

Modelling hepatitis C among risk groups in Norway

- to monitor progress towards elimination

Jørgen Eriksson Midtbø, NIPH infectious disease modelling group

Outline

- 1. Background: Hepatitis C in Norway, elimination goals
- 2. Model design, technical choices and challenges
- 3. Results and discussion

Background: Hepatitis C in Norway, elimination goals

WHO elimination goals for hepatitis C

- Chronic infection with hepatitis C virus (HCV) may cause progressive liver fibrosis
- A leading global cause of liver cirrhosis, cancer and death
- WHO estimates in 2019:
 - 58 million people lived with chronic hepatitis C
 - 1.5 million new infections/yr
 - 290 000 deaths/yr
- New oral direct-acting antivirals (DAA) are safe, effective and quick
 - Made free for everyone with HCV in Norway in February 2018
- Elimination goals by 2030:
 - 80 percent reduction in incidence from 2015
 - 5 new infections per 100 000 population, 2 per 100 000 for PWID
 - 2 deaths per 100 000
- NIPH has responsibility for monitoring progress towards elimination
 - Asked to make a model to estimate prevalence and incidence

Global health sector strategies on, respectively, HIV, viral hepatitis and sexually transmitted infections for the period 2022–2030

Hepatitis C is concentrated in risk groups

- People who inject drugs (PWID) active transmission
- Immigrants from high-prevalence countries importers of chronic infection, little onward transmission (?)
- Other groups:
 - Persons infected through blood transfusion pre-1990
 - Men who have sex with men
 - Prevalence very low -> overshadowed by uncertainty in PWID + immigrants -> not included

Building on earlier work

Ellen J. Amundsen¹, Espen Melum^{6,7,8} and Hilde Kløvstad^{1*}

- Modelling study on HCV among PWID in Norway
- 2017 just before DAA treatments
- Main focus on severe outcomes
- Not straightforward to update and rerun their model, so we built a new one
 - However, many choices in our model inspired by this paper!

Patchy data sources

- RNA and antibody prevalence surveys convenience sample among active PWID
- Total number of PWID estimated from drug overdose deaths
- Number of treatments per year + estimated treatment success probability
- Immigrants: Lacking any kind of prevalence data for Norway

Model design

Data, technical choices & challenges

A stochastic compartmental model

- Inference is performed by a particle filtered Markov Chain Monte Carlo (pMCMC) engine implemented in the *mcstate (odin/dust)* framework within R
 - Parameters are a combination of random walk in time and time-constant, inferred jointly
- All data sources are evaluated together against all parameters in a total likelihood function

The PWID population

Estimated by mortality multiplier method courtesy of NIPH, Dept. of Alcohol, Tobacco and Drugs

The PWID population

- We make a model for the PWID population consisting of three groups
 - Active PWID currently injecting
 - PWIDs temporarily ceased injecting, will relapse
 - PWIDs permanently ceased injecting
- Parametrise this by four rates
 - rate_debut
 - rate_quitting_temporary
 - rate_relapsing
 - rate_quitting_permanent
- To give model necessary flexibility, we do a random

walk on *rate_debut* over time

- The particle filter is used to filter the desired trajectories
- The 3 other parameters are kept constant in time, inferred by MCMC

The PWID population

We make a model for the PWID populati

of three groups

- Active PWID currently injecting
- PWIDs temporarily ceased injecting, will relapse
- PWIDs permanently ceased injecting
- Parametrise this by four rates
 - rate_debut
 - rate_quitting_temporary
 - rate_relapsing
 - rate_quitting_permanent
- To give model necessary flexibility, we do a

walk on *rate_debut* over time

- The particle filter is used to filter the desired trajectorie
- The 3 other parameters are kept constant in time, inferr

Sequential Monte Carlo (particle filter)

At each time step, the model draws a random perturbation on rate_debut (and on rate_treatment)

Illustration by Danilo Alvares

Spreading of HCV among active PWID

Infection

AA

HCV acute

AN

HCV naive

- Assume a constant underlying transmission rate β through simulation, inferred by MCMC
- Effective transmission rate lowered gradually by
 - needle and syringe and opioid substitution treatment programmes
 - geographical dispersion GINI coefficient

PWID

debut

 Informed by fraction active PWID who are RNA positive

AR

HCV

recovered

AC

HCV chronic

Spreading of HCV among active PWID

Treatments

- Treatment rate varies significantly from year to year, and thus is modelled as another random walk parameter against the particle filter.
- We assume that all groups (active and ex PWID, immigrants) have the same per-person probability of seeking treatment

Immigrants

- We have no data on Norwegian immigrant **HCV** prevalence
- Immigrants are • however needed in the model because they couple to the PWID through treatment data
- We make a simplistic • assumption:
 - yearly immigration data + per-country HCV prevalence
 - estimates

Immigrants

- We have no data on Norwegian immigrant **HCV** prevalence
- Immigrants are • however needed in the model because they couple to the PWID through treatment data
- We make a simplistic assumption:

 - yearly immigration data + per-country HCV prevalence estimates

Results and conclusions

The model suggests Norway is on track to reach elimination goals

The model predicts forward in time by keeping random-walk parameters constant at last value

The large error bands make the case for closer monitoring of risk groups

Counterfactual: The impact of DAA treatments

Keep the transmission rate fixed at with-treatment model estimate, keep treatments at 2013 level

Counterfactual: The impact of DAA treatments

Keep the transmission rate fixed at with-treatment model estimate, keep treatments at 2013 level

Conclusions and outlook

- The hepatitis C prevalence & incidence is estimated to be rapidly declining, and this is largely attributable to treatment
- Norway is estimated to be on track to reach the elimination goals, and the hepatitis C epidemic among PWID is predicted to die out
- More sensitivy analyses needed, e.g.
 - Vary assumptions on immigrant prevalence
 - Test assumption of equal treatment uptake
- Question: How to choose the "correct" number of particles in the particle filter to represent uncertainty and not overfit? (Presently 10³-10⁴)

This work is done together with **Robert Neil Whittaker**, with valuable input from Hilde Kløvstad, Sasi Kandula, Gunnar Rø, Birgitte de Blasio and others.