

Mohamed El Khalifi and Tom Britton

Dept of Mathematics, Stockholm University

Nordita Program - Unifying the epidemiological and evolutionary dynamics of pathogens. May 29 – June 22, 2023, Stockholm

June 2, 2023

Stochastic SIRS model with demography

- → Population of *n* individuals. Susceptible individuals born at constant rate μn , and each individual lives an exponentially distributed time with mean $1/\mu$
- ightarrow Upon infection, each infected
 - remains infectious for a duration $\sim Exp(\gamma)$
 - makes infectious contacts with each person in the population at the points of a homogeneous Poisson process with rate β/n
- ightarrow Contacted individuals, if susceptible, become infected
- ightarrow Recovered individuals are immune to further infection
- ightarrow Recovered individuals becomes susceptible after a duration $\sim {
 m Exp}(\omega)$

Notation: S(t) the number of susceptible individuals, I(t) the number of infected individuals, and R(t) the number of recovered individuals.

When *n* is large, the process (S(t)/n, I(t)/n, R(t)/n) converges to (s(t), i(t), r(t)) solution to

$$s'(t) = \mu - \beta s(t)i(t) + \omega r(t) - \mu s(t),$$

$$i'(t) = \beta s(t)i(t) - (\gamma + \mu)i(t),$$

$$r'(t) = \gamma i(t) - (\omega + \mu)r(t).$$

- Andersson H, & Britton T. (2000). Stochastic epidemic models and their statistical analysis (Vol 151). Springer New York
- Diekmann, O., Heesterbeek, H., & Britton, T. (2013). Mathematical tools for understanding infectious disease dynamics (Vol. 7). Princeton University Press.

Immunity waning in the SIRS model

Figure 1: Diagram of standard SIRS epidemic model

 \rightarrow Population and individual immunity waning!

Waning of the protection over time

Figure 2: The rates of reported infection (in July 2021) per 1000 persons.

📱 Goldberg, Yair, et al. "Waning immunity after the BNT162b2 vaccine in Israel." New England Journal of Medicine 385(24), (2021): e85.

Figure 3: Protection against omicron variant conferred by different combinations of SARS-CoV-2 infection and vaccination over time.

Bobrovitz, Niklas, et al. "Protective effectiveness of previous SARS-CoV-2 infection and hybrid immunity against the omicron variant and severe disease: a systematic review and meta-regression." The Lancet Infectious Diseases (2023).

Decay of Neutralization antibodies

Figure 4: Distribution of Antibodies 6 Months after Receipt of Second Dose of the BNT162b2 Vaccine.

Levin, Einav G., et al. "Waning immune humoral response to BNT162b2 Covid-19 vaccine over 6 months." New England Journal of Medicine 385(24), (2021): e85.

Relationship between NAb titers and protection

Figure 5: The relationship between neutralization and protection.

- Khoury, David S., et al. "Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection." Nature medicine 27(7), (2021): 1205-1211.
- Cohen, Jamie, et al. "Quantifying the role of naturally-and vaccine-derived neutralizing antibodies as a correlate of protection against COVID-19 variants." medRxiv 2021.05.31.21258018 (2021).
- Report 48 The value of vaccine booster doses to mitigate the global impact of the Omicron SARS-CoV-2 variant. Imperial College London, Dec 2021.

Contrary to the extreme assumption $R \rightarrow S$, assume that recovered individuals lose immunity gradually: Losing a portion in each step, until all immunity is lost in a total of k > 1 steps

 \rightarrow Standard SIRS (k = 1) and continuous waning model ($k \rightarrow \infty$)

Consider the stochastic SIRS setting, and

- \rightarrow Recovered individuals lose an immunity portion $\frac{1}{k}$ after an exponential time,
- ightarrow Total immunity duration e.g. is Gamma-distributed,

Notations:

- → $R_0(t)$ being the number of perfectly immune individuals, $R_1(t)$ the number of $\frac{1}{k}$ -susceptible individuals, ..., $R_k(t) (= S(t))$ fully susceptibles
- $\rightarrow\,$ We call the model a SIR $^{(k)}S$ model

Stochastic and deterministic SIR^(k)S model

Figure 6: Black line: mean of I(t)/n over 1000 stochastic simulations of an SIR⁽⁵⁾S model. Red line: deterministic path of the large population limit SIR⁽⁵⁾S model.

Gradual waning of immunity

Figure 7: Different modes of waning of immunity on individual level.

- \rightarrow Continuous waning of immunity!
- $\rightarrow\,$ Comparison of different waning by have fixed cumulative immunity.

Immunity waning in *k* steps

Figure 8: Diagram of the SIR^(k)S epidemic model.

- $\rightarrow\,$ Parametrization of the model: immunity portion to be lost, different waning rates
- ightarrow Standard SIRS (k= 1) and continuous waning model ($k
 ightarrow\infty$)

We now have three models

- Standard SIRS model
- $\cdot \ {\rm SIR}^{(k)}{\rm S}$ with linear waning of immunity
- + ${\rm SIR}^{(k)}{\rm S}$ with exponential waning of immunity

Calibration: same cumulative immunity

When there is no vaccination, **the basic reproduction number is the same**.

$$\mathsf{R}_0 = \frac{\beta}{\mu + \gamma}.$$

THE LONG-TERM PREVALENCE

Figure 9: Endemic levels from the standard model and the SIR^(k)S model with linear and exponential waning functions, for different values of R_0 .

In case $R_0 = 5$ and $\omega^{-1} = 1$ year and $\mu^{-1} = 80$ years, the exponential waning function results in **three times higher** endemic level, compared to the standard SIRS model.

With vaccination

Figure 10: Diagram of the SIR^(k)S epidemic model with vaccination.

- ightarrow Perfect vaccine with continuous waning,
- → Vaccine-induced immunity wanes just like infection induced immunity!

HERD IMMUNITY

Figure 11: Critical amount of vaccines, θ_c , needed to reach herd immunity.

Compared to SIRS model, the model with linear waning requires 55% more vaccines, and the exponential waning model requires 164% more vaccinations, when $R_0 = 5$ and $\omega^{-1} = 1$ year.

→ Previous results, e.g. Ball (1985), Britton, Ball, and Trapman (2020), proved that heterogeneity reduces the epidemic size and the critical vaccine coverage!

How can new model then result in **increase** in endemic level?

 $\rightarrow\,$ New model makes distribution more homogeneous than the extreme 0-1 immunity of SIRS

Limitation: Heterogeneity is also needed!

Heterogeneity in immunity waning

- \rightarrow Exponential waning
- \rightarrow Random waning rate, e.g. $p(\omega^{-1}) \sim$ Gamma with mean = 1 year and a standard deviation = 2 months

• For simplicity we focus on a two-point distribution, 50% of each type, such that the mean cumulative immunity remains the same ;

$$\omega_1^{-1} = \omega_0^{-1}(1 - \alpha),$$

$$\omega_2^{-1} = \omega_0^{-1}(1 + \alpha),$$

with α is the coefficient of variation of immunity distribution.

Immunity waning in the SIRS model

Figure 12: Diagram of heterogeneous SIRS epidemic model with two immune subpopulations.

The long-term prevalence

Figure 13: Endemic levels from the heterogeneous ${\rm SIR}^{(\infty)}{\rm S}$ model with exponential waning.

 \rightarrow The more heterogeneous waning (= large α) the higher endemic level

- Perfect vaccine with continuous waning ; natural- and vaccinederived immunities are the same
- Vaccination strategy: informed (immunity status is known) vs. uninformed (immunity status is unknown)!

Critical vaccine supply

Figure 14: Amount of vaccine per person per year under the uninformed situation.

- $\rightarrow\,$ The more heterogeneous waning (=large $\alpha)$ the more vaccines are required for herd immunity
- → Uninformed strategy requires more than the informed strategy! (not illustrated)

Form of optimal vaccination in informed and uninformed situation

- ts: critical vaccination time of strongly immune individuals (informed)
- + $t_{w:}$ critical vaccination time of weakly immune individuals (informed)
- tu: critical vaccination time all individuals (uninformed)

Table 1: Critical vaccination strategy when $R_0 = 5$ and $\omega = 1$, with $\alpha = .5$ in the heterogeneous waning case.

	Vaccination frequency	Dose per person per year
SIRS	15 months	0.81
Exp. waning	5.5 months	2.15
Exp. waning: informed	3.8/5.7 months	2.62
Exp. waning: uninformed	4.4 months	2.76

- An ODE model extending SIRS model to allow individual immunity to wanes in steps.
- Higher endemic levels if prevention is not put in place.
- Substantially larger vaccine supply is required for herd immunity.
- Heterogeneity in immunity waning makes the situation worse!
- Uninformed vs informed vaccination strategies
- future directions: Imperfect vaccines, Seasonality effects

- El Khalifi, M., & Britton, T. (2022). Extending SIRS epidemics to allow for gradual waning of immunity. Conditionally accepted for JRS Interface, arXiv preprint arXiv:2211.09062.
- El Khalifi, M., & Britton, T. (2023). Consequences of heterogeneity in a model with continuous waning of immunity. *Manuscript*.

Thank you