Temporal data on sequelae of infection

A
S, ! I 7 R

Discrete-time dynamics
e Set ty = kit and write, for example, Sk = S(i)
* New infections generated in [tx_1, f), Ay, = Ay, Sy, 0t = By, Sy, Iy, 0t/

Dea
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Temporal data on sequelae of infection

A
S, ! I 7 R

Discrete-time dynamics
e Set ty = kit and write, for example, Sk = S(i)
* New infections generated in [tx_1, f), Ay, = Ay, Sy, 0t = By, Sy, Iy, 0t/
e Proportion of infections that lead to death, pp.
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Temporal data on sequelae of infection
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v

Discrete-time dynamics
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It

Set fx = kot and write, for example, Sx = S(#)
New infections generated in [fx_1, tx), Ay, = Ay, S0t = By, Sy Iy, 0t/
Proportion of infections that lead to death, pp.

R;

Time-to-death governed by discrete distribution f = (f, fi, .. .).

Dea
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Temporal data on sequelae of infection

St

At

v

Discrete-time dynamics
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It

Expected number of deaths per day:

K
p, = Po > Aify
=

Set fx = kot and write, for example, Sx = S(#)
New infections generated in [fx_1, tx), Ay, = Ay, S0t = By, Sy Iy, 0t/
Proportion of infections that lead to death, pp.

R;

Time-to-death governed by discrete distribution f = (f, fi, .. .).

Mt
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Temporal data on sequelae of infection

Continuous-time dynamics
e Rate of new infection at time t, Ay = 3:Stly/N
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Temporal data on sequelae of infection

A
S, ! I 7 R

Continuous-time dynamics
e Rate of new infection at time t, Ay = 3:Stly/N
* Proportion of infections that lead to death, pp. Dea
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Temporal data on sequelae of infection

A
St : It i R;

Continuous-time dynamics
e Rate of new infection at time t, Ay = 3:Stly/N
e Proportion of infections that lead to death, pp.
¢ Time-to-death governed by distribution f(t).

Dea
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Temporal data on sequelae of infection

Continuous-time dynamics

Rate of new infection at time ¢, A; = 3:Stl/N
Proportion of infections that lead to death, pp.
Time-to-death governed by distribution £(t).
Expected number of deaths per day:
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Linking to Data

.
[ ]

. Recall the requirement for dispersion
S parameter 7.

. Yt the number of cases in [tx_1, k)

.
[ J

¢ Discrete-time
ot
Yl‘k ~ NegBIn (Mtka 77)
e Continuous-time
Y, t+ot
t Y; ~ NegBin (/ pudu, n)
t
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Do we need the convolution?

e Convolutions are relatively expensive to calculate. Can we avoid them?
e Could treat data as removals - arrivals into an absorbing model compartment.
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Do we need the convolution?

e Convolutions are relatively expensive to calculate. Can we avoid them?
e Could treat data as removals - arrivals into an absorbing model compartment.

P =-xnsw
dl PR O PP N A =
%ty = A0s(t) (1

D) = (1)
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Do we need the convolution?

e Convolutions are relatively expensive to calculate. Can we avoid them?
e Could treat data as removals - arrivals into an absorbing model compartment.

D) = (1)

2o (1) = 7io(t)
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S(t)

1 —pp)A(t

I(t)

R(1)
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Do we need the convolution?

e Convolutions are relatively expensive to calculate. Can we avoid them?
e Could treat data as removals - arrivals into an absorbing model compartment.

C%?,(t) R s P L7 R
() = (1 =po) XB)S(t) — /(1)

(Z?(t) = poA(1)S(t) — v I(1) DA(t)

ng(t) =7I(t)

Cg:(t) =7Ip(1) o : °

e BUT time to death is the same as the infectious period!
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Do we need the convolution?

e Convolutions are relatively expensive to calculate. Can we avoid them?
e Could treat data as removals - arrivals into an absorbing model compartment.

as
g (0 =—A)S(1)

at
‘Zl?(t) = ppA(t)S(t) —~I(1)
dDpre

o~ ()= vD
(iﬁ(t) =7I(t)
@(t) =vlip(t)

MRC | Medical Research Council

1 —pp)A(t

S(1) I(t) R(t)
PoA(t)
In(t) il Dore D
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Non-Exponential Delay Times

Exponential

I(1)

Ik
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Non-Exponential Delay Times

Exponential

I(¢) ek

Gamma
e Get more flexible delay times through using composite states.
* Delay time isbasedona l (m+1,v/(m+1)).

(1) (m+1)v D, (m+1)v (m+1)v D, (m+1)v W
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Non-Exponential Delay Times

Exponential
I(¢) “ ek
V.
More generally...
1
* =2 o
* Non-standard distribution overall.
U1 v2 . Um Um-1

In(t) D;

Dm

Mk
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Non-Exponential Delay Times

Exponential
I(¢) “ ek
y
More generally
=S
1= v "
o Non standard distribution overall.
v U v UmaA
In(t) ! D, 2 . " Dy
y

¢ |ntermediate states could represent physically meaningful quantities, e.g. layers
of severity, about which we may have some useful information.
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Composition transition model states

e Similarly, composite transmission states can add greater flexibility.

SIIR
A(t) 2y 2y
S(1) h(t) l(t) R(t)
e Useful for longer
durations, e.g. the SEEIIRW
waning of immunity, Wi 2w i
where it is more ® ()
likely that those who 2w 2y
entered a state A(t) 24 24 2y
longer ago are more S(1) Ei(1) Ea(t) h(t) k(1)

likely to move.
MRC | Medical Research Council
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Multiple Source of Data

e Observations at time t can include a collection of k data sources
Y:=1{YVit--- Yk} €9 both prevalence and incidence-type data

¢ Introduces multiple, simultaneous links between model and data
e Each link has its own observational model e.g.

Y‘t)rev ~ B|n (nl‘: ﬂ-t)s e Y?osp ~ NegBIn ('utn)

where 7; and p; may depend on model states x; and/or system parameters
B,~, and n is component of the observational model.

e Conditionally on the model and parameters, these data are typically treated as
independent

e More realistically, dependencies in the data [Corbella et al 2022] should be
accounted for.
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In generality: (Markov) State Space Model formulation

Denote X; = {S;, I+, R:}, the system evolution described by the initial density
fo(Xo; @) and the one-step transitions

Xt| Xt—1,0 ~ fo(X¢t|Xt_1;0)
Yi| Xt p ~ fy (V| Xt )

e where 0 and v are system and observational process parameters respectively
* y, data observed at time ¢

e different degree of noise (system/observational) in both of the above results in
models with different level of complexity
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In generality: (Markov) State Space Model formulation

* Only observational noise

Xt| Xi—1,0 = go(Xt—1)
Yi| Xt ~ fy(VilXt )

where gg(+) is a deterministic function of 6
e Both system and observational noise

Xt| Xt—1,0 ~ fo(Xt|X¢—1;0)
Yi|Xt, v ~ Ty (V4] Xt 7))

MRC | Medical Research Council
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Inference
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Parameter estimation - only observational noise

Xt| Xi—1,0 = go(Xt—1)
Yi| Xt ~ fy(VilXt: )

e Relatively straightforward to estimate parameters 6, ¢ from observed data y;.r

e Simplest: minimize the sum of squares of differences between observed data
and model prediction
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Parameter estimation - only observational noise

Likelihood-based inference

e Maximum likelihood estimation

LY1.7:0,9) =Ty (V1.7 | X1.7:0,7)

¢ Bayesian inference

)= L(Y1.7:0,v)p(6,)

0,
PO | Y1, P(Y1.1)

with p(8, ) the prior distribution for (8, 1)

MRC | Medical Research Council

E(y1 T 07 ¢)p(0a

Y)
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Bayesian Inference

e Apart from trivial cases, the posterior distribution is not a standard distribution
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Bayesian Inference

e Apart from trivial cases, the posterior distribution is not a standard distribution
e |f we can obtain sample from it, we can generate a large sample
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|
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Bayesian Inference

e Apart from trivial cases, the posterior distribution is not a standard distribution
e |f we can obtain sample from it, we can generate a large sample

(61,%1), ..., (BN, ¥N).

e Can then use features of the sample to estimate posterior features of interest
e.g.

E[0ly] ~ 3 21 6

0.02 0.03 0.04
1 |

Density

P(6 <)~ iy 1(6; < ©)

This is known as Monte Carlo
estimation.

0.00 0.01
o

20 40 60 80
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Monte Carlo Sampling from Posteriors

e We cannot obtain independent samples directly from the posterior

e Can instead generate a sequence of dependent random variables whose
distribution converges to the posterior distribution of interest

¢ |dea underlying Markov chain Monte Carlo (MCMC) (e.g. Gelman et al.2004;
Gamerman and Lopes 2006)
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Markov chains

¢ A Markov chain is any random sequence of numbers where the future of the
sequence depends only on the current state and not on its history.

¢ Most simple example is the random walk

S -
' ; " T 115 2|o

Bt ~ N (et, 02)

08 -04 00 04

Time
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Metropolis-Hastings algorithm wetropoliis et al.1953; Hastings 1970

1 Initialise: Set / = 0, pick starting state 6y, 1o
2 Set: i=i+1.
3 Sample: (0,) ~ q(-|0i_1,¥i_1).

4 Calculate: acceptance probability o = min {1, b

p(0,0)q(0i—1,%i—110,9)
(0i—1,%i-1)q(0,010i—1,%i—1)

5 Sample: v~ U][0,1]
6 Accept/Reject: Set 0, =0, =¥ if u < a, else set 6; = 0,_1 and ¢; = 1);_.
Returnto 2

Choice of q(-|9;_1,j_1) crucial for convergence - a vast literature exists on this
choice

MRC | Medical Research Council 33 Of 65



Parameter estimation - both system and observational noise

Xt| Xt—1,0 ~ fo(X¢|Xt_1;0)
Yi|Xt, 0 ~ fyp (Vi Xt 1)

e Particularly challenging for both Bayesian and non-Bayesian frameworks as the
likelihood L(y1.7;0, %)

LY1.7:0,9) = Top(V1.7:0) = /f9,1/)(XO:Tay1:T;0)dXO:T

e cannot be typically evaluated (apart from simpler models/data structures) -
requiring high dimensional integration over the unknown model states
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Intractable likelihoods

Active area of research in statistics - approaches include the use of:

¢ Data augmentation to obtain a tractable likelihood (Gibson & Renshaw, 1998;
O’Neill & Roberts, 1999) - Potentially computationally expensive
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Intractable likelihoods

Active area of research in siatistics - approaches include the use of:
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» Synthetic likelihood (Wood, 2010) to provide proxy measures of likelihood based on
summary statistics -Heavily dependent on the choice of appropriate summary
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Intractable likelihoods

Active area of research in siatistics - approaches include the use of:

e Data augmentation to obtain a tractable likelihood (Gibson & Renshaw, 1998;
O’Neill & Roberts, 1999) - Potentially computationally expensive

¢ Simulation methods e.g:
> Approximate Bayesian Computation (e.g. Kypraios et al, 2017).
» Synthetic likelihood (Wood, 2010) to provide proxy measures of likelihood based on

summary statistics -Heavily dependent on the choice of appropriate summary
statistics

e Particle filters to

> estimate the likelihood (Arulampalam et al, 2002; Andrieu et al, 2010) - used in
particle MCMC (PMCMC) and SMC?2.

> maximise the likelihood via iterated filtering (lonides et al, 2006, 2015, 2017).

» use all data and retain model structure
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COVID19 work - involvement in governmental advisory groups

Scientific Pandemic Influenza
Advisory Committee on Modelling

(SPI-M-O)
COBR
ministers
t
COBR SAGE:
officials CMO, PHE, ONS etc
SPLB, SPI-M-O:
NERVTAG Bristol Lancaster
slie Cambridge  LSHTM

Edinburgh ~ Manchester
Exeter PHE
Imperial Strathclyde
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COVID19 work - involvement in governmental advisory groups

Scientific Pandemic Influenza
Advisory Committee on Modelling

SPI-M-O - . .
( ) e Commissions received from Cabinet
COBR Office
ministers e Expressed as a question that can be
i addressed through ‘modelling’
COBR SAICIT: e Swift answers (24/48 hours!) from a
officials CMO, PHE, ONS etc
number of groups/models
e SPI-M-O discusses results - consensus
\ISIP{)\I/_’I]?AG SPI-M-O: achieved
‘ Bristol Lancaster .
e Combridge LSHTM e Consensus communicated to SAGE
Sl e SAGE discussion - translation into advice
xeter PHE
Imperial Strathclyde
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Our contribution - Nowcasting & Forecasting

e Now-casting: estimate of the current state of the epidemic

> level of disease transmission (R numbers)

» number of new daily infections

> prevalence of infection

> proportion of the population ever infected (attack rate)

e Forecasting: prediction of relevant quantities
> demand on the health system (e.g. hospitalisations), deaths

¢ Real time: as data become available sequentially
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Real-time epidemic monitoring: why it is difficult?

The transmission process is latent - infections are not observable
Direct data not available
Plenty of indirect data

> Noisy, incomplete, often biased data streams on related outcomes (e.g. time series
of deaths - hospitalisation - prevalence etc.)
> Meaningfully integrated in a model of disease transmission

Analyses to be carried out in a timely fashion (within hours) to meet the
SPI-M-O deadlines

e Model continuously adapted to tackle emergent challenges
Challenges

e data integration (Bayesian approach) (De Angelis, et al, 2015; De Angelis,
Presanis, 2019)

e efficient algorithms as model becomes more complex and data accumulate
MRC | Medical Research Council 38 Of 65



Initial model: March 16 - early July 2020 sireil ot ar. 2021

Deterministic Susceptible(S)-Exposed(E)-Infected(l)-Removed(R) model

Ardra 2/dp,
Sytpal - w EL » 2

2/dy 2/ds 2/d;

Tt .a

iy .a b - Rr,t*,a

Test antibody|
negative

Susceptible statest - - ------------

>  New --» xIFR, ---»
Infections

Deaths
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Test PCR positive
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Test PCR positive

. xmm,,.---
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Pandemic Model Development

L 2/ds 2/ds 2/dy 1/dn
Ef“ : § .
Test antibod

negative Test PCR pasitive

Test antibo
P Test PCR pasitive
Susceptible states

Hectie
Susceptible statesf - - - - - - === =< - B New  feow PRy
Infections

2/dvw,s

lv,‘»“ ’r‘

v
[ 2/dw,e
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Pandemic Model Development

L 2/, 2/ 2/dy 1/dr
Ef“ : § .
Test antibod

negative Test PCR pasitive

Test antibo
m:anw Test PCR positive

Hectie
Susceptible statesf - - - - - - === =< - B New  feow PRy
Infections

Susceptible states|

2/dvw,s

2/dw

lv,‘»“ ’r‘

v
[ 2/dw.e
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Current model: additional data - vaccination - waning

VoS 2/dw, v
W — / W d
B 2, 2/dr 2 d; 1/
- e EEC - h 2/dy, h i h P .
V| ofdy, | SV, o F -1 W BN g2, 2 e, I Rl R 2
Q/dwn
" _ ‘-':,rﬁ;a '-':,:ﬁ,a v:,!*,n ’-':,z,ha '-‘rl,rkn H”r‘};.,n
2/d; 2/dy 2/d; 1/dg
ET . . . . L
¥, v, V. Vi, Vi.— 2 dyw,
ENZ, ik 1, R S I
2/dw,
i L'r?.rm L'E,u;,u ng,ek,ﬂ LI!E',Lk,ﬂ
i 2/d; 24d, | 2 2/d; 1/dg
v, b | v, Ve, Vi, Vi Ve,
LA 2fdw.| Srival T[ G, B2, Nt ‘ JACHA mE
2/dw.
Vi o [ig pig B 0 iy B
W :ﬁ_? L, Urti,a U ten U ti 0 Uy b0 Uy th.a U tr.a
-
2/dr, 2/dy 2/dy 1d
2/d I P Ay o | 20dE | L . .
fhwe | sve L B e B e e RIS
Test antibod;
negative Test PCR positive
Susceptible states | --------ooooo- --w» xIFR,, -~ --® Deaths
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Model details - transmission dynamics

Discrete-time deterministic model for transmission governed by the system of equations
S’;Ik;i = S’vtk—hi (1 — At 1’/'5)

25
E:’tk,,‘ = E:vtk—1vi (1 d > + Sr b1, I)\I' 1, /6

25 25
Erz,tk: Erztk1/( d>+Er1tk g

20 20
baa =t (1-5) + 25
26 26
Irz,tk,i = Irz,tk_1,i (1 a ) + /: te 1JF/’

> 25
Rrgi=Ry_ i+ /r,tk,1,iF
|

r=1,..., R k=1,....Kandi=1,... A
® Rregions (7 NHS regions or 9 ONS regions), K time points, A age groups.

® d;: mean infectious period, d;: mean latent period (known).
e A\ i -:raehforSeI 6 =1t — lk—1 = 0.5.
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Model details - transmission kernel

New infections are generated as
infe
A:'r,lt::? - Sr,tk,ipr,tk,i

=S4 (1 - H [(1 _ blt'l.(ij)ll,[k)j+’37rkyj:|> 5

j=1

b = = P(Suscept. aged / infected by infectious individual aged j at time t in region r)

r,ij

51 Ro,
qur* : Cr Ij7
depends on ka,] = M,"‘,/ and By, -

° C,;k- tlme-varylng matrix of contacts between individuals in groups i and j at time .
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Model details - transmission kernel

New infections are generated as
infe
Alrr,ltke,? = Sr,tk,ipr,tk,i

= Sr,[k,i (1 — H |:(1 _ b:k”) r, Ikx/+’3,tkyf:|> 5

j=1

b = ]P’(Suscept aged i infected by infectious individual aged j at time f in region r)

r,ij

ﬁl Ro,
kF;* : Cr Ij7
depends on Cﬁk,/ = M,"‘,/ and By, -

° C,;k- tlme-varylng matrix of contacts between individuals in groups i and j at time .

° M,’f,.j - region-specific matrix of relative susceptibility of individual in age-group i to an infection
from an infectious individual in group j given contact
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Model details - time-varying stochastic transmissibility /5, r

O r - region-time varying - encapsulate unobserved temporal fluctuations in
transmission e.g. behavioural aspects

* Let (3 r = log(/%, r) and assume
/gtkvr ~ N(/étk,pﬁ O'?,ﬁ)v Btlock,l’ - 07
Btlock,r applies in all weeks up to the first lock-down.

e Currently a piecewise constant process, e.g. fortnightly:
> Let wx = w(t) indicate the week in which time i falls.
> Then /Bwk,r ~ N(ﬂwk_hr, 0/?76)
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Initial model: March 16" - early July 2020 sirel et a1, 2021

Anda|
Sr.r;.-.rn T Erf‘..rj

Test antibody|

Ql.a"d; 2 [dy
%Iif;{.n b{Rr.rﬁ-.u‘
negative

Deaths

Susceptible statesf - ====--===---- »  New % --» xIFR, ---®
Infections

e time series of COVID19-confirmed deaths
e serology data (NHS Blood&Transplant)

e contact rates POLYMOD/Google mobility/ONS UK Time-Use Survey/DfE

schools attendance

e prior information (e.g. age-specific IFR)
MRC | Medical Research Council
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The likelihood(s)

e Deaths': X, +,i number of deaths, p; age-specific infection-fatality ratio, Fx_,
(given) prob. of ¢ days from infection to death

K
X, 1, ~ NegBin (p,- > Feo AP, 77) . 1 to measure over-dispersion
=0

'Similarly we incorporate hospitalisation data to make projections of hospital burden.
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The likelihood(s)

e Deaths': X, +,i number of deaths, p; age-specific infection-fatality ratio, Fx_,
(given) prob. of ¢ days from infection to death

K
X, 1, ~ NegBin (p,- > Feo AP, 77) . 1 to measure over-dispersion
=0

e Serological data: ks and k. denote sens. and spec. of blood tests, n, ;, ;
test samples, Y, ;, ; serologically positive tests

1 Sr,t ,I' SrJ 7I'
Yr‘tk'i ~ Bin <n’7tk7i7 kkSEnS <1 - Nrt(i > + (1 - kkspec) Nrt(i .

'Similarly we incorporate hospitalisation data to make projections of hospital burden.
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Parameters

static parameters

® 0r=(lor,¢r,myr, mo,, ms,) are region-specific parameters
> I,: initialization of the ODE system.
> ,: epidemic growth rate parameters B
> my ,,mo ., mg,: parameters of the contact matrices Cr’k

® 0y =(n, 0[23, Ksens, Kspec: di, P1:n,) are global (common across regions)
parameters

dynamic parameters - realisation of a stochastic process

e B, (region-specific) parameters; K<-dimensional vector where K is the length
(in weeks) of the data time series
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47 of 65



Posterior of interest

e We denote by D all the data.
e We use highly informative priors for the parameters we have information on
(details in Birrell et al., (2021))

e Posterior of interest:
77(9g, 91::‘?’ B1:R‘D) (&8 p(eg)p(5~1:H|91:H)P(91:H)P(D“9» 01 R B1:R)}
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Posterior of interest

e We denote by D all the data.

e We use highly informative priors for the parameters we have information on
(details in Birrell et al., (2021))

Posterior of interest:

77(9g, 91::‘?’ B1:R‘D) (&8 p(eg)p(5~1:H|91:H)P(91:H)P(D“9, 01:/?7 B1:R)}

High-dimensional problem - dimension increasing over time: from initial 50

parameters to >800 currently in the model

Weakly-identifiable parameters partially address through prior information

Bespoke sampling algorithms needed to produce results on time

> quantities improving performance of Bayesian methods are not always tractable
or cheap to compute, e.g. likelihood gradients
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MCMC: Random Walk Metropolis Hastings (RW-MH)

e February 2020 - April 2021: simple RW-MH with block updates.
» Consider M blocks of the parameters where 7, is the m-th d,-dimensional block.
> At the i-th MCMC iteration propose 74" = 7/, + v/ AuN(0, Iy).
> We learn /A, during the burn-in period to achieve acceptance rate for each block
in a desired level (e.g. 0.234)

* 16/04/2021 Estimating ~ 300 parameters in 25 hours

Bsw.z Bsw14 Bsw 20 Bsw.r

[4

r

el ALY,
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MCMC: Adaptive Metropolis with Global Scaling (AMGS)

¢ March 2021 - January 2022:

> We now consider region specific blocks updated in parallel and a single block for
the global parameters [H] MCMC that targets the posterior of interest. [1] Set the number
of iterationsv. i=1,...,v r=1,...,R Draw (6, 3;) from p(6;, 5:|0, D;). Draw 0 from
p(0101., Br.r, D).

> We have M = R + 1 blocks and we apply the AMGS algorithm (see e.g. Andrieu
and Thom, 2008) to update the parameters in 7,.

> We have to learn the covariance matrix of the proposal distribution.
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AMGS: naive implementation

¢ Let 7 the parameters in the m-th block at the /-th iteration; Propose

1~ N(77, N'E,) to accept/reject with MH probability a(7/, 7+1) and obtain
Ti+1 .
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AMGS: naive implementation

¢ Let 7 the parameters in the m-th block at the /-th iteration; Propose

1~ N(77, N'E,) to accept/reject with MH probability a(7/, 7+1) and obtain
Ti+1 .

e Update )\ and X; using RM recursions:

> pigt = pi v (T =)
> Yt =T i [(7 = ) (7 — )T — X
> log(A*1) = log(\) + vip1[a(r’, 7+1) — o*], o* desired acceptance rate (0.234).
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AMGS: naive implementation

* Let 7 the parameters in the m-th block at the /-th iteration; Propose
1~ N(77, N'E,) to accept/reject with MH probability a(7/, 7+1) and obtain
Ti+1 .

e Update )\ and X; using RM recursions:

> pigt = pi v (T =)
> Yt =T i [(7 = ) (7 — )T — X
> log(A*1) = log(\) + vip1[a(r’, 7+1) — o*], o* desired acceptance rate (0.234).

* {4} is a sequence of stepsizes ensuring variations of A, ¥; vanish wrt MCMC
iterations; Vanishing adaptation is required for w-ergodicity of the algorithm.
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AMGS: naive implementation

Bswz Bsw,1s Bswzo Bswzr
WWW
RW-MH traceplots it ”‘W WWWW
16/04/2021 i
Bsw Bsw,1s Bswz0
AMGS traceplots W
30/04/2021
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AMGS: naive implementation

27/11/2021
e “Over-adapting” proves to be a source of “bad” values for A and *
e Can lead to ‘sticky’ chains
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AMGS: naive implementation

27/11/2021
e “Over-adapting” proves to be a source of “bad” values for A and ©
e Can lead to ‘sticky’ chains

Bsw.1t Bsw.22 Bsw.s3 Bswas

6000 0 000 00 6000 0 2000 000 6000
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Badly tuned \; and &,

1 over-dispersion parameter (static, global parameter)

0.9250 0.9255 0.9260 0.9265 0.9270
| | | | |

0.9245
|
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Adaptive MCMC: improved adaptation

e Prevent over-adapting by borrowing the early stopping regularization from
ML applications (e.g. Zhang and Yu, 2005).

1. Calculate the sample average acceptance ratio éA; based on m consecutive
MCMC iterations
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e Prevent over-adapting by borrowing the early stopping regularization from
ML applications (e.g. Zhang and Yu, 2005).

1. Calculate the sample average acceptance ratio §A7z based on m consecutive
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Adaptive MCMC: improved adaptation

e Prevent over-adapting by borrowing the early stopping regularization from
ML applications (e.g. Zhang and Yu, 2005).

1. Calculate the sample average acceptance ratio §A7z based on m consecutive
MCMC iterations

2. If Sy 5 € (a*,a%) do not update the RM recursions
3. Stop the RM recursions at the end of the burn-in period to ensure w-ergodicity
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Improved tuning of \; and ¥;

1 over-dispersion parameter (static, global parameter)
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Improved tuning of \; and ¥;
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Improved tuning of \; and ¥;
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Incidence of infection

400,000 Wildtype Alpha Delta Omicrgn BA1 BA2 BA5
[7]
c
2 300,000
[3]
2
£
= 200,000
]
4
-
© 100,000
o
Z
0
2020-07 2021-01 2021-07 2022-01 2022-07
Date

Age [l 514 [ 1520 [ 2540 [ 4500 [ 6570 s

e Estimation based on over 930 days of data from: hospital admissions,

serological surveys and ONS prevalence surveys
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Incidence of infection

400,000 Wildtype Alpha Delta Omicrgn BA1 BA2 BA5
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e Estimation based on over 930 days of data from: hospital admissions,
serological surveys and ONS prevalence surveys
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Transmission: effective reproduction number Rg(t)

(A)Re(1)
Wildtype Alpfa Delta Omicron BAT ~ BA2 BAS
10.0
3.0 =
{ I B
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Risk of severe event - hospitalisation - mortality

IHR

Wildtype I Apha Delta Omicron BA1 BA2 BAS

o

Fraction of Infections
o
o

0.001
2020-07 2021-01 2021-07 2022-01 2022-07
Date

Age || 2544 [ ] 4564 [] 65-74 [ ] 75+ [ | Allages
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Risk of severe event - hospitalisation - mortality

IHR and IFR

Wildtype 1 Alpha Delta Omicron BA1 BA2 BAS

o

iction of Infections
o
o

o

o
e

0.001

Fraction of Infections
?
R

1
|
|
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021-01 2021-07 2022-01 2022-07
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Short-term predictions: hospital admissions
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Contribution to SPI-M-O consensus as the official Public
Health England’s model

e Government consensus on relevant indicators (e.g. R(t)) - combination of

models from across academic institutions

East of England
2

London
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In conclusion

e COfficial model of Public Health England (UKHSA) did not have luxury/resources
to stop providing results and developing sophisticated MCMC

e Clever tweaking of existing algorithms ‘on the fly’ - never abandoned exact
inference - produce robust results under extreme time pressure

¢ Highlights importance of work on reliable/scalable algorithms that can be
adapted swiftly in an emergency situation
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Peace time

¢ Relaxation of non-realistic assumptions e.g. piece-wise constant BW
/independence across regions - complicates model/inference

> Approximating the model (e.g. spectral approximation of diffusion processes)
> Designing more sophisticated MCMC and/or SMC methods to conduct exact
inference without making non-realistic assumptions

¢ Automatic differentiation to employ likelihood derivatives
e Addition of demographic stochasticity - approximate inference
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