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Modeling spreading processes

In the simplest models, the abundance X(¢) of a new variant obeys Confirmed COVID-19 cases

Woll Mixed Reactor (as of May 19,2020, EECD data)
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How can we dlrectly measure
epldemlologlcal parameters’?
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Our focus: Sars-CoV-2 in England

« England heavily invested in

COVID sequencing (big ,
thanks to COG-UKI!!) .

+ Strangely but conveniently, L
data shows long-lasting e

plateaus of high incidents
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rates (especially for Delta) Y s S o
- There are lots of =neutral D e A e m m om s

variants, and they fluctuate a

lot.

« Similar time series arise in
barcoding experiments,
metagenomics, ...




Learning from neutral allele
frequency fluctuations e d .
1. Quantify fluctuation strength. AEetmetsaaa e oY
Consistent with SEIR or super Z ~ NB(Ry, k)
spreaders? PDF of infected often modeled  2XHEWRIR 7 NERSSY,

as a Negative Binomial
Lloyd-Smith et al, Nature, 2005

.-css fluctuations ‘ight hit'ﬂe'r“gnce f4<‘ﬁt effects
¥ (Qingin Yu, et al, bioRxiv 2022.11.21.517390)

2. Compare fluctuations in different gi

grOUpS Of people_ Correlations Independent fluctuations

reflect epidemiological coupling
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Frequency fluctuations are correlated
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Inferring the strength of genetic drift

o

» The variation due to genetic drift
adds over time

» The variation due to sampling biases Q
does not add over time

- Use this signal to infer genetic drift
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Genetic drift var[fiya: — fi] = N
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Sampling bias  var[f* — f,] = — f,
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f.= lineage frequency
/,\ fobs = observed lineage frequency
""""" 1dtal N,(t) = time-dependent effective population size
----- Variant . . .
— Used c; = strength of sampling bias (¢;= 1, random sampling)

' M,= number of sequences
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Hidden Markov Model of frequency time series

N, - ' i
p(fex1lft, NeT) Inferring sampling noise:

- - t+T Kobs -k ¢ . cr. NoT 2
@ Jity @ {ce ceq1, oo o }™ = arg min [ln Z (R 3y — Rty ta Oty Oty NeT)) ]

b
p(ftObs|fta ct) {ee,cetass ct+1,NeT} ty,ta=t AH§1§52
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f,= superlineage (*) frequency Maximize likelihood function to determine most likely Nz
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fiobs = observed superlineage (N = angmax [ [ ARl gieeg) 1 o p(il o, Nor)]
frequency Ner 20 t=t- L 41

N, = effective population size

T = generation time 4 N o N ( . N

M _g ber of Transition probability Emission probability

(= Umber ot sequences from genetic drift from sampling bias
¢, = strength of sampling bias (c,=
1, random sampling)
Ot =\ fi 20 =4/ fobe

(*) We create "superlineages” by 1 b Ct
combining lineages together until they p(Ps41l0t) = N (s, AN ) p(677°6e) = N (¢, 4Mt)
reach a threshold number of counts S e” ) U )

Related: Jonathan P Bollback, Thomas L York, and Rasmus Nielsen. Genetics 179.1 (2008), pp. 497-502.
Anna Ferrer-Admetlla et al. Genetics 203.2 (2016), pp. 831-846.




Effective population size in England across time
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'*§ 5 pre-B.1.177 | = number of infected individuals
- 10 Alpha E = number of exposed individuals
— Delta R, = effective reproduction number
- 1Y, = time from infection to
S *  Inferred /Y, = average ti
»n 10 = Expected recovery
Volz et al, Genetics, 2009
Oct Jan Apr Jul Oct Jan Frost et al, Phil. Trans. R. Soc. B, 2010
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[‘[he inferred N_7 is much lower than expected!]

(N.B. Sampling noise changed over time, and was sometimes different between variants)



Learning from neutral allele
frequency fluctuations
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1. Quantifying demographic noise
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Effective population size much smaller than

expected [by O(102)], which cannot be explained
by the impact of super spreaders alone.
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Lineage frequency time series reveal elevated levels of genetic drift in SARS-CoV-2 transmission in England 10-3 102 10-1 05
QinQin Yu, Joao Ascensao, Takashi Okada, The COVID-19 Genomics UK (COG-UK) consortium, Olivia Boyd, Frequency of a derived allele, f

Erik Volz, Oskar Hallatschek, (2022) bioRxiv 2022.11.21.517390



Conclusions

* Correlated fluctuations encode interactions ) f:
* Interactions reflect geography but differ substantially between waves | «

: ,"b\:q
* Relaxation time of 8 weeks for Delta in England PN Wiy
(=twice as fast as for alpha!) ‘sgfi'?@ A
. . . Y ai ‘5,"5\;\ ' -
» Long-range connections matter; detailed balance partially broken I+ :,;4°‘°*\‘ VRN
 How do these couplings compare to estimates from Y so =00,

mobility data or from mobility proxies (cell phone) ? L
 Applications where we don’t have mobility proxies:
* Infection matrix between age groups, ethnicities, ...
» Metagenomics of microbiomes (natural & experimental)

* “Historical” DNA - Recombination creates lot’s of
uncorrelated time series
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