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Introduction

• Retrospective modelling of the SARS-CoV-2 pandemic ( applied to

data for Norway and Sweden)

• Main research questions:

1. How was spread of pandemic associated with different categories of

population behaviour?

(Do we find association between Google mobility reports and

infection dynamics?)

2. What role does seasonality play?
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Outline

• Google COVID-19 community mobility reports

• The model

• Data description

• Metapopulation model

• Transmissibility as a function of behaviour

• Observational model - hospital admissions

• Results

• Model applied to data for Norway and Sweden

• Summary

• Limitations/discussion
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Google COVID-19 Community Mobility Reports

• Mobility reports describe the daily activity level relative to

pre-pandemic baseline in six categories/transmission settings:

Number of mobile devices in a category at day t

Baseline activity level

• Baseline mobility: mean activity of 5 consecutive pre-pandemic

weeks (Jan 3 - Feb 6, 2020), weekday specific

• Noise is added by Google for privacy reasons, some imputation

necessary

• Reported from beginning of pandemic until Oct 15, 2022

• Available in fine grained regional resolution

4/31



COVID-19 community mobility report settings

• Grocery & pharmacy: grocery markets, food warehouses, farmers

markets, specialty food shops, drug stores, and pharmacies

• Retail & recreation: restaurants, cafes, shopping centers, theme

parks, museums, libraries, and movie theaters

• Transit stations: public transport, subway, bus, and train stations,

sea ports, taxi stands, car rental agencies

• Workplaces: time spent in places of work

• Residential: time spent in places of residence

• Parks: public gardens, castles, national forests. Much missing data.
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COVID-19 community mobility reports
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Model for spread spread

• Extended discrete time SIR model per region (daily)

• Use age-groups to account for vaccination with age-prioritization

• Vaccination: remove known number of vacc. individuals from

Susceptible and Recovered Naturally to Recovered Vaccinated

• No further age-structure (homogeneous mixing)

• Fixed fraction of Susceptibles are imported infections per day

• Transmissibility parameter βr (t) will be modeled as function of

region-specific covariates

• Account for VoCs (α and δ)

• Fit model to weekly hospitalization counts using likelihood that

incorporates external information on hospitalization risk per

age-group; increased by VoCs
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Data

• Pandemic spread: Weekly number of new hospital admissions per

region

• Covariates (daily, per region):

• Google COVID-19 community mobility reports

• Temperature

• Share of circulating virus variants (only have national data)

• Other data: Daily number of new vaccinated individuals (received

two doses), by region and age group
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Model for disease spread

Extended discrete time (daily) SIR model per region

S1
r

S2
r

SG
r

I 1r

I 2r

IGr

Rn1r

Rn2r

Rn3r

Rvr

• S i
r - Susceptible

• I ir - Infectious

• Rnir - Recovered naturally

• Rvr - Recovered from vaccination.

• i = 1, 2, . . . ,G - Age groups,

• r - Region (fylke, län)
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Model for disease spread

Transitions between compartments:

S i
t+1,r − S i

t,r = − βt,r

Nr
It,rS

i
t,r −

nimp

105
S i
t,r − pvacV

i
t,r

S i
t,r

Rnit,r + S i
t,r

I it+1,r − I it,r =
βt,r
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i
t,r +
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105
S i
t,r − γI it,r

Rnit+1,r − Rnit,r = γI it,r − pvacV
i
t,r

Rnit,r
Rnit,r + S i

t,r

Rvt+1,r − Rvt,r = pvac

G∑
i=1

V i
t,r

S i
t,r

Rnit,r + S i
t,r

+ pvac

G∑
i=1

V i
t,r

Rnit,r
Rnit,r + S i

t,r

• βt,r - Average number of infectious

contacts/time unit

• Nr - Total population of region r

• nimp - imported cases per 100k

susceptibles/day (=0.5)

• V i
t,r - Number of new vaccinations

• pvac - Vaccine efficacy ( =0.9)

• γ - Inverse of infectious period

(=1/6)
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Principled model for βt,r

βt,r : average number of secondary infections produced by infect.

individual in region r at day t in fully susceptible population

• We want to relate βt,r to the Google mobility reports

• Assume: secondary infections occur in K different settings, e.g.,

workplaces, public transport, ...

• βt,r =
∑K

k=1 βt,r ,k

• βt,r ,k = ct,r ,k × pinfk,r

• ct,r,k > 0 : average number of contacts in setting k at day t

• pinf
k,r ∈ [0, 1] : probability of a contact leading to an infection

(depending on setting and region; Assumption: time-constant)
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Principled model for βt,r (II)

• Available Google data xkt,r do not correspond to absolute number of

contacts ct,r ,k

• Assume linear association between activity level and number of

contacts

xkt,r =
ct,r ,k
cBLr ,k

− 1 ⇔ ct,r ,k = (1 + xkt,r )× cBLr ,k

• βt,r ,k = (1 + xkt,r )× cBLr ,k × pinfr ,k = (1 + xkt,r )× ϕk,r

• ϕk,r > 0 (daily) number of secondary infections in setting k for

region r at baseline activity (unknown parameter, estimated)

• Linearity assumption: when activity reduced by 50%, contacts

reduced by 50% and secondary infections are 0.5× ϕk,r

• Basic model: βt,r =
∑K

k=1(1 + xkt,r )× ϕk,r

12/31



More refined model for βt,r

• Linearity assumption plausible for some settings, less plausible for

others (residential areas, parks, ...)

• We only use the mobility reports for four categories: Grocery and

pharmacies, Retail and recreation, Transit stations, and

Workplaces

• Transmission can also happen in settings not captured by these four

above

• Include week- and region-specific iid. parameter υweek(t),r (estimated

from data) that accounts for transmission that is not captured by

those categories:

βt,r =
∑K

k=1(1 + xkt,r )× ϕk,r + υweek(t),r
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More refined model for βt,r (II)

• Transmission dynamics not only related to contact frequencies but

also (changes in) transmission probability

• Important drivers can be temperature and virus variants (VoCs)

• We assume that these factors act multiplicatively and specify the

final model as

βt,r =
( K∑

k=1

(1 + xkt,r )× ϕk,r + υweek(t),r

)
×eϕtempx

∆temp
t,r +ϕαxα

t,r+ϕδx
δ
t,r ,

• x∆temp
t,r : temp.-diff. in region r at day t compared to day 1

• xαt,r , x
δ
t,r : share of Alpha and Delta VoC among infected

• eϕtemp : mult. change in transmission prob. for a one-degree increase

in temperature

• eϕα , eϕδ : mult. change in transmission prob. for VoC compared to

wildtype
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Variants of Concern

Proportion of Alpha and Delta variant among sequenced/screened positive

tests.
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Likelihood

We use weekly hospitalization counts per region Hw ,r to fit our model

and estimate the set of parameters (ϕk,r , υweek(t),r , ϕtemp, ϕα, ϕδ, σ
υ
r )

Define:

• νt,r : number of new infected day t, region r

νt,r =
∑G

i=1 S
i
t−1,r − S i

t,r − pvacV i
t,r

S i
t,r

Rnit,r+S i t,r

• κt,r : probability of going to hospital when infected at day t in

region r (→ next slide)

• τj : probability of going to hospital j days after infection (given

hospitalization, from data)

Set up the likelihood of the weekly hospitalization counts as

Hw ,r ∼ Pois
(∑

t∈w

m∑
j=0

νt−j,rκt−j,rτj

)
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Likelihood (II)

• κt,r : probability of going to hospital when infected at day t in

region r

• Changes over time

• We assume that infected drawn randomly from all susceptibles at

time t − 1

• Relative age-composition among susceptibles in region r changes

over time due to age-prioritized vaccination

• VOCs increase hospitalization probability compared to wild-type

• We assume (published) increase of hospitalization risk by 1.9 for α

and ∆ variant compared to wildtype
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Likelihood (III)

• Age-specific hospitalization risk (wildtype) from literature, adapted

to Norwegian population

• For specific age-group i , hospitalization risk day t in region r :

αi
t,r = αi,WT︸ ︷︷ ︸

risk age i, WT

(
1− (xαt,r + x∆t,r )︸ ︷︷ ︸

share of WT

+1.9 · (xαt,r + x∆t,r )︸ ︷︷ ︸
share of α and ∆

)
• κt,r is weighted sum of age-groups: κt,r =

∑
∀i α

i
t,r

S i
t,r

St,r
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Likelihood (IV)

• τj : probability of going to hospital j days after infection (given

hospitalization, from data)

Time of

infection

Z ∼ Exp(µ = 2)

Time of

symptom onset

X ∼ NegBin

Time of

hospitalization

J

τj = P(J = j) =

j∑
s=0

P(X = j − s)P(Z = s)
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Time from symptom onset to hospitalization

Distribution (normalized) of time from symptom onset to hospitalization, given

that an infected individual goes to hospital. Each line corresponds to a time

period. Black line gives the ”average” over all time periods.
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Interpretation of estimated parameters

• During model fitting we estimate large amount of parameters:

• ϕk,r (4 per region)

• υweek(t),r (75 per region)

• ϕtemp, ϕα, ϕδ

• Direct interpretation:

• eϕtemp : Mult. change in transmission prob. for a one-degree increase

in temperature

• eϕα , eϕδ : Mult. change in transmission prob. for VoC compared to

wildtype

• ϕk,r : average daily infections per infectious individual in transmission

setting k at BL activity level in region r

• υweek(t),r : daily infections per infectious at day t in region r outside

of transmission settings captured by mobility reports

• Note that ϕk,r and υweek(t),r are scaled by the multiplicative effects

on a given day
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Interpretation of estimated parameters (II)

Derived quantities:

• Based on the estimated parameters ϕk,r and υweek(t),r as well as the

observed mobility data xkt,r , we can retrospectively quantify the

share of secondary infections that can be attributed to specific

transmission setting

• For given day t and setting l in region r :
(1+x l

t,r )×ϕl,r∑K
k=1(1+xk

t,r )×ϕk,r+υweek(t),r

• Can be aggregated over multiple settings:
∑4

l=1(1+x l
t,r )×ϕl,r∑K

k=1(1+xk
t,r )×ϕk,r+υweek(t),r

• averaged over whole time-period (or even regions)

• Retrospective quantity that contains observed behaviour patterns

(no quantification of potential for reduction of transmission!)
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Results

• Implementation the model in cmdstanr

• Parameter estimation via Hamiltonian Monte Carlo

• Fit model separately to all Norwegian and all Swedish regions

• NOR: 11 fylker, SWE: 21 län

• Feb 21, 2020 - July 31, 2021 (75 weeks)

• Initialization: 0.5 infectious per 100.000 of population in each region

and age-group

• MCMC converged (4 chains, nice mixing, R̂ close to 1 for all

parameters)
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Effective reproduction number
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Effective reproduction number by Google setting
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Share of infectious contacts assigned to Google settings
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Relative contribution of Google settings at baseline
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Multiplicative effects
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Summary

• Developed principled model to analyse association of Google

community mobility reports with infection dynamics of SARS-CoV-2

in Norwegian and Swedish regions

• Depending on the region, Google mobility data explained 25-75% of

(changes) in dynamics in disease spread (linear model)

• Stronger association in SWE than in NOR

• Evidence that public transport and workplaces might play larger role

for disease spread than groceries/pharmacies and retail/recreation

(at baseline activity)

• Strong seasonality (accounted for using multiplicative effect of

temperature): ∼ 50% less transmission in summer than winter
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Limitation and Discussion

• Results depend on (strong) model assumptions:

• Linear relation between measured activity and number of contacts in

four settings

• Assumptions on SIR structure and parameters, e.g., vaccination

efficacy, recovery rate, infection-hospitalization ratio, no waning of

immunity in observation period, ...

• Small association between transmission setting and observed disease

dynamics might be related to few infections in this setting or bad

measurement quality for specific setting/region

• Google community mobility reports capture (some) changes in

population behaviour that is related to dynamics of pandemic

• Interpretation of raw numbers difficult

• More direct measurement of (absolute) population activity or

contact frequencies desirable
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The End
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