

Institut national de la santé et de la recherche médicale

MATHEMATICAL MODELS OF THE DYNAMICS OF INTERACTING PATHOGENS IN HUMAN POPULATIONS: OPPORTUNITIES AND CHALLENGES

Lulla Opatowski

Université de Versailles Saint Quentin UMR1018, Inserm/UVSQ/Paris Saclay Epidemiology and Modelling of Antibacterial Evasion, Institut Pasteur

Nordita Workshop, Stockholm, June 2023

INFECTIOUS DISEASE EPIDEMIOLOGY

- Most classically, epidemiological studies and public health policies
 - focus on one pathogen at the time
 - trends, burden, interventions

REALITY : RESPIRATORY VIRUSES

Positive cases from multiplex PCR in hospitalized patients, Valencia Community, Spain

Shirreff et al, in preparation

CO-CIRCULATION & INTERACTIONS

- Simultaneous co-circulation of many pathogens
 - Possible interactions in the environment and within hosts
- The presence of other microorganisms may alter the intrinsic properties of a given host-pathogen interaction
 - Transmission
 - Infection, replication
 - Evolution
 - Severity of infection / pathogenicity
 - Duration of infection

POTENTIAL BIOLOGICAL MECHANISMS

At the cellular-level

- 1: interactions between viral products
- 2: altered receptor presentation
- 3: cell damage (eg. receptor)
- 4: modification of immune system mediators
- 5: competition for ressources

At the host-level

- 1: symtoms =>change of transmissibility
- 2: variation in commensal microbiota
- 3: symptomatic response to infection
- 4: tissue dammage (eg. nasopharynx, lung)
- 5: competition for ressources
- 6,7: immune reponse (cell- or antibody-
- mediated

At the population-level

- 1: behavioural response to disease
- 2: medication use
- 3: vaccination behaviour

AN INDIVIDUAL-BASED MODEL OF TWO PATHOGENS IN INTERACTIONS

- Individual-based model
- 2 pathogens P_A and P_B

[Arduin et al, PAAMS 2018]

WiY2 WiY3 WiY4 W Weeks (W1Y1 = Week 1 of Year 1)

W1Y1

W1Y5

7

EXPECTED TRENDS FOR (COMMENSAL) BACTERIA

[Arduin et al, BMC infectious diseases 2017]

4 STORIES

- 1. Virus Bacteria
- 2. Virus Virus
- 3. Microbiota pathogen
- 4. Virus, interventions, surveillance

1: (RESPI) VIRUS-BACTERIA?

INTERACTIONS

INFLUENZA & BACTERIAL INFECTIONS

In flu pandemics most fatalities were due to a secondary bacterial infection : *S. pneumoniae*, *S. aureus*, *H. Influenzae or N. meningitidis*

Evidence of interactions from animal models: influenza infection predisposes to bacterial colonisation and infection

(Mc Cullers 2006; Short 2012; Lee J Infect Dis 2010; Smith 2013; Wolf 2014; Siegel 2014; McCullers 2010; Ghoneim 2013; Peltola 2006)

Inconsistent results in epidemiological studies

(Kuster 2011; Nicoli 2013; Murdoch 2009)

TRENDS OF INVASIVE PNEUMOCOCCAL DISEASES

What is the contribution of respiratory viruses in observed trends of pneumococcal epidemiology?

[Domenech et al, Am Journal of Epidemiology 2017]

AN ILI-PNEUMOCOCCUS AGE-STRUCTURED INTERACTION MODEL

3 MECHANISMS OF INTERACTION MODELLED

3 mechanisms of interaction between pneumococcus and ILI:

- Transmission θ_{β}
- Acquisition θ_{λ}
- Invasiveness (pathogenicity) θ_{α}

IMPACT OF CLIMATE MODELLED

Climate modulating

background seasonality of

- Invasiveness α
- Transmission β

ANALYSIS OF FRENCH IPDs (2000-2010), MODEL COMPARISON

Hypothesis about source of seasonality		Seasonal covariates included									
Acquisition rate	Invasion rate	Climate	Ø	Lag 0	Lag –1	Lag –2	Lag –3	Lag –1	Lag –1	Lag –1	
		ILIs	Ø	Ø	Ø	Ø	Ø	Lag —1	Lag 0	Lag 0	ILIs lag
		ILI Interaction parameters	Ø	Ø	Ø	Ø	Ø	All	All	All, age- specific θ_{α}	ILIs Interaction parameters
Background seasonality	Ø	$\frac{\text{AIC}}{\log L}$ $\frac{n_{\theta}}{R^2}$	15252.1 -7612.1 14 0.72	15078.1 -7523.1 16 0.76	15112.7 -7540.4 16 0.75	15175.5 -7571.8 16 0.74	15207.5 -7592.7 16 0.73	_	_	_	
Ø	Background seasonality	$\frac{\text{AIC}}{\log L}$ $\frac{n_{\theta}}{R^2}$	15211.2 -7591.6 14 0.72	15162.1 -7565.1 16 0.74	15079.9 -7524.0 16 0.76	15097.3 -7532.7 16 0.75	15172.9 -7570.5 16 0.73	14965.9 -7463.9 19 0.76	14917.5 -7439.7 19 0.77	14890.2 -7424.1 21 0.78	
Background seasonality	Background seasonality	$\frac{\text{AIC}}{\log L}$ $\frac{n_{\theta}}{R^2}$	15180.4 -7575.2 15 0.73	15079.4 -7522.7 17 0.75	15011.8 -7488.9 17 0.77	15049.9 -7508.0 17 0.75	15133.4 -7549.7 17 0.74	14900.2 -7430.1 20 0.78	14854.6 -7407.3 20 0.78	14837.2 -7396.6 22 0.78	
Term-time seasonality	Background seasonality	$\frac{\text{AIC}}{\log L}$ $\frac{n_{\theta}}{R^2}$	15145.5 -7558.7 14 0.73	15096.3 -7532.1 16 0.74	15010.0 -7489.0 16 0.76	15027.7 -7497.8 16 0.75	15105.5 -7536.7 16 0.74	14906.3 -7434.1 19 0.77	14858.6 -7410.3 19 0.78	14826.6 -7392.3 21 0.78	
Background and term-time seasonalities	Background seasonality	$\begin{array}{c} \text{AIC} \\ \log L \\ \\ \hline n_{\theta} \\ R^2 \end{array}$	15115.8 -7542.9 15 0.73	14996.8 -7481.4 17 0.76	14935.8 -7450.9 17 0.77	14981.1 -7473.6 17 0.76	15066.1 -7516.1 17 0.74	14835.3 -7397.7 20 0.78	14790.9 -7375.4 20 0.79	14773.6 -7364.8 22 0.79	
							· · · · · · · · · · · · · · · · · · ·				

[Domenech de Celles et al., PNAS 2019]

ANALYSIS OF FRENCH IPDs (2000-2010), MODEL COMPARISON

Hypothesis about source of seasonality		Seasonal covariates included								
		Climate	Ø	Lag 0	Lag –1	Lag –2	Lag –3	Lag –1	Lag –1	Lag —1
Acquisition rate	Invasion rate	ILIs	Ø	Ø	Ø	Ø	Ø	Lag –1	Lag 0	Lag 0
Estimates:		ILI Internation	Ø	Ø	Ø	Ø	Ø	All	All	All, age- specific θ _α
•	15207.5 -7592.7 16 0.73	_	_							
•	• [5; 6 • [60+	15172.9 -7570.5 16 0.73	14965.9 -7463.9 19 0.76	14917.5 -7439.7 19 0.77	14890.2 -7424.1 21 0.78					
•	15133.4 -7549.7 17 0.74	14900.2 -7430.1 20 0.78	14854.6 -7407.3 20 0.78	14837.2 -7396.6 22 0.78						
• $\Theta_{\beta} = 1.0 [1.0, 3.3]$								14906.3 -7434.1	14858.6 -7410.3	14826.6 -7392.3
seasonality	seasonality	$\frac{n_{ heta}}{R^2}$	14 0.73	16 0.74	16 0.76	16 0.75	16 0.74	19 0.77	19 0.78	21 0.78
Background and term-time seasonalities	Background seasonality	$\begin{array}{c} \text{AIC} \\ \log L \\ \hline n_{\theta} \\ R^2 \end{array}$	15115.8 -7542.9 15 0.73	14996.8 -7481.4 17 0.76	14935.8 -7450.9 17 0.77	14981.1 -7473.6 17 0.76	15066.1 -7516.1 17 0.74	14835.3 -7397.7 20 0.78	14790.9 -7375.4 20 0.79	14773.6 -7364.8 22 0.79

PERSPECTIVES

- Evidence of interaction between Influenza and Pneumococcus, that depends on age
- Suggest that interventions targeting the virus can impact bacterial epidemiology
 - Currently working on investigating the impact of (antiviral) vaccine on IPDs and antibiotic resistance

CHALLENGE : DATA

- Limited to analysis of ecological data (incidence data)
- Still very little (no) data of co-carriage/infection available in populations
- New technologies allowing for testing several pathogens at the same time
 - Multiplex PCR that can test for >15-20 pathogens on a single test
 - Technologies for the detection and quantification of respiratory pathogens directly from clinical specimens
 - Metagenomics, microbiota

2: (RESPI) VIRUS-VIRUS ?

INTERACTIONS

INTERACTIONS IN INFLUENZA?

Table 2. Viruses that may be affected by interaction with influenza.

Virus	Study system	Effect	Illustrative publications
RSV	Population incidence	Competitive	Anestad 2007 [190]; Anestad 2009 [191]; Casalegno 2010 [77]; Anestad 1987 [192]; Yang 2012 [79]; Nishimura 2005 [193]; Glezen 1980 [76]; Pascalis 2012 [83]; Yang 2015 [67]; van Asten 2016 [194]; Meningher 2014 [195]; Velasco-Hernandez 2015 [117]
		Neutral	Navarro-Mari 2012 [68]
	Coinfection detection	Competitive	Greer 2009 [84]; Martin 2013 [196]
	Laboratory investigation	Competitive	Shinjoh 2000 [197]
Rhinovirus	Population incidence	Competitive	Casalegno 2010 [66]; Casalegno 2010 [77]; Pascalis 2012 [83]; Linde 2009 [198]; Anestad and Nordbo [199]; Cowling 2012 [65]; Yang 2015 [67]
		Neutral	Yang 2012 [79]; Navarro-Mari 2012 [68]; van Asten 2016 [194]
	Coinfection detection	Competitive	Tanner 2012 [200]; Mackay 2013 [201]; Nisi 2010 [86]; Greer 2009 [84]; Martin 2013 [196]
	Laboratory investigation	Competitive	Pinky and Dobrovolny 2016 [112]
Influenza	Population incidence	Competitive	van Asten 2016 [<u>194</u>]
	Coinfection detection	Competitive	Nisii 2010 [<u>86</u>]; Sonoguchi 1985 [<u>56</u>]
	Laboratory studies	Competitive	Easton 2011 [202]; Laurie 2015 [57]
HPIV	Population incidence	Competitive	Yang 2012 [67]; Anestad 1987 [192]; Yang 2015 [67]
		Neutral	Mak 2012 [78]
	Coinfection detection	Competitive	Pascalis 2012 [83]
		Neutral	Murphy 1975 [85]; Nisii 2010 [86]; Greer 2009 [84]; Martin 2013 [196]
	Laboratory investigation	Synergistic/ Facilitating	Goto 2016 [203]

Abbreviations: HPIV, human parainfluenza virus; RSV, respiratory syncytial virus.

Opatowski et al., Plos Pathogens 2018

AND IN SARS-COV-2?

- Large heterogeneity across the studies reviewed
- Evidence that coinfection with IAV and SARS-CoV-2 causes more severe disease than monoinfection with either virus

Epi evidence :

- Coinfection prevalence is largely variable
- Influenza vaccines may be associated with reduced risk of SARS-CoV-2
- Earlier influenza infection may be associated with increased risk of SARS-CoV-2 infection and disease severity

Fig 3. Summary results from animal studies assessing the effect of coinfection with SARS-CoV-2 and influenza A virus (IAV) on disease severity. [44-

ESTIMATING THE IMPACT OF INFLUENZA ON SARS-COV-2 EPIDEMIOLOGY

Matthieu Domenech de Cellès

- Early phase of the outbreak overlap with the end of the flu epidemics in Europe
- Flu-SARS-CoV-2 transmission model including a range of assumptions about the impact of influenza, and accounting for interventions (stringency index)

Quantity	Belgium	Italy	Norway	Spain	
Study period (year 2020)	13 Feb-28 Jun	29 Jan-28 Jun	25 Feb-28 Jun	06 Feb-28 Jun	
Log-likelihood (SE)	-383.2 (<0.1)	-669.1 (<0.1)	-160.8 (<0.1)	-558.8 (0.1)	
Basic reproduction number (R_0)	3.3	2.0	2.3	2.0	
	(2.0, 4.0)	(2.0, 2.3)	(2.0, 2.7)	(2.0, 2.6)	
Impact of control measures (b)	1.02	0.76	1.07	0.89	
	(0.90, 1.06)	(0.75, 0.81)	(0.94, 1.09)	(0.88, 0.96)	
Average relative variation in SARS- CoV-2 transmission rate associated with influenza $(e^{\beta F})$	1.9 (1.5, 2.8)	2.4 (2.2, 2.7)	2.1 (1.2, 2.8)	2.5 (2.1, 3.1)	
Initial number exposed to SARS-CoV-	60	40	50	130	
2 (E ₁ (0))	(10, 100)	(15, 85)	(80, 1550)	(45, 540)	
Proportion infected, as of 4 May 2020	8.1	6.1	0.4	5.5	
(%)	(6.1, 10.5)	(4.2, 8.3)	(0.3, 0.6)	(4.4, 6.6)	

ANALYSE SIMULTANEOUSLY VIRUS TRENDS USING A 2-VIRUS MODEL

George Shirreff

Shirreff et al, in preparation

3. MICROBIOTA'S IMPACT ON ACQUISITION

MECANISTIC HYPOTHESES (ON ANTIBIOTIC RESISTANT BACTERIA)

David Smith

(Pamer, Science 2016)

- 1. Commensal bacteria can help / hinder acquisition / colonization dynamics of pathogens
- 2. Antibiotics and drugs in general can disrupt commensal flora, by extension any interactions that occur between flora and pathogens

A MODEL FOR MICROBIOME-PATHOGEN CO-COLONIZATION

- Compartmental ODE model
- Patient population in healthcare setting
- Drug use (q_a)
 - Proportion of patients receiving antibiotics
- Drug resistance (q_r)
 - Proportion of antibiotics against which pathogen resistant

MODELLED INTERACTIONS

Reduced pathogen force of infection (λ)

Eg. Bifidobacteria bacteriocins inhibit *C. difficile* and *E. coli* colonization

Affected pathogen clearance rate (γ)

<u>Eg.</u> Bacterioides bacteriocins reduce colonization duration in *E. faecalis, Listeria spp.;* Bacterioides metabolites enhance colonization duration in *E. coli*

Pacheco et al. Nature 2012 Kamada et al. Nat Rev Immunol 2013

4. Ecological Release (ϕ)

Enhanced endogenous acquisition rate (α)

Eg. C. scindens bile acids prevent outgrowth of subdominant C. difficile colonies

Buffie et al. Nature 2014

Buffie & Pamer Nat Rev Immunol 2014

5.HORIZONTAL GENE TRANSFER (HGT)

HGT especially important among Gramnegative pathogens (ESBL-Enterobacteria)

APPLICATION TO BACTERIAL SPECIES

Different types of ecological interactions, different colonisation dynamics

- Between-host transmission: MRSA
- Endogenous acquisition: enteric bacteria
- HGT: potentially important for Enterobacteria

4: IMPACT OF MULTI-X IN TERMS OF PUBLIC HEALTH

INTERACTIONS & INTERVENTIONS

CO-CIRCULATION & PUBLIC HEALTH IMPACT

Impact on surveillance

- Surveillance disrupted
- Health care system saturated
- Change behaviours
 - Access to care
 - Drug exposure
 - Testing etc...

Indirect impact of interventions

 Interventions targeting one pathogen can modify transmission of others

The Journal of Infectious Diseases

MAJOR ARTICLE

BIDSA hıvma

The Impact of Cocirculating Pathogens on Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)/ Coronavirus Disease 2019 Surveillance: How Concurrent Epidemics May Introduce Bias and Decrease the Observed SARS-CoV-2 Percentage Positivity

Aleksandra Kovacevic,¹² Rosalind M. Eggo,¹⁴ Marc Baguelin,¹⁴⁵ Matthieu Domenech de Cellès,⁶ and Lulla Opatowski¹² ¹Epidemiology and Modelling of Antibiotic Evasion, Institut Pasteur, Paris, France, ⁷Anti-Infective Evasion and Pharmecoepidemiology Team, CESP, Université Paris-Saclay, Université de Versailles

Epoemong was includent concerning in manufacture and in the second secon

Aleksandra Kovacevic

IMPACT ON SURVEILLANCE

 COVID-19 surveillance indicators may be impacted by increased co-circulation of other respiratory viruses delaying control measure implementation

 Objective: assess impact on the monitoring of positivity rates of SARS-CoV-2 and interpretation of surveillance data

TWO-VIRUS MODEL

- Neutral interaction assumed
- Testing model
 - Focus on symptomatic tests
 - Symptomatic individuals infected with SARS-CoV-2 (T_{COV})
 - Contact tracing delay, d in days, (T_{CONTACTS});
 - Symptomatic individuals infected with virus-2 (T_{V2});
 - Baseline number of symptomatic tests (T_b)

- Testing strategies investigated
 - Standard SARS-CoV-2 RT-PCR (sensitivity spcr)
 - Multiplex PCR (testing for virus2) in a subsample of individuals (sensitivity s_m)

$$T(t) = T_b + T_{COV}(t) + T_{CONTACTS}(t-d) + T_{V2}(t)$$

SIMULATION STUDY AND CORRECTION

В

A 25,000

SARS-CoV-2 test demand (symptomatic): 60,000 Circulating pathogens: 1. Baseline testing (Tb) SARS-CoV-2 2. SARS-CoV-2 Virus-2 3. Contact tracing 20,000 50,000 4. Virus-2 of people 40,000 \$150 20 ercent of increa: Number 9 Number Number 20,000 Multiplex testing can 5,000 \Rightarrow co-circulation can bias help correct surveillance 10,000 surveillance and data interpretation Aug 24 Aug 31 Sept 7 Sept 14 Sept 21 Surveillance Aug 24 Aug 31 Sept 7 Sept 14 Sept 21 Sept 28 Oct 05 Oct 12 Oct 19 Surveillance week С₃₆₁ \Rightarrow Suggest that n m=0.1% = 1 multiplex test 360.000 Circulating pathogens: Data from France: 34 340,000 surveillance system SARS-CoV-2 (True percent positive) for every 1,000 Cumulative hospitalizations in F 32 320,000 SARS-CoV-2 and virus-2 (Observed percent positive) SARS-CoV-2 percent positive can be easily adapted SARS-CoV-2 and virus-2 (Corrected percent positive using multiplex PCR assays) 30 300,000 symptomatic tests D 280,000 Percent positive (%) to correct for it N 260,000 => correction that closely 240,000 follows real percent 0 220,000 09/01/2020 £200,000 virus-2 introduction positive of SARS-CoV-2 09/01/2020 180,000 school reopening 18 § 160,000 \overline{O} 140,000 12 120,000 100,000 10 80.000 Aug 24 Aug 31 Sept 7 Oct 12 Oct 19 Aug 31 Sept 7 Sept 14 Sept 21 Sept 28 Oct 05 Oct 12 Oct 19 Sept 14 Sept 21 Sept 28 Oct 05 Surveillance Week Surveillance week [Kovacevic et al JID 2021]

SUMMARY OF RESULTS

- Interactions in cocirculating pathogens can alter the natural epidemiology of pathogens
 - 1. Evidence of interaction at the population level between Influenza and Pneumococcus, that depends on age
 - 2. Evidence of non neutral interaction between viruses to be explored further
 - 3. Bystander impact of interventions application to COVID19 pandemic

AND I DID NOT MENTION...

- Within-species diversity and interactions between subtypes, serotypes, genotypes etc...
 - Influenza
 - HPV
 - Pneumococci
 - Etc...

A MODELLING CHALLENGE: FORMALIZING MULTIPLE PATHOGENS IN INTERACTION

• Translating from a single host to population

Model of pneumonia transmission by Shrestha et al, 2013

Model of multiple genotypes, coupling the within-host and between-host scales by Sofonea et al, 2015

OPPORTUNITY AND CHALLENGES

- Controlling one virus can affect the dynamics of circulating pathogen and lead to beneficial / detrimental outcome
- Considering interactions => better evaluation and anticipation global impact of public health measures

Challenges

- Better knowledge of interactions needed : identification, strength, excess cases
- Complex models, inference questions
- Needs for data !

COLLABORATORS

Institut Pasteur / UVSQ / INSERM:

Aleksandra Kovacevic George Shirreff Matthieu Domenech de Cellès Hélène Arduin David Smith, Laura Temime Didier Guillemot Laurence Watier

<u>INSERM, Sentinelles</u>: Pierre-Yves Boëlle Cécile Souty

London: Marc Baguelin (Imperial College) Roz Eggo (LSHTM) <u>CNR Pneumococcus</u>: Emmanuelle Varon Marie-Cécile Ploy

<u>CNR Influenza</u>: Sylvie van der Werf

Santé Publique France: Daniel Levy-Bruhl

<u>OSCOUR</u>

<u>ACTIV</u>

OpenRome

UNIVERSITÉ DE VERSAILLES ST-QUENTIN-EN-YVELINES UNIVERSITÉ PARIS-SACLAY

