Investigating COVID-19 dynamics
with individual-based models

NORDITA
Francesco Di Ruscio

= NIPH

Norwegian Institute of Public Health



Pandemic response at NIPH

Situational awareness

* Forecast of epidemiological indicators

* Methods: SEIR models with changepoints SMC-ABC, SMC
* 150+ reports

Scenarios analyses




Scenario analyses

Pharmaceutical interventions
= National vs. Regional vaccine distribution
= Age and risk-group prioritization
= Vaccination of children (12-15)
= Increase uptake

Non-pharmaceutical interventions
= Individual behaviour (e.g. self-isolation)
u Quarantine measures
= Lockdowns

Cum. number of modelling reports - Oppdrag-scenarios

Epidemiological uncertainties
L New variants
| Seaso n a | effects apr .;CEC\ un .;SED ag :”CZTJ okt .;'.".I'J des :’CED feb 2021

FHI MODELLING WEB PAGE:

Mathematical models. https://www.fhi.no/en/id/infectious-diseases/coronavirus/coronavirus-
* _Meta-population model (MPM) modelling-at-the-niph-fhi/

I « Individual-based model (IBM) -:




IBM structure



Norwegian IBM: Geo-spatial features

Gridded population data
Version 1 (GPW data)

= Approximately 5.4 mln individuals

= 4978 cells

ABOUT ~ HELP

SOCIAL MEDIA ~

DATA- MAPS+ THEMES- RESOURCES *
Gridded Population of the World (GPW), v4 Follow Us: 3 B3 B *¢ | Share: 3
| Collection Overview Introduction

The Gridded Population of the World (GPW) collection, now
) in its fourth version (GPWv4), models the distribution of
Data Sets (9) human population (counts and densities) on a continuous

Methods

global raster surface. Since the release of the first version of

. this global population surface in 1995, the essential inputs to

Map Services (104) . :
GPW have been population census tables and corresponding

geographic boundaries. The purpose of GPW is to provide a

spatially disaggregated population layer that is compatible with

FAQs data sets from social, economic, and Earth science disciplines,

and remote sensing Tt nravides oloballv consistent and

Map Gallery (97)

Citations
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Norwegian IBM: Geo-spatial features

Gridded population data

Version 2 (Statistics Norway data)
= Approximately 5.4 mln individuals

= 13521 cells, 356 municipalities / 11 counties
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Norwegian IBM: Synthetic population

Census data (SSB, FHI)
Algorithm to build households (hhs):
1. Sample hh size from the distribution

2. Sample the age of the hh head from the age-distribution

of that hh size

3. Define if there are more adults or kids in the hh

4. Sample the age of the other members

Household size by age

age
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Individuals, settings and mobility

kindergartens SN
Schools (grades 1-13) #% .4
= Location Universities ' z

= Age

Occupation

l/m = Ethnic background /ﬂ\ Households

= Vaccination status

= Risk group

= Epidemiological status 2

= Hospitalization status E Distance travelled by individuals in
Workplaces .

each municipality

(radius of gyration)

Mobility patterns: informed by mobile phone data data from Telenor
Norway

Frequency

le+01

Understanding individual human mobility patterns

Marta C. Gonzalez', César A. Hidalgo'* & Albert-Laszl6 Barabasi'*

P(r) = (rgt12) exp(—re/x)

1e-01

1 10 100 1000
distance



School holidays and home office

School holidays Home office (Google data)
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5.3 mIn individuals

Real socio-demography

Mobility patterns

Schools
Workplaces
Community

Hospitalizations
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Spread of AMR bacteria

A hospitals
+

‘ N

nursing homes

household‘s\

workplaces

schools

Quantifying the transmission dynamics of MRSA in the
community and healthcare settings in a low-
prevalence country

Francesco Di Ruscio®P<, Giorgio Guzzetta®, Jorgen Vildershoj Bjernholt®f, Truls Michael Leegaard“®,
Aina Elisabeth Fossum Moen®9, Stefano Merler?, and Birgitte Freiesleben de Blasio®""

“Department of Infectious Disease Epidemiology and Modelling, Norwegian Institute of Public Health, 0456 Oslo, Norway; bDepartmen'c of Biostatistics,

Institute of Basic Medical Sciences, University of Oslo, 0317 Oslo, Norway; “Department of Microbiology and Infection Control, Akershus University Hospital,
1478 Lorenskog, Norway; dCenter for Information Technology, Bruno Kessler Foundation, 38123 Trento, Italy; “Institute of Clinical Medicine, University of
Oslo, 0317 Oslo, Norway; 'Department of Clinical Microbiology, Oslo University Hospital, 0317 Oslo, Norway; and 9Department of Clinical Molecular Biology

(EpiGen), Division of Medicine, Akershus University Hospital, 1478 Lorenskog, Norway

Edited by Burton H. Singer, University of Florida, Gainesville, FL, and approved June 3, 2019 (received for review January 24, 2019)

Methicillin-resistant Staphylococcus aureus (MRSA) is a primarily
nosocomial pathogen that, in recent years, has increasingly spread
to the general population. The rising prevalence of MRSA in the
community implies more frequent introductions in healthcare set-
tings that could jeopardize the effectiveness of infection-control
procedures. To investigate the epidemiological dynamics of MRSA
in a low-prevalence country, we developed an individual-based
model (IBM) reproducing the population’s sociodemography, ex-
plicitly representing households, hospitals, and nursing homes.
The model was calibrated to surveillance data from the Norweaian

sufficient control combined with intensified international mobility,
which are significantly contributing to the global spread of MRSA
(9, 10). We currently have very limited knowledge of how the
emerging community reservoir contributes to the local MRSA ep-
idemiology in low-prevalence settings and to which degree it im-
pacts the healthcare environments. The identification of the
relationship between MRSA transmission within the healthcare
settings and the community is of primary importance to tailor
evidence-based preventive measures, which currently are largely
healthcare centered.




COVID-19 epidemiological model

Main Parameters

e Gamma distributions - transition time
* Transmission rates B (setting dependent)

e Susceptibilities by age
K * Proportion of asymptomatics by age

>\ * Relative infectiousness of Pl and A

< * Risk of hospitalizations by age
G_\@ @ @@ * Risk of death by age
e LOSin hospital and ICU by age
\)/ * Vaccine efficacies + waning by dose and age

Total
> 100 parameters




Household

Workplace

Force of infection
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Community

We use a negative binomial distribution to take into account super- 100
spreading events. (Lloyd-Smith, Nature, 2005)

75 1e+03

The model simulates age-dependent contacts in the
community (based on Norwegian contact data) and a spatial kernel
derived from mobility data from Telenor Norway.

Frequency

1e+01

25
1e-01

Susceptibility factors capture behavioral changes in specific periods of
time.
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Single shots of vaccine T I-

Waning dynamics with different functional forms (linear, exponential) - _

Historical registry data (SYSVAK) used to initialize the model with the correct “time
number of doses by age and municipality in time.
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Model calibration

Computationally expensive stochastic model:
Simulation time: ~ 5-15 min (on a 2.6 GHz; programming language C)

Parameter exploration unfeasible with methods that rely upon large numbers of
sequential model evaluations (e.g. MCMC).

HPC infrastructure are needed to run different simulations in parallel



Model calibration — Latin Hypercube Sampling

Data - e.g. hospital incidence e
e < 6
_ isS] | e
Set 6 of free parameters - e.g. transmission rates B, i Pags;nceeter 7T Latin model | —— L(Y,;0)
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Model calibration — Emulators

Given a set of model runs (training dataset) it is possible train an emulator (statistical model) and use it as a surrogate
of the model, allowing for a more cost-effective exploration of the parameter space.
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A retrospective study of the spread of the
Omicron variant

(Preliminary results)



Omicron emergence - background

24 November 2021

First case detected in Norway from South Africa Control measures T
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Epidemiological model with 2 strains

Omicron vs. Delta

* Higher transmissibility, lower generation time

0.3

e Ability to evade natural immunity from previous infections

omicron

* Milder symptoms
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Calibration

Refined VE values and other parameters

from the litterature and Norwegian data Reopening
Free parameters (13): w0
* CTR: change in the ransmission rate due to inte &
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Calibration — Emulation and history matching
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The model suggests that the first Omicron cases ke %
arrived in Norway in the first weeks of November
(earlier than the first detected cases).
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Scenario analyses

 Timing of the booster dose
* Non-pharmaceutical interventions: timing of reopening the society
* School holidays

 [ndividual behavior



Scenario analyses

Timing of the booster dose
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Scenario analyses

7000 4

Lockdown and relaxation time of the
control measures

»
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Reflections

The COVID-19 pandemic has provided an unprecedented level data.
IBMs are data hungry models that greatly benefit from the extensive information
available in registries, as well as behavioral and mobility data from sources such as

social media and telecommunication companies.

Retrospective analyses can give important insights into the spreading dynamics and
the impacts of pharmaceutical and non-pharmaceutical interventions.

These insights are important for developing effective preparedness plans.



Regional vs. national vaccination strategy

Vaccination strategy in Norway
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