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Time since infection (deterministic) models
Probabilities and rates depend on time since
infection τ

infectivityβ(τ)

recovery/isolation rateµ(τ)

‘survival’F(τ)

incubation f (τ) . . .

• can be described by delay equations
for b(t) ∈ R (population birth rate / incidence)

y(t) =
S(t)

N

∫ ∞

0
β(τ)F(τ)y(t − τ)dτ

• or, alternatively, as PDEs
for n(t, ·) ∈ L1 (population density)

∂tn(t, τ) + ∂τ n(t, τ) = −µ(τ)n(t, τ)

n(t, 0) =
S(t)

N

∫ ∞

0
β(τ)n(t, τ)dτ

• rarely used in applications due to complexity and
lack of software
(ODE compartmental models instead)
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Take-home messages

Why should we care? Not just generalisation from Erlang to Gamma!
• more flexibility
• more ‘dynamics’→waning immunity
• more modelling power→ contact tracing
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A modelling example: contact tracing

Aims at stopping as many infection chains as possible, as early as possible, by identifying and isolating
individuals among the contacts of one confirmed case.
Forward tracing: search for secondary cases of the index case

A model should account for:
• underlying infection spread
• diagnosis/screening program that can initiate contact tracing
• contacts between individuals and infection transmission

• contacts are distributed in the past
• infected cases have already progressed through disease stages (and possibly generated infections)

Hard to capture with compartmental ODEs; most often modelled by stochastic agent-based models or
branching processes
▶ time-since-infection approach
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A SIR time-since-infection epidemic model (1)

The population is divided into three classes:
• Susceptibles — no immunity, can contract the infection
• Infected — have the disease and can infect others
• Removed — recovered and permanently immune or isolated and not infectious

Assuming homogeneous mixing, identical, independent individuals.

Three main processes involved:
1 infection (and recovery)
2 diagnosis from symptoms
3 contact tracing
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A SIR time-since-infection epidemic model

Individual parameters defined in terms of time since infection (TSI) τ :

infectivityβ(τ)

incubation period fs(τ)

diagnosis rate hd(τ)

tracing rate hc(t, τ) (unknown)
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A renewal equation for the incidence

The equation for the incidence reads

y(t) =
S(t)
N0

∫ ∞

0
β(τ)y(t − τ) F(t, τ)︸ ︷︷ ︸

prob not yet
isolated

dτ

where

F(t, τ) = prob that an individual was not isolated before TSI τ
(defined through the tracing rate hc, unknown)
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Describing forward contact tracing

P(individual traced at time t) ∝ P(infector is detected at t)

= P(infector is diagnosed or traced at t)︸ ︷︷ ︸
break down by time of infection

and by infector’s ASI
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Integral equation for the contact tracing rate

hc(t, τ) dt = P(individual traced in [t, t + dt] | infected at t − τ)

= εc

∫ ∞

0
P(infector has ASI in [s, s + ds] at time t − τ)

× P(infector detected in [t, t + dt] | not detected before t − τ , TSI s)

= εc

∫ ∞

0

[
β(s)y(t − τ − s)F(t − τ, s)ds∫∞

0 β(ξ)y(t − τ − ξ)F(t − τ, ξ) dξ

]

× F(t, τ + s)(hd(τ + s) + hc(t, τ + s))
F(t − τ, s)

dt
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The full model: coupled integral equations
(Scarabel, Pellis, Ogden, Wu, Royal Society Open Science, 2021)

Putting everything together we get:

hc(t, τ) =
εcS(t − τ)

N0y(t − τ)

∫ ∞

0
β(s)y(t − τ − s)F(t, τ + s) (hd(τ + s) + hc(t, τ + s)) ds

y(t) =
S(t)
N0

∫ ∞

0
β(s)y(t − s)F(t, s) ds

where:

F(t, τ) = Fd(τ)Fc(t, τ) = e−
∫ τ

0 [hd(σ)+hc(t−τ+σ,σ)] dσ

S(t) = N0 −
∫ t

0
y(s)ds

• delayed in t and advanced in τ

• can be solved using numerical methods
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What about measurable quantities?

hc is hardly measurable in practice

However, we have all the ingredients to compute concrete quantities of interest:

nr individuals diagnosed at time t =
∫ ∞

0
y(t − s)F(t, s)hd(s) ds

and
nr individuals traced at time t =

∫ ∞

0
y(t − s)F(t, s)hc(t, s) ds
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Emerging epidemic

In the approximation S(t) ≈ N0 (no depletion of susceptibles), we have y(t) ≈ y0 ert, and the system becomes

1 =
∫ ∞

0
β(s)F(s) e−rs ds

hc(τ) = εc

∫ ∞

0
β(s) e−rs F(τ + s) (hd(τ + s) + hc(τ + s)) ds

Note:
• Lotka–Euler type equation for the Malthusian parameter r
• generation time distributionβ(s)F(s)
• hc is stationary (independent of t) and satisfies a nonlinear equation
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Reproduction numbers

“Average number of secondary infections produced by one typical infected individual in an otherwise
susceptible population”
Explicit formulas for the reproduction numbers:

R0 =

∫ ∞

0
β(τ) dτ unconstrained

Rd =

∫ ∞

0
β(τ)Fd(τ)dτ with diagnosis

Rd,c =

∫ ∞

0
β(τ)Fd(τ)Fc(τ) dτ with diagnosis & tracing

General insight: the epidemic is under control if the fraction of transmission occurring before isolation is less
than 1

R0
(regardless of how isolation is achieved)
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Analyses for COVID-19
We have investigated the impact of:

• diagnosis coverage and delay
• tracing coverage (how many contacts effectively traced?)
• tracing window (how many days back from detection to trace?)
• short-term interruption of contact tracing with limited resources

Overton et al. Inf Dis Mod (2020)
Ferretti et al. Science (2020)
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Control of the epidemic with different diagnosis strategies

0.2 0.4 0.6 0.8 1

0

1

2

3

4

5

0.2 0.4 0.6 0.8 1

0

1

2

3

4

5

Francesca Scarabel (University of Leeds, f.scarabel@leeds.ac.uk) Time since infection, contact tracing and waning immunity 15 / 30



Effect of tracing window (Rd,c and computed rate)

R0 = 1.5, 2-day diagnosis delay, 85% diagnosis

Francesca Scarabel (University of Leeds, f.scarabel@leeds.ac.uk) Time since infection, contact tracing and waning immunity 16 / 30



Limit on tracing capacity

R0 = 1.5, 2-day diagnosis delay, 60% diagnosis
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Application to workplace transmission (stochastic model)
PROTECT COVID-19 National Core Study on transmission and environment, ‘Deep dive into the UK nuclear energy sector’

Daily cases simulated with screening and tracing
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• similar trends and larger relative size likely due to better surveillance
• relaxing testing results in more infections but less detected cases

Work with: Ian Hall (Manchester), Protect team
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Some remarks on the TSI framework for contact tracing

• deterministic:
1) relatively easy and fast to simulate
2) transparent relations between model parameters and output (e.g. R)

• modelling power: first mechanistic model for contact tracing for the full nonlinear epidemic;
(and first advanced equation in epidemiology)

Things I’d like to do
• backward and bidirectional tracing
• correlate infectiousness and incubation period
• comparing with compartmental ODE making simplifying assumptions:

is the average outcome similar? do we miss something?
• can we extend to simple network structure?
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TSI in the context of waning immunity

y(t) =
S(t)

N

∫ ∞

0
β(τ)y(t − τ)F(τ)dτ

withF(τ) ‘survival’ to reinfection and boosting of immunity

ODEs require a sufficiently large number of compartments (shape of Erlang pdf) to reproduce oscillations
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Endemicity, waning immunity and variants

At equilibrium, immunity has a certain stable
distribution

A new variant can:
• escape natural and vaccine-induced immunity

(hence “shift” the immunity landscape)
• have different transmissibility (and/or severity. . . )
• affect

1) the endemic equilibrium state;
2) its stability;
3) transient epidemic waves
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Endemicity, waning immunity and variants
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1) Endemic state with waning immunity — SIS

Francesca Scarabel (University of Leeds, f.scarabel@leeds.ac.uk) Time since infection, contact tracing and waning immunity 23 / 30



2) Expectations for an invading variant — SIS
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In the context of COVID-19: SIRS
in progress

Black: Delta-like; red: Omicron-like
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Limitations and things I’d like to do

• preliminary plots are for ODEs
• extend to TSI models (which can account for oscillations)
• can we build ‘maps’ that help prepare for a next wave in the face of uncertainty?
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Numerical methods for delay equations and PSPMs
Work with: Mats Gyllenberg (Helsinki), Odo Diekmann (Utrecht),

Rossana Vermiglio, Dimitri Breda & CDLab (Udine). . .

delay equation
(or PDE) ⇝

↑
ODE approximation

and software for ODE
(e.g. MatCont)

⇝ bifurcation
analyses

• Simple implementation of the approximating ODE system
• Efficient: low-dimensional approximation of stability of equilibria and periodic orbits
• General: applied to integral, delay differential, partial differential equations
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Delay equation: a rule for extending a function given its past
Let τ > 0 be the maximal delay. Given a function x, the history function is

xt : [−τ, 0] → R
xt(θ) = x(t + θ), θ ∈ [−τ, 0]

−τ 0 t1 − τ t1 t2 − τ t2

ϕ

xt2

xt1

time

x(t)
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Delay equations and pseudospectral method

v̇(t) = A0v(t) + F(v(t))
↓

V̇M(t) = AMVM(t) + FM(VM(t))

DDEs ẏ(t) = F(yt) −→
{

ẋ0 = F(pM) (x0 ∈ R)
Ẋ = dx0 + DX (X ∈ RM)

with pM(t) ≈ yt

REs y(t) = F(yt) −→
{

x0 = 0
Ẋ = DX + F(p′M) (X ∈ RM)

with pM(t) ≈
∫ t+·

t
yt(s)ds

for D ∈ RM×M, d ∈ RM

−τ = θM θj θ0 = 0

v(t)pM(t)
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Final thoughts

• it’s not just a matter of having more general parameters (e.g. Gamma instead of Erlang)
• incorporating more detailed micro-scale (within-host) dynamics may be important; we need to think

when it’s fair to ignore and when not
• numerical methods should be developed and are being developed

More things I’d like to do
• work towards enabling TSI models in public health through development of numerical methods
• further investigate how the within-host dynamics impacts the population scale
• link more closely within- and between-host models and data
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Advertisement

CISM Advanced Course (Udine, Italy)
"Delays and Structures in Dynamical Systems:
Modelling, Analysis and Numerical Methods"
November 20–24, 2023

ADMISSION AND ACCOMMODATION
The course is offered in a hybrid format giving the possibility to attend the 
course also by remote (on Microsoft Teams platform). On-site places are 
limited and assigned on first come first served basis. 
The registration fees are: 
-  On-site participation, 600.00 Euro + VAT*
This fee includes a complimentary bag, five fixed menu buffet lunches, hot 
beverages, downloadable lecture notes.
Deadline for on-site application is October 20, 2023.
-  Online participation, 250.00 Euro + VAT*
This fee includes downloadable lecture notes.
Deadline for online application is November 8, 2023. 
Application forms should be sent on-line through the following web site: 
http://www.cism.it
A message of confirmation will be sent to accepted participants.
Upon request a limited number of on-site participants can be accommodated 
at CISM Guest House at the price of 35 Euro per person/night (mail to: 
foresteria@cism.it).

 * where applicable (bank charges are not included)
Italian VAT is 22%.

CANCELLATION POLICY
Applicants may cancel their registration and receive a full refund by notifying 
CISM Secretariat in writing (by email) no later than: 
- October 20, 2023 for on-site participants (no refund after the deadline); 
- November 8, 2023 for online participants (no refund after the deadline).
Cancellation requests received before these deadlines will be charged a 
50.00 Euro handling fee. Incorrect payments are subject to Euro 50,00 
handling fee.

GRANTS
A limited number of participants from universities and research centres who 
are not supported by their own institutions can request the waiver of the 
registration fee and/or free lodging.
Requests should be sent to CISM Secretariat by September 20, 2023 by the 
head of the department or a supervisor confirming that the institute cannot 
provide funding. Preference will be given to applicants from countries that 
sponsor CISM.

For further information please contact:
CISM
Palazzo del Torso - Piazza Garibaldi 18 - 33100 Udine (Italy)
tel. +39 0432 248511 (6 lines)
e-mail: cism@cism.it  |  www.cism.it

Udine November 20 - 24 2023

Advanced School 
coordinated by

Dimitri Breda
CDLab - University of Udine

Udine, Italy

Jianhong Wu
LIAM - York University

Toronto, Canada
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Delays and structures pervade the 
realistic modeling of populations 
and their investigation under the 
paradigm of dynamical systems. 
They prove to be essential also in 
control and related fields, where 
modeling through delay functional 
or partial differential equations has 
become increasingly fundamental. 
The inclusion of past history in the 
time evolution and the introduction 
of structuring variables add non-
trivial complexities with respect to 
ordinary systems, balancing the 
undoubted advantage of dealing 
with more realistic models. Equa-
tions involving time delays and 
structures both generate dynami-
cal systems of infinite dimension, 
asking for advanced methods in 
the mathematical analysis and 
the numerical treatment. Finally, 
understanding stability of equilibria 
and other invariants is crucial 

and often requires sophisticated 
numerical and computational ap-
proaches.
The school brings together strong 
and up-to-date contributions in 
population dynamics and related 
fields as far as delays and struc-
tures give fundamental tools for 
the realistic modeling of, e.g., 
the transmission of an infectious 
disease, the evolution of a re-
source-consumer scenario or the 
competition in a predator-prey sys-
tem. Numerical and computational 
expertise is also offered, providing 
reliable approaches towards a 
practical and accessible analysis. 
The course aims at discussing 
the most recent advances in the 
different contexts of the relevant 
mathematical analysis (functional 
aspects of semigroup theory); the 
concerned modeling approaches 
(delay differential, renewal and 

partial differential equations of 
evolution type, including mul-
ti-structured, neutral and state-de-
pendent equations); the numerical 
and computational techniques to 
operate with infinite-dimensional 
dynamical systems (simula-
tion, stability, bifurcation). This 
knowledge will be employed to 
discuss applications from ecology, 
epidemiology and life sciences in 
general. Laboratory sessions will 
allow the participants to learn both 
theoretical considerations and the 
practical application of modern 
software and packages (MAT-
LAB/Octave, Python, MatCont, 
DDE-Biftool). Analysis, modeling, 
methods and applications will be 
illustrated focusing also on their 
interdisciplinary connections, 
starting from rapid introductions 
of the basics and reaching a 
state-of-the-art level by evolving 

classic approaches into modern 
perspectives.
The school is primarily addressed 
to PhD students and post-docs in 
the fields connected to structured 
population dynamics and dynami-
cal systems involving time delays 
and their numerical analysis, rang-
ing from mathematics to engineer-
ing and physics. Young and senior 
researchers in the above or neigh-
boring fields, interested in gaining 
a compact yet comprehensive 
overview of population dynamics 
with delays and structures, are 
also welcome from academia or 
private R&D centers. The school 
also offers the possibility to learn 
and apply relevant software and 
computational tools through the 
investigation of case studies in the 
planned laboratory sessions.

C. Barril, A. Calsina, O. Diekmann 
and J.Z. Farkas. On the formula-
tion of size-structured consumer 
resource models (with special 
attention for the principle of line-
arized stability), Math. Models 
Methods Appl. Sci., 32(6):1141-
1191, 2022.
A. Bellen and M. Zennaro. Nume-
rical methods for delay differential 
equations. Oxford University 
Press,  2003.
A. Bellen, N. Guglielmi, S. Maset 
and M. Zennaro. Recent trends in 
the numerical solution of retarded

 functional differential equations, 
Acta Numerica, 18:1-110, 2009.
D. Breda, O. Diekmann, M. 
Gyllenberg, F. Scarabel and R. 
Vermiglio.  Pseudospectral discre-
tization of nonlinear delay equa-
tions: new prospects for numerical 
bifurcation analysis, SIAM J. Appl. 
Dyn. Sys., 15(1):1-23, 2016.
H. Kang, X. Huo and S. Ruan. On 
first-order hyperbolic partial diffe-
rential equations with two internal 
variables modeling population 
dynamics of two physiological 
structures, Ann. Mat. Pura Appl., 
200:403-452, 2021.

H. Kang, X. Huo and S. Ruan. 
Nonlinear physiologically-struc-
tured population models with two 
internal variables, J. Nonlinear 
Sci., 3:2847-2884, 2020.
H. Kang, S. Ruan and X. Yu, Age-
structured population dynamics 
with nonlocal diffusion, J. Dyn. 
Differ. Equ., 34:789-823, 2022.
H. Kang and S. Ruan. Nonlinear 
age-structured population models 
with nonlocal diffusion and nonlo-
cal boundary conditions, J. Differ. 
Equ., 278:430-462, 2021.
H. Smith. An introduction to delay 

differential equations with applica-
tions to the life sciences, Springer 
2011.
F. Scarabel, D. Breda, O. 
Diekmann, M. Gyllenberg and R. 
Vermiglio. Numerical bifurcation 
analysis of physiologically structu-
red population models via pseudo-
spectral approximation, Vietnam J. 
Math., 49:37-67, 2021.
F. Scarabel, O. Diekmann and R. 
Vermiglio. Numerical bifurcation 
analysis of renewal equations via 
pseudospectral approximation, J. 
Comput. Appl. Math., 397:113611, 
2021.

All lectures will be given in English. Lecture notes can be downloaded from the CISM web site. Instructions will be sent to accepted participants.
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INVITED LECTURERS

PRELIMINARY SUGGESTED READINGS

LECTURES

Odo Diekmann - Utrecht University, The Netherlands 
5 lectures plus discussion on: population dynamics - the notion 
of state at the individual and at the population level; the notion 
of environmental condition; the formulation of a size structured 
model, both in terms of a PDE and in terms of a renewal equation; 
functional analytic and dynamical systems aspects; density 
dependence via feedback to the environmental condition; variable 
maturation delay; biological insights.

Tony Humphries - McGill University, West Montreal, Quebec, Canada
5 lectures plus discussion on: modeling with state-dependent 
delays; delays defined by threshold conditions; dynamical systems 
formulation of state-dependent delay equations; linearization and 
numerical techniques. 

Davide Liessi - CDLab, University of Udine, Italy 
and Zachary McCarthy - LIAM, York University, Toronto, Canada
5 laboratory sessions on: numerical simulation in time of delay 
equations; computation of equilibria and relevant stability; 
computation of periodic orbits and relevant stability; numerical 
continuation; bifurcation analysis from Hopf to chaos - with MATLAB/
Octave, Python, MatCont, DDE-Biftool (bring your own laptop).

Stefano Maset - University of Trieste, Italy
and Rossana Vermiglio - CDLab, University of Udine, Italy
5 lectures plus discussion on: numerical methods for delay 
equations; adaptation of continuous methods for ODEs; constrained 
meshes and superconvergence; functional continuous Runge-Kutta 
methods; methods for neutral equations; boundary value problems; 
innovative techniques based on a general abstract formulation; 
connections to bifurcation analysis. 

Shigui Ruan - The University of Miami, Coral Gables, FL, USA
5 lectures plus discussion on: population dynamics models with two 
structures; relevant semigroup theory and existence of solutions; 
spectrum theory; eigenvalue problem; stability of steady states; 
asynchronous exponential growth of solutions (both linear and 
nonlinear equations will be considered).

Francesca Scarabel - The University of Leeds, UK
5 lectures plus discussion on: examples of mathematical models 
from ecology and epidemiology; introduction to the dynamical 
and bifurcation analysis; pseudospectral collocation of nonlinear 
problems formulated as delay or partial differential equations; 
stability of equilibria and relevant bifurcations; stability of periodic 
orbits and relevant bifurcations.
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Thank you!
(and questions, comments. . .?)
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Complex behaviour: a model with waning and boosting of immunity
in progress with M.V. Barbarossa, M. Polner and G. Röst

dI
dt

= βSI − (γ + d)I

dS
dt

= d(1 − S)− βSI + I(t − τ) [γ + νβR(t − τ)]︸ ︷︷ ︸
recovered + boosted

e−dτ−νβ
∫ t

t−τ
I(u)du︸ ︷︷ ︸

“survival” in R for time τ

• S + I + R = 1
• β = transmission, γ = recovery, d = birth= death
• τ =maximal duration of immunity unless boosted
• ν = probability of immunity boosting after contact with infectious individual (boost to the maximal

immunity level)

Barbarossa, Polner, Röst, SIAM. J. Appl. Math., 2017
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Bifurcations of equilibria
d = 0.02, γ = 17, ν = 4.8, τ = 15, R0 = β

d+γ
(M = 20)
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Bifurcations in the plane (ν, R0)

Hopf bifurcation curves (sub/supercritical)
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Zoom

Dotted: stable positive equilibrium
Red: fold bifurcation of cycles
Blue: Neimark-Sacker bifurcations
Green: (at least) one stable periodic solution
Yellow: (at least) two stable coexisting peri-
odic solutions
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