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Modeling spreading processes

∂tXi = ∑
j

Λij(t)Xj + r(t)Xi + Xi /Ne η ,
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… in structured models:

In the simplest models, the abundance  of a new variant obeysX(t)

∂tX = r(t)X + X /Ne η ,

Demographic 
noise

Growth 

United States

Spain

Italy
Germany

France

United Kingdom
Switzerland

Belgium

Netherlands
Canada

10 20 30 40 50 60
1

10

100

1000

104

Confirmed COVID-19 cases  
(as of May 19, 2020, EECD data)

Forecasting/backcasting relies on good parameters

How can we directly measure 
epidemiological parameters?



Our focus: Sars-CoV-2 in England
• England heavily invested in 

COVID sequencing (big 
thanks to COG-UK!!!) 

• Strangely but conveniently, 
data shows long-lasting 
plateaus of high incidents 
rates (especially for Delta) 

• There are lots of ≈neutral 
variants, and they fluctuate a 
lot. 

• Similar time series arise in 
barcoding experiments, 
metagenomics, …

Hypothesis: Neutral fluctuations can tell us about demographic noise and migration ….



Learning from neutral allele 
frequency fluctuations

1. Quantify fluctuation strength.  
Consistent with SEIR or super 
spreaders?  
 
 
 

2. Compare fluctuations in different 
groups of people. Correlations 
reflect epidemiological coupling 
(infection rates).

Lakdawala and Menachery, 
Trends in Microbiology, 2021

PDF of infected often modeled  
as a Negative Binomial 
Lloyd-Smith et al, Nature, 2005

Independent fluctuations

Frequency fluctuations are correlated

Excess fluctuations might hint at emergence of jackpot effects  
(Qinqin Yu, et al, bioRxiv 2022.11.21.517390)



Inferring the strength of genetic drift
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• The variation due to genetic drift 
adds over time 

• The variation due to sampling biases 
does not add over time 

 Use this signal to infer genetic drift 
and sampling biases

ft = lineage frequency 
ftobs

 = observed lineage frequency 
Ne(t) = time-dependent effective population size 
ct = strength of sampling bias (ct = 1, random sampling)  
Mt = number of sequences

Genetic drift

Sampling bias

QinQin Yu
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Hidden Markov Model of frequency time series
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Maximize likelihood function to determine most likely Ne𝜏

Inferring sampling noise:

• ft = superlineage (*) frequency 
• ftobs

 = observed superlineage 
frequency 

• Ne = effective population size 
• 𝜏 = generation time 
• Mt = number of sequences 
• ct = strength of sampling bias (ct = 

1, random sampling) 

Emission probability 
from sampling bias

Transition probability  
from genetic drift

(*) We create ”superlineages” by 
combining lineages together until they 
reach a threshold number of counts

Related: Jonathan P Bollback, Thomas L York, and Rasmus Nielsen. Genetics 179.1 (2008), pp. 497–502. 
Anna Ferrer-Admetlla et al. Genetics 203.2 (2016), pp. 831–846.



Effective population size in England across time

Volz et al, Genetics, 2009 
Frost et al, Phil. Trans. R. Soc. B, 2010

Expectation from SEIR model:

I = number of infected individuals 
E = number of exposed individuals 
Rt = effective reproduction number 
1/ƔI = average time from infection to 
recoveryExpected
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The inferred Ne𝜏 is much lower than expected! 
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(N.B. Sampling noise changed over time, and was sometimes different between variants)
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Learning from neutral allele 
frequency fluctuations

1. Quantifying demographic noise  
 
 Effective population size much smaller than 

expected [by O( )], which cannot be explained 
by the impact of super spreaders alone.
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Lineage frequency time series reveal elevated levels of genetic drift in SARS-CoV-2 transmission in England 
QinQin Yu, Joao Ascensao, Takashi Okada, The COVID-19 Genomics UK (COG-UK) consortium, Olivia Boyd, 
Erik Volz, Oskar Hallatschek, (2022) bioRxiv 2022.11.21.517390

Figure 5: Potential mechanisms that can generate a low e↵ective population size are (a) superspreading
and (b) deme structure. (c) In a situation where there is superspreading but no deme structure (i.e. the
population is well mixed), the the variance in o↵spring number is given by the ratio of the SEIR model Ne⌧
to the inferred Ne⌧ (reproduced from Figure 3b). (d) Simulations of deme structure probing a situation
with deme structure but no superspreading. SEIR dynamics are simulated within demes (with Rt � 1, i.e.
deterministic transmission) and Poisson transmission is simulated between demes (Rt ⌧ 1, i.e. stochastic
transmission) such that the population Rt ⇠ 1. The inferred e↵ective population size scales with the
number of infected demes, but not with the deme size. The number of infected individuals scales with both
the number of infected demes and the deme size. Combining, the ratio between the number of infected
individuals and the inferred e↵ective population size scales linearly (slope ⇠ 1/7) with the deme size and
not with the number of infected demes, with the exception of the simulation with 100 infected demes.

through superspreading (Figure 5a), and (2) host population structure (Figure 5b). We investigate each of
these mechanisms in turn and compare it to our results. While in reality, both mechanisms (and others not
explored here) are likely at play, it is challenging to tease them apart given our limited data. Instead, we
consider the situation where one or the other mechanism is driving the dynamics to gain intuition.

The first mechanism that we explore is superspreading: superspreading leads to overdispersion in the
number of secondary cases, which can be characterized by the variance in o↵spring number. If superspreading
were the only mechanism at play, then the variance in o↵spring number that would explain our results would
be the same as the ratio between the e↵ective population size in the SEIR null model and the inferred
e↵ective population size, which would be 40-250 (Figure 5c). Current estimates of the variance in o↵spring
number measured by contact tracing and modeling are around 0.7-65 (add references from spreadsheet). It
is possible that contact tracing over- or under-estimates overdispersion due to missed contacts (are there any
studies looking into this?). However, on the other hand, it may be the case that superspreading is not the
only mechanism at play.

The second mechanism that we explore is host population structure: stochasticity arises through dif-
ferences in the rate of transmission to di↵erent contacts that an individual may have. For instance, an
individual’s rate of transmission to some individuals may be very high (i.e. members of the same house-
hold), whereas their rate of transmission to some other individuals may be very low (i.e. members of di↵erent
households). In contrast to superspreading where individuals have di↵erent o↵spring numbers, it is possi-
ble for a population with host structure to have the same individual o↵spring numbers but still generate
population-level stochasticity due to a decreased “e↵ective” number of stochastic transmissions. We consider
the simplest model of host structure to gain intuition: the population has groups of individuals which we
call “demes” that have high rates of transmission within the deme but low rates of transmission between
demes. In the most simple model, all demes have the same number of individuals, and there is a large
enough number of demes that the total number of demes does not matter. Initially some number of demes

9

… might indicate 
hidden structure



Conclusions
• Correlated fluctuations encode interactions 
• Interactions reflect geography but differ substantially between waves  
• Relaxation time of 8 weeks for Delta in England 

(=twice as fast as for alpha!) 
• Long-range connections matter; detailed balance partially broken

Outlook
• How do these couplings compare to estimates from 

mobility data or from mobility proxies (cell phone) ? 
• Applications where we don’t have mobility proxies: 

• Infection matrix between age groups, ethnicities, … 
• Metagenomics of microbiomes (natural & experimental) 
• “Historical” DNA - Recombination creates lot’s of  

uncorrelated time series
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