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Human mobility and spatial spread of infectious diseases

4OpenFlights



Can we predict the spatial spread of
influenza in real time?
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Forecasting spatial spread is challenging

● Mobility data are not available in real-time
● Parameter may change over time
● Limited disease data to validate (in 2017)

● A data-driven metapopulation model
● Influenza data from DoD healthcare system (35 states)
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Spatial spread of 2009 H1N1 pandemic
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8Pei et al. 2018

A metapopulation structure



A humidity-driven SIRS model
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Day time transmission equations: SIRS model 

Within location transmission Population exchange

Modulated by humidity data



Model calibration and forecasting

● A high-dimensional system
● Ensemble Kalman filter (numerical weather prediction)
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Week 12 Week 16 Week 18 Week 20

An example of ensemble forecasting using a local model

No signal



Parameter inference
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Retrospective forecasting

● 2008-2012, 35 US states

● Weekly forecasting
○ Metapopulation model
○ Local model (Baseline)
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Networked
forecast is better

Baseline is better

Improvement of onset prediction for each individual state

Forecasts for peak week and peak intensity are also improved



A county-level model for respiratory viruses

● Optimal selection of surveillance sites (2018-2019)
● Influenza, human metapneumovirus, endemic coronavirus

15Pei et al. (2021)



COVID-19 in 2020
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Jan FebDec Mar Apr May Jun Jul Aug Sep

12/08
First reported 
patient developed 
symptoms in 
Wuhan.

01/21
First travel-related 
infections reported 
in the US.

03/11
WHO declared a 
pandemic. US 
declared a national 
emergency (03/13).
1000 cases in US.

04/28
1 million cases US

05/27
100,000 deaths US

06/11
2 million cases US

07/23
4 million cases US

07/29
150,000 deaths US

08/09
5 million cases US
20 million cases 
worldwide (08/10)

China

US Projection
Counterfactual Hurricane



● Fast spatial spread, only ~900 cases

● Endemic coronavirus (229E, NL63, OC43,
HKU1)
● Infections with no/mild symptoms

How many infections were not detected?
How infectious are the undetected infections?

● Potential for a pandemic? Cumulative number of reported cases in
375 cities as of Jan 23. Wuhan has 454
cases.

Wuhan

Li et al 2020

A pandemic?



What is the role of undetected infections?
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Modeling SARS-CoV-2 spread in China
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● Chunyun: travel during lunar New Year (3 billion trips in 40 days)
● Tencent location-based service data in 2018
● 375 cities, Jan 10 – Jan 23, before Wuhan lockdown

Xu et al. 2023



Metapopulation SEIR model
● Susceptible (S), exposed (E), documented infection (Ir), undocumented

infection (Iu), removed (R)
● Fraction of undocumented infection, relative contagiousness
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Within city transmission Cross city migration

A gamma-distributed reporting delay estimated using line-list data



Parameter inference

● Iterated filtering with ensemble
adjustment Kalman filter

● Parameter identifiability?

● Connectivity improves
identifiability!
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Validation using synthetic outbreaks
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Inference results

● 86% [82%, 90%] infections were undocumented before travel restrictions

● The transmission rate of undocumented infections was 55% [46%, 62%] of 
documented infections
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Counterfactual simulations

● Assume undocumented infections are not contagious
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“These findings explain the rapid geographic 
spread of SARS-CoV-2 and indicate that 
containment of this virus will be particularly 
challenging.”



SARS-CoV-2 spread in the US

● A metapopulation model for 3142
US counties

● Commuting data from census

● Fit to county-level data from NYT
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Early simulation in the US

27Pei & Shaman, 2020
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Communications with the public



New data streams on human mobility

● Aggregated mobility data shared by private companies
○ SafeGraph, Cuebiq, Google, GPS, etc.

● Unprecedented data for infectious disease modeling

● High-resolution foot-traffic data to understand contact patterns and mobility
○ SafeGraph: points of interest (POIs) and mobility

● Potentials and challenges

29Chang et al. 2020



POIs and mobility in NYC
● Place categories: Grocery & Pharmacy, Other Retails, Art & Entertainment, 

Restaurant & Bar, Education, Healthcare, Other Places. 
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31Grocery & Pharmacy, 1/31/2020, Friday

Bronx Brooklyn Manhattan Queens SI
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Crowdedness

Dwell time
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Upper East Side

Crowdedness

Dwell time



Ongoing research

● Link behavior features with mobility change in different neighborhoods
○ Temporal discounting, loss aversion, agency, normative decisions

● Develop a parsimonious model for NYC informed by foot-traffic data
○ Represent population mixing in different settings

● Couple risk-driven behavior model with mobility-driven epidemic model
○ Feedback, retrospective forecasting
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Reflections

● More complex models do not necessarily work better in real-world applications
○ Imperfect data, unrealistic assumptions, high computational cost
○ Complexity versus Parsimony

● Real-world data are imperfect
○ Underreporting, reporting delay, large observational noise, non-stationary
○ Develop methods to deal with imperfect data
○ Avoid perfectionism

● Communicate with end-users
○ Understand real needs, think about how model will be used
○ Push for better data collection
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Thank you!

sp3449@cumc.columbia.edu

www.columbia.edu/~sp3449/

@SenPei_CU
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