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Outline

• Compartmental models of disease dynamics
▶ Deterministic/stochastic
▶ Key quantities of interest

• Linking models to data
▶ Types of data

• Inference approaches - different types of data/models
• Illustration from our COVID19 work
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Simple SIR-type models

SIR model:

S(t) I(t) R(t)
λ(t) γ

Incidence Recovery/removal rate

Delay infectiousness through the addition of a latent infection state: SEIR model

E(t) I(t) R(t)S(t)

Perhaps infection does not confer lasting immunity: SIS model

I(t)S(t)

∃ many more variations!
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Deterministic SIR model [Kermack & McKendrick (1927)]

• Closed population of size S(t) + I(t) + R(t) = N + 1
• Initial state X (0) = (S(0), I(0),R(0)) = (N,1,0), ODEs:

d
dt

S(t) = −λ(t)S(t)

d
dt

I(t) = λ(t)S(t)− γI(t)

d
dt

R(t) = γI(t)

where mass action/homogeneous mixing assumption holds:
λ(t) = β × I(t)

incidence = effective contact rate × # infected
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The reproduction number R0

At time, t = 0, for the epidemic to take off we require:

d
dt

I(t)|t=0 > 0 ⇒ S(0) = N > γ/β

Definition
Let R0 := Nβ/γ.
Then the epidemic will not immediately begin to die out if, at t = 0, R0 > 1 .

Interpretation of R0:
The number of secondary infections caused by one primary infection in a fully
susceptible population.
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A Deterministic Epidemic

S(t) I(t) R(t)
B(t) = λ(t)S(t)δt C(t) = γI(t)δt

Simulation Details
• N = 1000
• R0 = 2.5
• γ = 0.2days−1

• δ = 0.5 day
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Deterministic vs. Stochastic

Deterministic
• Model states X (t) = (S(t), I(t)) and transitions between them are a

deterministic function of time, t , and a parameter θ = (β, γ, . . .).
• R0 > 1 or equivalently S0 > γ/β and the epidemic will take-off with certainty.

Stochastic
• No longer a 1-1 relationship between parameter and epidemic; Xt = {St , It} is a

stochastic process, dependent on θ, not a function.
• Allows for the possibility of epidemics with R0 > 1 to fail.
• For large It , dynamics typically approximate deterministic dynamics.
• ∃ many ways to incorporate stochasticity.
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General Stochastic (SIR) Epidemic model

• Continuous-time Markov Chain - The SIR model on a closed population can be
cast as a bivariate stochastic process Xt = {St , It}.

• Time spent in model compartments is exponentially distributed with transition
rates

(s, i) → (s − 1, i + 1) : βi
(s, i) → (s, i − 1) : γ

• and transition probabilities

P{St+δt = s − 1, It+δt = i + 1 | St = s, It = i} = βisδt + o(δt)
P{St+δt = s, It+δt = i − 1 | St = s, It = i} = γiδt + o(δt)

• We refer to this randomness as demographic stochasticity.
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Chain-binomial models: In general

St It Rt
Bt ∼ Bin(St , βItδt) Ct ∼ Bin(It , 1 − e−γδt)

Simulation Details
• N = 1000
• R0 = 2.5
• γ = 0.2 days−1

• δ = 0.5 day
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Bt ∼ Bin(St , βItδt) Ct ∼ Bin(It , 1 − e−γδt)

Simulation Details
• N = 1000
• R0 = 2.5
• γ = 0.2 days−1

• δ = 0.5 day

Epidemic timing the
main difference
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Chain-binomial models: In general

St It Rt
Bt ∼ Bin(St , βItδt) Ct ∼ Bin(It , 1 − e−γδt)

Simulation Details
• N = 100

0

• R0 = 2.5
• γ = 0.2 days−1

• δ = 0.5 day

Clearer stochastic
effects.
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Environmental Stochasticity

Assume stochastic fluctuation in the rate of effective contact, βt , absorbing all
extraneous, un-modelled effects on transmission:

e.g. the SIR model

dSt/dt = −βt ItSt

dIt/dt = It (βtSt − γ)

dβt = βtνdWt

• Wt is a standard Brownian motion; ν is a volatility parameter
• βt = β exp(νWt) is the instantaneous rate of secondary infections per

susceptible per unit time.
• Xt = (St , It , βt) is now the extended state vector, a solution of the above

stochastic differential equation.
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Discrete-time Environmental Stochasticity

In practice, in discrete time with time-steps of size δt

e.g. the SIR model

St+δt − St = −βt ItStδt

It+δt − It = It (βtSt − γ) δt

log (βt+δt) ∼ N
(
log (βt) , ν

2δt
)
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Key quantities to monitor epidemics

S(t) I(t) R(t)
λ(t)

λ(t)
I(t)S(t)

λ(t)

ICUHos Dea

γ

• Incidence or force of infection λ(t) = βI(t) or λ(t) = βI(t)/N

• Prevalence π = I(t)/N
• Reproduction numbers R0 = f (β, γ) or R0 = f (r ,G(·)) where G(·) is the

generation time distribution; and Rt = f (I(t),G(·))
• Severity (e.g. infection-fatality risk)
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Linking Models To Data
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Epidemic data

• Direct information on incidence of infection hardly ever available (perhaps in
small outbreaks)

More typically available
• Final size data
• Temporal data

▶ Prevalence data
▶ Incidence of sequelae of infection

Our goal is prospective (real-time) or retrospective estimation
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Linking models to data

S(t) I(t) R(t)
λ(t)

λ(t)
I(t)

λ(t)

HosSymPrev ICU Dea

γ

• An observation model required to link data to the SIR system
• An observation model may have inputs:

▶ Incidenceof new infections λ(t)S(t)δt = βI(t)S(t)δt

▶ Prevalence (e.g. I(t)/N)
▶ Severity (e.g. infection-fatality risk): fraction of incidence that experiences a severe

event
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Prevalence of current infection

St It Rt
λt γ

St Et It Rt

Here, Yt could represent the number of
infections detected out of nt individuals
sampled at random. Data are related to
the prevalence, πt , by being considered a
realisation of, typically Binomial,
distribution:

Yt ∼ Bin(nt , πt) where πt = It/N

Alternatively, for over-dispersed data, use
the Beta-Binomial distribution, with
additional dispersion parameter, τ :

Yt ∼ BetaBin (nt , πt/τ, (1 − πt) /τ)
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Prevalence of having ever been infected

St It Rt
λt γ

St Et It Rt

Serological tests/assays measure
antibodies indicating any previous
infection, not necessarily current,
informing cumulative incidence

or,
equivalently, population susceptibility:

πt = 1 − St/N

All prevalence test data can include false
positives and false negatives, so
consider test sensitivity, ksens, and test
specificity, kspec:

πt = ksens

(
1 − St

N

)
+ (1 − kspec)

St

N
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Temporal data on sequelae of infection

St It Rt

St It Rt

λt

λt

HosGPSym ICU Dea

µtµt

γ

MRC   |   Medical Research Council 19 of 65



Temporal data on sequelae of infection

St It Rt

St It Rt

λt

λt

HosGPSym ICU

Dea

µtµt

γ

MRC   |   Medical Research Council 19 of 65



Temporal data on sequelae of infection

St It Rt

St It Rt

λt

λt

HosGPSym ICU

Dea

µtµt

γ

Discrete-time dynamics

• Set tk = kδt and write, for example, Sk = S(tk )
• New infections generated in [tk−1, tk ), ∆tk = λtk Stk δt = βtk Stk Itk δt/N
• Proportion of infections that lead to death, pD.
• Time-to-death governed by discrete distribution f = (f0, f1, . . .).
• Expected number of deaths per day:

µtk = pD

k∑
l=1

∆l fk−l

MRC   |   Medical Research Council 19 of 65



Temporal data on sequelae of infection

St It Rt

St It Rt

λt

λt

HosGPSym ICU

Dea

µtµt

γ

Discrete-time dynamics
• Set tk = kδt and write, for example, Sk = S(tk )
• New infections generated in [tk−1, tk ), ∆tk = λtk Stk δt = βtk Stk Itk δt/N

• Proportion of infections that lead to death, pD.
• Time-to-death governed by discrete distribution f = (f0, f1, . . .).
• Expected number of deaths per day:

µtk = pD

k∑
l=1

∆l fk−l

MRC   |   Medical Research Council 19 of 65



Temporal data on sequelae of infection

St It Rt

St It Rt

λt

λt

HosGPSym ICU

Dea

µtµt

γ

Discrete-time dynamics
• Set tk = kδt and write, for example, Sk = S(tk )
• New infections generated in [tk−1, tk ), ∆tk = λtk Stk δt = βtk Stk Itk δt/N
• Proportion of infections that lead to death, pD.

• Time-to-death governed by discrete distribution f = (f0, f1, . . .).
• Expected number of deaths per day:

µtk = pD

k∑
l=1

∆l fk−l

MRC   |   Medical Research Council 19 of 65



Temporal data on sequelae of infection

St It Rt

St It Rt

λt

λt

HosGPSym ICU

Dea

µtµt

γ

Discrete-time dynamics
• Set tk = kδt and write, for example, Sk = S(tk )
• New infections generated in [tk−1, tk ), ∆tk = λtk Stk δt = βtk Stk Itk δt/N
• Proportion of infections that lead to death, pD.
• Time-to-death governed by discrete distribution f = (f0, f1, . . .).

• Expected number of deaths per day:

µtk = pD

k∑
l=1

∆l fk−l

MRC   |   Medical Research Council 19 of 65



Temporal data on sequelae of infection

St It Rt

St It Rt

λt

λt

HosGPSym ICU Dea

µt

µt

γ

Discrete-time dynamics
• Set tk = kδt and write, for example, Sk = S(tk )
• New infections generated in [tk−1, tk ), ∆tk = λtk Stk δt = βtk Stk Itk δt/N
• Proportion of infections that lead to death, pD.
• Time-to-death governed by discrete distribution f = (f0, f1, . . .).
• Expected number of deaths per day:

µtk = pD

k∑
l=1

∆l fk−l

MRC   |   Medical Research Council 19 of 65



Temporal data on sequelae of infection

St It Rt

St It Rt

λt

λt

HosGPSym ICU

Dea

µtµt

γ

Continuous-time dynamics
• Rate of new infection at time t , ∆t = βtSt It/N

• Proportion of infections that lead to death, pD.
• Time-to-death governed by distribution f (t).
• Expected number of deaths per day:

µt = pD

∫ u

0
∆uf (t − u)du

MRC   |   Medical Research Council 19 of 65



Temporal data on sequelae of infection

St It Rt

St It Rt

λt

λt

HosGPSym ICU

Dea

µtµt

γ

Continuous-time dynamics
• Rate of new infection at time t , ∆t = βtSt It/N
• Proportion of infections that lead to death, pD.

• Time-to-death governed by distribution f (t).
• Expected number of deaths per day:

µt = pD

∫ u

0
∆uf (t − u)du

MRC   |   Medical Research Council 19 of 65



Temporal data on sequelae of infection

St It Rt

St It Rt

λt

λt

HosGPSym ICU

Dea

µtµt

γ

Continuous-time dynamics
• Rate of new infection at time t , ∆t = βtSt It/N
• Proportion of infections that lead to death, pD.
• Time-to-death governed by distribution f (t).

• Expected number of deaths per day:

µt = pD

∫ u

0
∆uf (t − u)du

MRC   |   Medical Research Council 19 of 65



Temporal data on sequelae of infection

St It Rt

St It Rt

λt

λt

HosGPSym ICU Deaµt

µt

γ

Continuous-time dynamics
• Rate of new infection at time t , ∆t = βtSt It/N
• Proportion of infections that lead to death, pD.
• Time-to-death governed by distribution f (t).
• Expected number of deaths per day:

µt = pD

∫ u

0
∆uf (t − u)du

MRC   |   Medical Research Council 19 of 65



Linking to Data

µt

Yt

• Recall the requirement for dispersion
parameter η.

• Ytk the number of cases in [tk−1, tk )
• Discrete-time

Ytk ∼ NegBin (µtk , η)

• Continuous-time

Yt ∼ NegBin
(∫ t+δt

t
µudu, η

)
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Do we need the convolution?

• Convolutions are relatively expensive to calculate. Can we avoid them?
• Could treat data as removals - arrivals into an absorbing model compartment.

S(t) I(t) R(t)

ID(t)ID(t) Dpre

λ(t)(1 − pD)λ(t)

D
γυγ

pDλ(t)pDλ(t)

γ

• BUT time to death is the same as the infectious period!
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Non-Exponential Delay Times

Exponential

I(t) µk
υ

• Intermediate states could represent physically meaningful quantities, e.g. layers
of severity, about which we may have some useful information.
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Non-Exponential Delay Times

Exponential

I(t) µk
υ

Gamma
• Get more flexible delay times through using composite states.
• Delay time is based on a Γ (m + 1, υ/(m + 1)).

ID(t) D1 · · · Dm µk
(m + 1)υ (m + 1)υ (m + 1)υ (m + 1)υ

• Intermediate states could represent physically meaningful quantities, e.g. layers
of severity, about which we may have some useful information.
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Non-Exponential Delay Times

Exponential

I(t) µk
υ

More generally...

• 1
υ =

∑m+1
i=1

1
υi

.
• Non-standard distribution overall.

ID(t) D1 · · · Dm µk
υ1 υ2 υm υm+1

• Intermediate states could represent physically meaningful quantities, e.g. layers
of severity, about which we may have some useful information.

MRC   |   Medical Research Council 22 of 65



Non-Exponential Delay Times

Exponential

I(t) µk
υ

More generally...

• 1
υ =

∑m+1
i=1

1
υi

.
• Non-standard distribution overall.

ID(t) D1 · · · Dm µk
υ1 υ2 υm υm+1

• Intermediate states could represent physically meaningful quantities, e.g. layers
of severity, about which we may have some useful information.

MRC   |   Medical Research Council 22 of 65



Composition transition model states

• Similarly, composite transmission states can add greater flexibility.

SIIR

S(t) I1(t) I2(t) R(t)
λ(t) 2γ 2γ

• Useful for longer
durations, e.g. the
waning of immunity,
where it is more
likely that those who
entered a state
longer ago are more
likely to move.

SEEIIRW

S(t) E1(t) E2(t) I1(t) I2(t)

R(t)W (t)

λ(t) 2δ 2δ 2γ

2γ

2ω

2ω
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Multiple Source of Data

• Observations at time t can include a collection of k data sources
y t = {y1,t , . . . ,yk ,t} e.g. both prevalence and incidence-type data

• Introduces multiple, simultaneous links between model and data
• Each link has its own observational model e.g.

Yprev
t ∼ Bin (nt , πt), . . . , Yhosp

t ∼ NegBin (µt , η)

where πt and µt may depend on model states x t and/or system parameters
β, γ, and η is component of the observational model.

• Conditionally on the model and parameters, these data are typically treated as
independent

• More realistically, dependencies in the data [Corbella et al 2022] should be
accounted for.
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In generality: (Markov) State Space Model formulation

Denote X t = {St , It ,Rt}, the system evolution described by the initial density
fθ(x0;θ) and the one-step transitions

Xt |Xt−1,θ ∼ fθ(x t |x t−1;θ)

Yt |X t ,ψ ∼ fψ(y t |x t ;ψ)

• where θ and ψ are system and observational process parameters respectively
• y t data observed at time t
• different degree of noise (system/observational) in both of the above results in

models with different level of complexity
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In generality: (Markov) State Space Model formulation

• Only observational noise

Xt |Xt−1,θ = gθ(x t−1)

Yt |X t ,ψ ∼ fψ(y t |x t ;ψ)

where gθ(·) is a deterministic function of θ

• Both system and observational noise

Xt |Xt−1,θ ∼ fθ(x t |x t−1;θ)

Yt |X t ,ψ ∼ fψ(y t |x t ;ψ)
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Inference
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Parameter estimation - only observational noise

Xt |Xt−1,θ = gθ(x t−1)

Yt |X t ,ψ ∼ fψ(y t |x t ;ψ)

• Relatively straightforward to estimate parameters θ, ψ from observed data y1:T

• Simplest: minimize the sum of squares of differences between observed data
and model prediction
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Parameter estimation - only observational noise

Likelihood-based inference

• Maximum likelihood estimation

L(y1:T ;θ, ψ) = fθ,ψ(y1:T | x1:T ;θ, ψ)

• Bayesian inference

p(θ, ψ | y1:T ) =
L(y1:T ;θ, ψ)p(θ, ψ)

p(y1:T )
∝ L(y1:T ;θ, ψ)p(θ, ψ)

with p(θ, ψ) the prior distribution for (θ, ψ)
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Bayesian Inference

• Apart from trivial cases, the posterior distribution is not a standard distribution

• If we can obtain sample from it, we can generate a large sample
(θ1, ψ1), . . . , (θN , ψN).

• Can then use features of the sample to estimate posterior features of interest
e.g.:

E [θ|y ] ≈ 1
N
∑N

i=1 θi

P(θ < c) ≈ 1
N
∑N

i=1 1(θi < c)

This is known as Monte Carlo
estimation.
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Monte Carlo Sampling from Posteriors

• We cannot obtain independent samples directly from the posterior
• Can instead generate a sequence of dependent random variables whose

distribution converges to the posterior distribution of interest
• Idea underlying Markov chain Monte Carlo (MCMC) (e.g. Gelman et al.2004;

Gamerman and Lopes 2006)
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Markov chains

• A Markov chain is any random sequence of numbers where the future of the
sequence depends only on the current state and not on its history.

• Most simple example is the random walk

θt+1 ∼ N
(
θt , σ

2
)
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Metropolis-Hastings algorithm Metropolis et al.1953; Hastings 1970

1 Initialise: Set i = 0, pick starting state θ0, ψ0

2 Set: i = i + 1.
3 Sample: (θ̃, ψ̃) ∼ q (·|θi−1, ψi−1).

4 Calculate: acceptance probability α = min

{
1,

p(θ̃,ψ̃)q(θi−1,ψi−1|θ̃,ψ̃)
p(θi−1,ψi−1)q(θ̃,ψ̃|θi−1,ψi−1)

}
5 Sample: u ∼ U [0,1]
6 Accept/Reject: Set θi = θ̃, ψi = ψ̃ if u < α, else set θi = θi−1 and ψi = ψi−1.

Return to 2

Choice of q (·|θi−1, ψi−1) crucial for convergence - a vast literature exists on this
choice
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Parameter estimation - both system and observational noise

Xt |Xt−1,θ ∼ fθ(x t |x t−1;θ)

Yt |X t ,ψ ∼ fψ(y t |x t ;ψ)

• Particularly challenging for both Bayesian and non-Bayesian frameworks as the
likelihood L(y1:T ;θ,ψ)

L(y1:T ;θ,ψ) = fθ,ψ(y1:T ;θ) =

∫
fθ,ψ(x0:T ,y1:T ;θ)dx0:T

• cannot be typically evaluated (apart from simpler models/data structures) -
requiring high dimensional integration over the unknown model states

MRC   |   Medical Research Council 34 of 65



Intractable likelihoods

Active area of research in statistics - approaches include the use of:
• Data augmentation to obtain a tractable likelihood (Gibson & Renshaw, 1998;

O’Neill & Roberts, 1999) - Potentially computationally expensive

• Simulation methods e.g:

▶ Approximate Bayesian Computation (e.g. Kypraios et al, 2017).
▶ Synthetic likelihood (Wood, 2010) to provide proxy measures of likelihood based on

summary statistics -Heavily dependent on the choice of appropriate summary
statistics

• Particle filters to

▶ estimate the likelihood (Arulampalam et al, 2002; Andrieu et al, 2010) - used in
particle MCMC (PMCMC) and SMC2.

▶ maximise the likelihood via iterated filtering (Ionides et al, 2006, 2015, 2017).
▶ use all data and retain model structure
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COVID19 work - involvement in governmental advisory groups

Scientific Pandemic Influenza
Advisory Committee on Modelling
(SPI-M-O)

COBR
officials

COBR
ministers

SPI-B,
NERVTAG

etc

SPI-M-O:

Bristol
Cambridge
Edinburgh
Exeter
Imperial

Lancaster
LSHTM
Manchester
PHE
Strathclyde
Warwick

SAGE:
CMO, PHE, ONS etc

• Commissions received from Cabinet
Office

• Expressed as a question that can be
addressed through ‘modelling’

• Swift answers (24/48 hours!) from a
number of groups/models

• SPI-M-O discusses results - consensus
achieved

• Consensus communicated to SAGE
• SAGE discussion - translation into advice

SAGE - Scientific Advisory Group for Emergencies
COBR - Civil Contingencies Committee
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Our contribution - Nowcasting & Forecasting

• Now-casting: estimate of the current state of the epidemic
▶ level of disease transmission (R numbers)
▶ number of new daily infections
▶ prevalence of infection
▶ proportion of the population ever infected (attack rate)

• Forecasting: prediction of relevant quantities
▶ demand on the health system (e.g. hospitalisations), deaths

• Real time: as data become available sequentially
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Real-time epidemic monitoring: why it is difficult?

• The transmission process is latent - infections are not observable
• Direct data not available
• Plenty of indirect data

▶ Noisy, incomplete, often biased data streams on related outcomes (e.g. time series
of deaths - hospitalisation - prevalence etc.)

▶ Meaningfully integrated in a model of disease transmission

• Analyses to be carried out in a timely fashion (within hours) to meet the
SPI-M-O deadlines

• Model continuously adapted to tackle emergent challenges
Challenges
• data integration (Bayesian approach) (De Angelis, et al, 2015; De Angelis,

Presanis, 2019)
• efficient algorithms as model becomes more complex and data accumulate
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Initial model: March 16th - early July 2020 Birrell et al., 2021

Deterministic Susceptible(S)-Exposed(E)-Infected(I)-Removed(R) model
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Pandemic Model Development

→
↙

→
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Current model: additional data - vaccination - waning

MRC   |   Medical Research Council 41 of 65



Model details - transmission dynamics

Discrete-time deterministic model for transmission governed by the system of equations

Sr,tk ,i = Sr,tk−1,i
(
1 − λr,tk−1,iδ

)
E1

r,tk ,i = E1
r,tk−1,i

(
1 − 2δ

dL

)
+ Sr,tk−1,iλr,tk−1,iδ

E2
r,tk ,i = E2

r,tk−1,i

(
1 − 2δ

dL

)
+ E1

r,tk−1,i
2δ
dL

I1
r,tk ,i = I1

r,tk−1,i

(
1 − 2δ

dI

)
+ E2

r,tk−1,i
2δ
dL

I2
r,tk ,i = I2

r,tk−1,i

(
1 − 2δ

dI

)
+ I1

r,tk−1,i
2δ
dI

,

Rr,tk ,i = Rr,tk−1,i + I2
r,tk−1,i

2δ
dI

r = 1, . . . ,R, k = 1, . . . ,K and i = 1, . . . ,A.
• R regions (7 NHS regions or 9 ONS regions), K time points, A age groups.
• dI : mean infectious period, dL: mean latent period (known).
• λr,tk,i: rate for S → I; δ = tk − tk−1 = 0.5.
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Model details - transmission kernel

New infections are generated as

∆infec
r,tk ,i = Sr,tk ,ipr,tk ,i

= Sr,tk ,i

1 −
A∏

j=1

[(
1 − btk

r,ij

)I1r,tk ,j+I2r,tk ,j
] δ

btk
r,ij = P

(
Suscept. aged i infected by infectious individual aged j at time tk in region r

)
=

βtk,rR0,r

R∗
0,r

C̃ tk
r,ij ,

depends on C̃ tk
r,ij = C tk

ij ⊙ M tk
r,ij and βtk ,r

• C tk
ij - time-varying matrix of contacts between individuals in groups i and j at time tk .

• M tk
r,ij - region-specific matrix of relative susceptibility of individual in age-group i to an infection

from an infectious individual in group j given contact
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Model details - time-varying stochastic transmissibility βtk,r

βtk,r - region-time varying - encapsulate unobserved temporal fluctuations in
transmission e.g. behavioural aspects
• Let β̃tk ,r = log(βtk,r) and assume

β̃tk ,r ∼ N
(
β̃tk−1,r , σ

2
r ,β
)
, β̃tlock,r = 0,

β̃tlock,r applies in all weeks up to the first lock-down.

• Currently a piecewise constant process, e.g. fortnightly:
▶ Let wk ≡ w(tk ) indicate the week in which time tk falls.
▶ Then β̃wk ,r ∼ N

(
β̃wk−1,r , σ

2
r ,β

)
.
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Initial model: March 16th - early July 2020 Birrell et al., 2021

• time series of COVID19-confirmed deaths

• serology data (NHS Blood&Transplant)

• contact rates POLYMOD/Google mobility/ONS UK Time-Use Survey/DfE
schools attendance

• prior information (e.g. age-specific IFR)
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The likelihood(s)

• Deaths1: Xr,tk,i number of deaths, pi age-specific infection-fatality ratio, Fk−ℓ
(given) prob. of ℓ days from infection to death

Xr,tk,i ∼ NegBin

(
pi

k∑
ℓ=0

Fk−ℓ∆
infec
r ,tℓ,i , η

)
, η to measure over-dispersion

• Serological data: ksens and kspec denote sens. and spec. of blood tests, nr ,tk ,i
test samples, Yr,tk,i serologically positive tests

Yr,tk,i ∼ Bin
(

nr ,tk ,i , kksens

(
1 −

Sr ,tk ,i

Nr ,i

)
+ (1 − kkspec)

Sr ,tk ,i

Nr ,i

)
.

1Similarly we incorporate hospitalisation data to make projections of hospital burden.
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Parameters

static parameters
• θr = (I0,r , ψr ,m1,r ,m2,r ,m3,r ) are region-specific parameters

▶ I0,r : initialization of the ODE system.
▶ ψr : epidemic growth rate parameters
▶ m1,r ,m2,r ,m3,r : parameters of the contact matrices C̃ tk

r

• θg = (η, σ2
β, ksens, kspec,dI ,p1:nA) are global (common across regions)

parameters
dynamic parameters - realisation of a stochastic process
• β̃r (region-specific) parameters; K̃ -dimensional vector where K̃ is the length

(in weeks) of the data time series
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Posterior of interest

• We denote by D all the data.
• We use highly informative priors for the parameters we have information on

(details in Birrell et al., (2021))

• Posterior of interest:

π(θg , θ1:R, β̃1:R|D) ∝ p(θg)p(β̃1:R|θ1:R)p(θ1:R)p(D|θ, θ1:R, β̃1:R)}

• High-dimensional problem - dimension increasing over time: from initial 50
parameters to >800 currently in the model

• Weakly-identifiable parameters partially address through prior information
• Bespoke sampling algorithms needed to produce results on time

▶ quantities improving performance of Bayesian methods are not always tractable
or cheap to compute, e.g. likelihood gradients
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parameters to >800 currently in the model

• Weakly-identifiable parameters partially address through prior information
• Bespoke sampling algorithms needed to produce results on time

▶ quantities improving performance of Bayesian methods are not always tractable
or cheap to compute, e.g. likelihood gradients
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MCMC: Random Walk Metropolis Hastings (RW-MH)

• February 2020 - April 2021: simple RW-MH with block updates.
▶ Consider M blocks of the parameters where τm is the m-th dm-dimensional block.
▶ At the i-th MCMC iteration propose τ i+1

m = τ i
m +

√
λmN(0, Id ).

▶ We learn
√
λm during the burn-in period to achieve acceptance rate for each block

in a desired level (e.g. 0.234)
• 16/04/2021 Estimating ∼ 300 parameters in 25 hours
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MCMC: Adaptive Metropolis with Global Scaling (AMGS)

• March 2021 - January 2022:
▶ We now consider region specific blocks updated in parallel and a single block for

the global parameters [H] MCMC that targets the posterior of interest. [1] Set the number
of iterations ν. i = 1, . . . , ν r = 1, . . . ,R Draw (θr , βr ) from p(θr , βr |θ,Dr ). Draw θ from
p(θ|θ1:R , β̃1:R ,D).

▶ We have M = R + 1 blocks and we apply the AMGS algorithm (see e.g. Andrieu
and Thom, 2008) to update the parameters in τm.

▶ We have to learn the covariance matrix of the proposal distribution.
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AMGS: naive implementation

• Let τ the parameters in the m-th block at the i-th iteration; Propose
τ i+1 ∼ N(τ i , λiΣi) to accept/reject with MH probability α(τ i , τ i+1) and obtain
τ i+1.

• Update λi and Σi using RM recursions:
▶ µi+1 = µi + γi+1(τ

i+1 − µi)
▶ Σi+1 = Σi + γi+1[(τ

i+1 − µi)(τ
i+1 − µi)

⊤ − Σi ]
▶ log(λi+1) = log(λi) + γi+1[α(τ

i , τ i+1)− α⋆], α⋆ desired acceptance rate (0.234).

• {γi} is a sequence of stepsizes ensuring variations of λi ,Σi vanish wrt MCMC
iterations; Vanishing adaptation is required for π-ergodicity of the algorithm.
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AMGS: naive implementation

RW-MH traceplots
16/04/2021

AMGS traceplots
30/04/2021
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AMGS: naive implementation

27/11/2021
• “Over-adapting” proves to be a source of “bad” values for λ and Σ

• Can lead to ‘sticky’ chains
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Badly tuned λi and Σi

η over-dispersion parameter (static, global parameter)
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Adaptive MCMC: improved adaptation

• Prevent over-adapting by borrowing the early stopping regularization from
ML applications (e.g. Zhang and Yu, 2005).
1. Calculate the sample average acceptance ratio Ŝλ,Σ based on m consecutive

MCMC iterations

2. If Ŝλ,Σ ∈ (α⋆
−, α

⋆
+) do not update the RM recursions

3. Stop the RM recursions at the end of the burn-in period to ensure π-ergodicity

MRC   |   Medical Research Council 55 of 65



Adaptive MCMC: improved adaptation

• Prevent over-adapting by borrowing the early stopping regularization from
ML applications (e.g. Zhang and Yu, 2005).
1. Calculate the sample average acceptance ratio Ŝλ,Σ based on m consecutive
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2. If Ŝλ,Σ ∈ (α⋆

−, α
⋆
+) do not update the RM recursions

3. Stop the RM recursions at the end of the burn-in period to ensure π-ergodicity

MRC   |   Medical Research Council 55 of 65



Adaptive MCMC: improved adaptation

• Prevent over-adapting by borrowing the early stopping regularization from
ML applications (e.g. Zhang and Yu, 2005).
1. Calculate the sample average acceptance ratio Ŝλ,Σ based on m consecutive
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Improved tuning of λi and Σi

η over-dispersion parameter (static, global parameter)
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Improved tuning of λi and Σi

MRC   |   Medical Research Council 57 of 65



Improved tuning of λi and Σi
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Incidence of infection

• Estimation based on over 930 days of data from: hospital admissions,
serological surveys and ONS prevalence surveys

• Note huge impact of children in late stage of the delta wave
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Transmission: effective reproduction number Re(t)

MRC   |   Medical Research Council 59 of 65



Risk of severe event - hospitalisation - mortality

IHR
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Risk of severe event - hospitalisation - mortality

IHR and IFR

MRC   |   Medical Research Council 60 of 65



Short-term predictions: hospital admissions
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Contribution to SPI-M-O consensus as the official Public
Health England’s model

• Government consensus on relevant indicators (e.g. R(t)) - combination of
models from across academic institutions
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In conclusion

• Official model of Public Health England (UKHSA) did not have luxury/resources
to stop providing results and developing sophisticated MCMC

• Clever tweaking of existing algorithms ‘on the fly’ - never abandoned exact
inference - produce robust results under extreme time pressure

• Highlights importance of work on reliable/scalable algorithms that can be
adapted swiftly in an emergency situation
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Peace time

• Relaxation of non-realistic assumptions e.g. piece-wise constant β̃tk ,r
/independence across regions - complicates model/inference
▶ Approximating the model (e.g. spectral approximation of diffusion processes)
▶ Designing more sophisticated MCMC and/or SMC methods to conduct exact

inference without making non-realistic assumptions
• Automatic differentiation to employ likelihood derivatives
• Addition of demographic stochasticity - approximate inference
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