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My expertise

Econometrics and applied macroeconomics

I econometrics: branch of economics that focuses on developing
statistical methods for economic problems (causality, taking models
to data, identification, counterfactuals)

I main expertise: time series analysis with time-varying parameters -
developing methods for change point detection, bootstrap for time
series, policy analysis

I effectiveness of monetary and fiscal policy

Epidemiology (recently)

I Disentangling the effect of measures, variants and vaccines on
SARS-CoV-2 Infections in England: A dynamic intensity model
(2022). The Econometrics Journal. (with Adriana-Cornea Madeira
and Joao Madeira)

I Age-specific transmission dynamics of SARS-CoV-2 during the first
two years of the pandemic (2022). Working Paper (with Amir
Alipoor, Ganna Rozhnova, Sen Pei and Jeffrey Shaman).
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Outline of talk

I Literature review of epi-econ models in economics + econometrics

I Mainly presenting paper Disease-economy trade-offs under
alternative epidemic control strategies (2022, Nature
Communications) by Thomas Ash, Antonio Bento, Daniel Kaffine,
Akhil Rao, Ana Bento

Contribution (preliminary)

I thoughts on extending the model in Ash et al (2022) to include
undocumented infectives

I model is calibrated: ideas on how to bring this model to data.
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Parallels econ-epi

Macroeconomics versus macro-scale epidemic modelling

I both are model based, and models are nonlinear

I one notable difference is macro models include expectations about
the future

I mostly homogeneous models, heterogeneous agent models recently
popular

I extensive use of Bayesian MCMC and Kalman filter or particle filter
when unobservables are stochastic.

Microeconomics versus other epidemiology models

I random samples, randomized experiments

I one difference maybe: when randomized experiments not available,
quasi-experiments

I identification via controls, across group variations, or external
variables (called instruments).
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Econ papers on COVID-19

Macroeconomic models with an epidemiology component

I Atkeson (2020, Working paper) used an SIR model to study cost of the
COVID-19 epidemic for the United States

I Alvarez et al (2021, American Economic Review: Insights ) and
Eichenbaum, Rebelo, and Trabandt (2021, Review of Financial Studies)
study optimal mitigation policies in simple economies with SIR disease
dynamics

I Acemoglu et al. (2021, American Economic Review: Insights ) study
disease mitigation in environments with multiple ages and sectors

I Baqaee et al. (2020,WP) and Azzimonti et al. (2022, WP) study how the
network structure of economic sectors and geography can be exploited in
the design of optimal mitigation policies

I Boppart et al (2022, Journal of Economic Dynamics and Control ) -
integrated epi-econ assessment of vaccination

I Arellano et al (2023, Review of Economic Studies) study how debt relief
can alleviate both economic and disease burden

I many more unpublished, as NBER WP and CEPR Special Issue on Covid
Papers: https://cepr.org/publications/covid-economics-papers.
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Econometric papers on estimating epi models

The Econometrics Journal
https://academic.oup.com/ectj/pages/virtual-issue-covid-19

I Cho (2021): impact of potential NPIs in Sweden with ”synthetic” Sweden

I Stöye (2021): bounds of number of infections by bounding selectivity and
accuracy of tests

I Hansen (2022): estimating relative contagiousness of variants

I Korolev (2022): show ”reduced form” (regression based) estimation of
NPIs are consistent with multiple outcomes, while modelling less prone to
these identification issues

Journal of Econometrics https://www.sciencedirect.com/journal/

journal-of-econometrics/vol/220/issue/1

I Chernozhukov et al (2021): causal impact of masks in US

I Hortacsu et al (2021): estimating ascertainment rate in a model with
known epidemic

I Gourieroux and Jasiak (2021): identifying SIR models using time-varying
transition probabilities

I Korolev (2021): estimating R0 in an otherwise poorly identified model.
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Econometric papers on estimating epi models

Arias et al (2023, American Economic Journal: Macroeconomics)

I study causal effect of NPIs

I careful SIRD model for Belgium, estimated on case, hospitalization,
death and seroprevalence data

I obtain implied death and effective reproductive numbers series

I feed it into a vector autoregression model with stringency index and
economic variable

I study the dynamic effect of a ”shock” in stringency index on both
the economy and the reproduction number and deaths

I problem: stringency index changes contacts, which changes the
estimates of the effective reproduction number
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Epi-econ model in Ash et al (2020)

Disease dynamics:

St+1 = St − τCtSt It

It+1 = It + τCtSt It − (PR + PD )It

Rt+1 = Rt + PR It

Dt+1 = Dt + PD It

Nt = 1.

I S , I , R , D are expressed in proportions of population

I Ct are average contacts of a susceptible individual with infectious
individuals

I which is a function of daily activities.
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Contact function

Ct = ρo + ρcc
S
t c I

t + ρ`l
S
t l It

I activities: consumption c , labor l and other o

I roughly corresponds to contact surveys where l is work and school
contacts, o is unavoidable daily contacts, and c is the rest

I at time zero, no infectives, so:

C0 = ρo + ρcc
2
0 + ρl l

2
0 =

3

∑
i=1

C0,i

I C0,i approximated from contact surveys

I c0, l0 based on macroeconomic economic data (freely available)

I then ρo , ρc , ρl are inferred, and assumed constant over time

I however, consumption and labor of susceptibles and infectives
cS
t , lSt , c I

t , l
I
t will be chosen by individuals based on a maximization

problem.
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Econ model

I for each disease state m ∈ {S , I , R}
I individuals maximize a different utility function

I and choose consumption ct and labor lt subject to budget
constraints.

Utility function u(ct , lt) has to satisfy

I increasing in ct , decreasing in lt
I usually time not spent consuming is normalized to one, and can be

used for labor lt or leisure 1 − lt
I increasing in ct and 1− lt
I second derivative of utility function should be negative definite for

consumption and leisure

I meaning that additional units of consumption and leisure give you
less and less of additional utility.
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Per period utility function

Common choice

u(ct , lt) =
[cα

t (1− lt)1−α]1−η − 1

1− η

I α ∈ (0, 1): how much individuals value consumption relative to
leisure

I η is the risk aversion parameter

I η = 0 means individuals are indifferent to uncertainties associated
with risk, and η > 0 individuals try to avoid uncertainties associated
with risk

I the form cα
t (1− lt)1−α implies that the elasticity of substitution

between consumption and leisure is one.
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Utility function

Elasticity of substitution of x2 wrt to x1 for f (x1, x2) is

d(x2/x1)
x2/x1

/
dMRS(x1, x2)
MRS(x1, x2)

where MRS = the marginal rate of substitution of x2 wrt x1

MRS =
∂u/∂x2

∂u/∂x1

I for f (x1, x2) = xα
1 x1−α

2 elasticity of substitution between consumption and
leisure is equal to one

I elasticity is zero for no substitutes

I positive for imperfect substitutes

I infinity for perfect substitutes.
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Utility function

To allow for elasticity of substitution to be constant but different than
one, Ash et al (2022) use the constant elasticity of substitution utility
function

u(ct , lt) =
[v (ct , lt)]1−η − 1

1− η

v (ct , lt) =
[

α
1
σ c

σ−1
σ

t + (1− α)
1
σ (1− lt)

σ−1
σ

] σ
σ−1

I σ is now the elasticity of substitution between consumption and
leisure, and it is constant.
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Economic decision

Probability of a susceptible being infected at time is

P I
t = τCt It

Decision of a susceptible individual is to maximize utility today, caring
about how this choice affects his consumption tomorrow :

US
t = max

cS
t ,lSt

{
u(ct , lt) + δ[(1− P I

t )U
S
t+1 + P I

t U
I
t+1]

}

Um
t = Um(St , It , Rt), m ∈ {S , I}

I δ is how much I care about utility tomorrow compared to today
I with probability P I

t , I get next period the utility of an infectious
individual, and with probability (1− P I

t ) that of a susceptible
I also known as Bellman equation, and solved usually backward in

time recursively, or via value function iteration
I St , It , Rt , Dt are state variables, ct , lt are control variables.
I assumed perfect foresight on P I

t
I Ash et al (2022) also consider poor forecasts of P I

t
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Economic decision

I susceptibles also have a budget constraint:

pcS
t = wtφS lSt

I φS = 1 is the productivity of a susceptible individual

I real wage per unit of effective (fully productive) labor is wt

I real wage is just wage where inflation was removed; calibrated from
macro data

I therefore, price p = 1

I assumed no saving and no borrowing

I so cS
t = wt lSt , and the only control variables to be chosen are lSt

I susceptibles care about being infected, and their decision is also
constrained by the disease dynamics.
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Economic decision

Infectives have a different maximization problem:

U I
t = max

cS
t ,lSt

{
u(ct , lt) + δ[(1− PR − PD)U I

t+1 + PRUR
t+1 + PDUD

t+1]
}

Um
t = Um(St , It , Rt), m ∈ {I , R}

UD
t = Ω

subject to budget constraint:

c I
t = wt ΦI l It ,

and disease dynamics

I where productivity of infected is ΦI < 1 in Ash et al (2022), and
calibrated based on share of asymptomatic/pre-symptomatic infected

I and PR and PD where the probabilities of recovered given infected
and dying given infected

I UD
t = Ω is the utility of dying (negative usually): how much you

prefer to die next period than consume less this period

I in Ash et al (2022), it is calibrated based on value of statistical life.
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Economic decision

Utility of recovered:

UR
t = max

cR
t ,lRt

{
u(cR

t , lRt ) + δUR
t+1

}

subject to budget constraint:

cR
t = wt lRt .

I it can be shown that this is a static decision given disease dynamics

What is optimal for each individual is not optimal for everyone:

I infectives care only about their own utility

I they don’t care about infecting others

I therefore, susceptibles, even the absence of any NPIs, have to
reduced their consumption and labor if they care about maintaining
some of their future consumption and labor

I hence, they also reduced their contacts

I not that susceptibles still do not care about utility of others, only of
their own.
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Social planner

I at beginning of the epidemic, we have many susceptible individuals,
and they are the ones that have to “isolate” (reduce their contacts)
because infectives may infect them

I this results in many infections but also large economic losses (less
productivity when infective, less consumption)

I a benevolent government/social planner would care about everyone’s
utility

I a social planner would recognize this problem and would instead
isolate infected individuals, letting the susceptibles work

I so number of infected individuals are reduced through coordinating
the choice of labor and consumption for everyone.
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Social Planner’s Decision

max
ct ,lt

∞

∑
t=0

{
Stu(cS

t , lSt ) + Itu(c I
t , l

I
t ) + Rtu(cR

t , lRt ) + DtΩ
}

subject to:
pcm

t = wtΦm
t lmt , m ∈ {S , I , R}

and disease dynamics.

I any further reduction in dynamics in this model will have to come
from willingness of social planner to add to the optimization above a
penalty on the number of cases

I for example, because of potentially exceeding hospital capacity

I something which is not in the individual’s objective function

I this problem can also be solved by writing a Bellman equation.
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Solving the models

I call the first scenario where social planner does not intervene
voluntary isolation

I and solving the social planner’s problem targeted isolation

I Ash et al (2022) assumes everything is deterministic

I calibrate all parameters

I and solves the optimization problem via value function iteration.
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Use of calibrated model

I social planner’s problem (targeted isolation) can be solved in a
similar fashion.

Total consumption equals total production (called gross domestic product
GDP in the paper, but in reality close to consumption data since the
model does not have investment and government purchases):

GDPt = Stc
S
t + Itc

I
t + Rtc

R
t

I so we can calculate the difference in both infections and in GDP
between the voluntary and the targeted isolation

I they also do so for a lockdown, where number of contacts is
constraint based on measured lockdown contacts.
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Ash et al (2022), Figure 2
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Ash et al (2022), Figure 2
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Ash et al (2022), Figure 3

Overall contacts ∼ same with targeted and voluntary isolation, but are
redistributed from infected to susceptible

But due to infected isolating more, probability of contact between S and
I is smaller, resulting in less infections.

P I
t = τCt It

23 / 32



Ash et al (2022), Figure 4

Test delays (8 days, decrease over time) and/or poor quality tests (10%
detection, increases over time)
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Solving the model

I Recall that we only need to choose lmt , m ∈ {S , I} and solve for
function Um

t = Um(St , It , Rt), everything else is in closed form

I assume Um
T are the steady-state values, after pandemic passed,

equal to those pre-pandemic U0

I start with pre-pandemic consumption and leisure, and contacts

I use a numerical routine to choose lmt maximize U(St , It ,Rt) (fixed
point iteration, inner loop to find U)

I feed this and cm
t (which is proportional to labor lmt ) into contact

function to obtain new contacts Ct

I new contacts imply new St+1, It+1, Rt+1, so feed it back to the loop

I similar techniques for solving the voluntary isolation (individuals)
and targeted isolation (social planner) problem.

25 / 32



On grid value function iteration

Initialisation:
I We have grid on S , I , R : GS ∈NX , GI ∈NI , GR ∈NR . Let stacked grid

be G = (GS , GI , GR ) ∈N where N = NX + NI + NR .
I We have initial guess of value function V 0(S , I , R) for all S , I , R on

grid. So, V 0 is N × 1 vector. Since the Bellman equation is a
well-behaved contraction mapping, this initial guess can be anything
and usually convergence is guaranteed.

1. When entering step i of the inner loop, we have previous step’s
value function V i−1(S , I , R), which is a N × 1 vector. Then, in step
i , we calculate for each (S , I , R) in the grid G :

V i (S , I , R) = max
c,l

u(c , l) + βV i−1(S ′, I ′, R ′)

where

S ′ = S − τC (A)IS

I ′ = I + τC (A)IS − (PR + PD )I

R ′ = R + PR I

2. Continue loop until V i and V i−1 are close enough.
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On grid value function iteration

I we obtain the converged value function V ∗(S , I , R) for all (S , I , R)
in the grid, which is the U(∙) function we seek

I more importantly, we obtain choices c∗(S , I , R) and l∗(S , I , R),
which we can use in the actual model using initial values S0, I0, R0

I there are stochastic extensions of this.
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Estimation

I stochasticity with an exogenous variable governed by a stochastic
process ξ.

General decision:

U(x |Ft) = max
x

{u(x , y , ξt) + δE [U(y )|Ft}

I when parameters are also stochastic,

I to avoid value function iteration, people typically linearize around
the steady state

I then use a ”rational expectation solution” to put the model in linear
state space formulation

I and employ Kalman filtering technique

I linearizing around the stead state here doesn’t make sense, at least
not at the beginning of the epidemic

Thoughts?
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Model extensions?

I undetected cases should be treated separately: these individuals will
behave as susceptibles, but they will also be in general less infectious

I meaning they will both reduce their contacts (resulting in less work
and therefore an economic loss), and not factor in the fact they may
be infectious

The disease dynamics are given by:

St+1 = St − τCt I
d
t St − μτCt I

u
t St

I dt+1 = I dt + τCt I
d
t St + μτCt I

u
t St − (PR + PD )I dt

I ut+1 = I ut + (1− d)St(Pd
t + μPu

t ) − (PR + PD)I ut
Rt+1 = Rt + PR (I ut + I dt )

Dt+1 = Dt + PR (I ut + I dt )

I d is case detection rate

I 0 < μ < 1 is relative infectiousness of undetected cases.
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Extensions

Simplified utility:

v (c , l) = cα(1− l)1−α

u(c , l) =
v (c , l)1−η − 1

1− η

I decision of Rt , I
d
t decision as before

I and in both cases, static and in closed form.
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Undocumented Infected Problem

I assume that an undocumented infective individual is unaware of their
disease state and thus behaves in the same way as a susceptible

I the undocumented infected compartment is not observable to
individuals

I it is reasonable to expect the central planner to estimate the number
of undocumented infected people

I we assume that susceptible individuals do not estimate the number
of undocumented infectives with whom they may come into contact.
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True versus perceived infection probability

True infection probability is:

Ptrue
t = τCt I

d
t + μτCt I

u
t

Perceived infection probability is:

Pt = τCt I
d
t

I therefore, S , I u reduce their consumption/labor less

I because they don’t estimate well future losses

I economic benefits may initially seem large

I but documented infectives are less productive than before, so may
result in more loss

Other limitations to address in original model?

32 / 32


