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Background

« WNV is a flavivirus with an almost global distribution
« Transmitted by mosquitoes (mainly genus Cu/ex)

« Birds (mainly passerines) are the reservoir hosts

« Humans, equids, other mammals are dead-end hosts

 Infection in reservoir and dead-end host can result in severe disease
~25% of human infections develop into West Nile fever
~1% develop neuroinvasive disease which carries 10% CFR

« No pharmaceutical prevention or treatment options for human infections
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History and recent expansion of WNV

* First human case observed in West Nile district in
Uganda 1937
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« Until early 90s sporadic cases and outbreaks in Africa,
Eurasia, and Middle East
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Affected Regions
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On the rise during recent decades:
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* |Introduction to Americas in 1999

* Expansion and intensification in Europe since late 1990s ° N
« Strong evidence that changes in climate can create Source: Farooq et al. 2022

more suitable conditions driving and facilitating such
processes



Role of models in WNV research

Process-based dynamical models

Biological/Ecological mechanisms

Simulation of outbreaks and seasonal patterns

Testing of hypotheses

Can directly incorporate interventions

Highly interpretable but hard to build and parameterize

Data-driven statistical & machine learning models

Build associations between predictors and disease occurrence
Good at predicting presence/absence
Can be hard to interpret

Both provide means for

Early-warning systems
Climate change trend estimates & projections

vertical

Source: Ewing et al. 2019
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WNV transmission cycle - a first simple dynamical model -
Reservoir hosts Birds . S B
Sp=NAp—a bB‘IM'N——ﬂBSB
B
’* Sp
-‘( Ip =a- bg IM'N——VBIB—MBIB
B

RB = yplp — UupRp

Bridge vectors

Vectors B
Sm =AM—a‘bM‘PB‘SM'N—B—HM5M

1 . i

Iy = aEy — umlm

Parameters

Ay, Mosquito birth rate Ag: host recruitment rate
a: biting rate pgp: host competence

b, vector competence bg: host susceptibility
uy: vector mortality rate ug: host mortality rate

1/a: extrinsic incubation period ¥s: host recovery rate



Hosts

Mosquitoes

Basic reproduction humber

Differential equation system

Sp
Sp=Ag—a-bg-Iy- N——.UBSB
B
Sgp
Ip =a-bg IM'N——VBIB—HBIB
B
Rg = yglz — ugRp

Ip
SM_AM_a by - g - Su - N—B—.UMSM

I
Ev=a- by -pp-Su- N—B—(a+HM)EM
Iy = aEy — uyly

N*
a?bypgbgpE'? L N

Spectral radius of K: Ry =

N (vst+ug)

“New infections per generation”

UNIVERSITAT
HEIDELBERG
ZUKUNFT
SEIT 1386

Next generation matrix

abgp®'?  abg]
Um Upm
_ N*
K = abMpB N* 0
YB T Up
0 0 0 -
* * * AM
DFE: (N N N; =28 , Ny = —
( B O;O; M 0,0), B 1B M Y
. . .EIP _ & . EIP _ _—
prob. to survive latent: p='* = iy o Olso common: p=t = e HMt
Ny Ny
2 a2y, ppbypE!? N"B;’ aby P Nl‘f abeEIP
R2 = —
up (Yet+ip) Y + Up Um

“New infections per cycle”
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My project

Central incentive: Model of seasonal WNV transmission in Europe
Key goals

* Incorporate established biological mechanisms

* Include known & suspected climatic (and land cover) drivers

* Process-based model to study seasonal patterns, interventions, and climate

change impacts
« Pay attention to avian hosts ecology
—~>Role of host mobility~?

Building blocks

« Mosquito population model

« Bird population model

« Local transmission model

e Movement model



Challenges in modeling WNV dynamics
* Birds
« Mosquitoes
« Climate sensitivity



Challenges 1: Birds

Who is to blame?
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» early studies focused on host species abundance, host
infectiousness/competence, and serology

* |ater it became clear that these factors alone can be
misleading

* missing component: mosquito host/biting preference!

> Preferred species can act as sink or source of
transmission depending on their host competence

* information about the decisive factors: abundance,
competence, and mosquito biting preference only
available for few species and locations

10



The problem with host competence
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* |t is common practice to calculate host competence from species’ viraemia profile and generalized

viraemia-infectiousness relationships
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» Based on these host competence indices phylogenetic imputation has been used to predict

community competence

« Unfortunately

Predicting West Nile virus transmission

in North American bird communities using
phylogenetic mixed effects models and eBird
citizen science data

Morgan P. Kain'"® and Benjamin M. Bolker'?

PLOS
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Bird species define the relationship between
West Nile viremia and infectiousness to Culex
pipiens mosquitoes
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Avian host species 2  Avian host species 1

Mosquitoes

General model with preferred host species

. . O-BMSBM

Sy = Mgy, — - bpy, Iy 05, Ng, + Ng, — UBySBy,
. Op SB

Iy, =a-bg, I - e + I
By By "M o5, Ng, + Ng, (VBM liBM) Bum

RBM = YBMIBM _MBMRBM

Sg. = A by -1 i S
Bp — App — A~ BR'M'O_B N, + N, — UBR9Bp

M M R
. S
Ig, =a-bg, Iy - °R — (VeptUB) B,
O'BMNBM + Ng,,
RBR _yBRIBR _MBRRBR

: P8y 98y, 1B, T PBRlB
S — A —a- b 'S . M M M R R _Il
M M M M O-BMNBM +NBR
og. I + I
pBM By*By pBR BpRr . (a +l,[M)EM
O'BMNBM + Ng,,

MSM

E

=a.bM.S’M.
I = aEy — tmly

og,, > 1 2 Species 1 preferred by mosquitoes
og,, < 1> Species 2 preferred by mosquitoes

Basic reproduction number
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Host ecology - model host population

Ng, = B, ()N, — (dBR + hp, (¢, NB)) Ng,
Ng,, = () + Bg,,(t)Ng,, — (dBM + hg,,(t, NB)) Ng,, — Qg(D)Npg,,
Ng(t) = Ng, (t) + Ng,, (t)
- Differentiate resident Ng, & migratory Ng,, populations
« Birds in temperate regions only breed in spring and summer
- Bx(t) should capture seasonal birth pulse
* hy(.) describe density-dependent mortality
- usually highest during breeding season
- likely depends on local resource avail. (land cover etc.)
o (1), Qg(t) are immigration and emigration, resp.
- represent seasonal migration (pulse in spring/fall)

* Local movements (where do species really co-occur)?
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Large scale
movement

Reproduction



Simulation of hypothetical scenario: Migration of preferred bird species slows
down outbreak and shifts mosquito bites

infectious migratory birds

effective reproduction number
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Bigger picture - Large scale seasonal migrations of birds

* Twice a year millions of birds migrate in response to biological needs

* Provides mechanism to spread pathogens along migration routes

 Shifts to species distribution and abundance can impact local

transmission

Impact on WNV?

It is unclear... but:

Reintroductions of WNV to temperate regions likely not needed for
seasonal transmission

Impacts on local transmission have been observed
Phylogenetic studies show rapid “long”-distance movements

Likely played a role in rapid dissemination of WNV in North America and
might act in synergy with climate change in Europe

Black Sea Flyway
\ Other routes

Source: Lu et al. 2023
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Modeling bird migrations
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B

BirdFlow: Learning seasonal bird movements from eBird data
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Data Loss Function Model Structure
Weekly distributions L (u(e)) = — -
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Validation
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specific abundance data
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RESEARCH ARTICLE

A spatio-temporal individual-based network
framework for West Nile virus in the USA:
Spreading pattern of West Nile virus

Sifat A. Moon®', Lee W. Cohnstaedt?*, D. Scott McVey?, Caterina M. Scoglio’

1 Department of Electrical & Computer Engineering, Kansas State University, Manhattan, Kansas, United
States of America, 2 Arthropod-Borne Animal Diseases Research Unit, Center for Grain and Animal Health
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* Lee.Cohnstaedt@ARS.USDA.GOV

Network model based on dispersal
kernel and knowledge about location
of migration routes
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Challenges 2: Mosquitoes

Various mosquito species identified as competent to transmit
WNV including species from genus Aedes and Culex

Only Culex considered primary vectors of WNV due to
mamalophilic biting of Aedes species

Despite predominantly ornithophilic Cu/ex also considered
main bridge vectors

Within Cu/ex genus species differ in their characteristics and
behavior (e.g., habitat, diapause, biting)

Even within intraspecific differences can be significant (e.g.,
Culex pipiens biotype pipiens vs biotype molestus)

Hybrid populations can develop their very own
characteristics as well

- Such heterogeneities often neglected in models

17
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Modeling mosquito population dynamics

Life Cycle of Culex species

W * Mosquito life cycle divided into life stages characterized
e L e \ by different environments and biological needs

« Juvenile stages aquatic, Adult stages flying

« Larva compete for space and resources
. * Adults can enter dormancy
Source: CDC Factsheet
Typical age-structured ODE-model . Life-history parameters often derived from lab studies

. - Mismatch between lab and field
E=p M+ Mpyg) — pgE — OgE

i = 68,E— L — f(L)L — 68,1 - Density-dependent effects often not accounted

P=35,L —upP — 8pP  Density in juvenile stage also impacts development rates,
M = wépP — uyyM — ¢pM adult size, adult fecundity ..
My = oM — oMy * Inreal settings very hard to describe due to variations in

M,,= oM, — M
pd a = Kapapd land cover, nutrients, breeding site availability, species

- Very sensitive to environmental fluctuations 18
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Challenges 3: Climate sensitivity

Mosquito Development Rate (MVDR)

VeCtors & pathogen - Temperature 0.15 | Ao Cx. pipiens 4

—e— Cx.quinque. ¢°®
—e— Cx. tarsalis®

« Mosquitoes are ectotherms
- Temperature directly impacts life-history traits

Rate (day )
Survival probability

» Species-specific!

 Temperature also modulates replication of virus inside

Rate (day™)
Time (days)

mMmosquitoes
—> Extrinsic incubation period and vector competence

H U m ld It g Temperature (°C) Temperature (°C)

Source: Shocket et al. 2020

« Known to impact vector lifespan and biting rate
5 LETTERS [ RV

« When considered often treated as independent of —
temperature but response to high temperatures likely

depends on desiccation (wet vs dry heat)

Humidity — The overlooked variable in the thermal biology of
mosquito-borne disease

Joel J. Brown' | Mercedes Pascual’ | Michael C. Wimberly® | LeahR. Johnson*
Courtney C. Murdock’

19



UNIVERSITAT
HEIDELBERG
ZUKUNFT
SEIT 1386

Water body availability

« Mosquitoes depend on aquatic breeding sites for egg laying
& juvenile development

« Human water storing behavior complicates the picture “,‘Q’a’a ///-\\‘\\ ..
g s %%
« Negative impacts of heavy rainfall vi ‘\‘%% f;«“i/l “‘g\‘\%
82 % ) 12\ %3
* Precipitation can impact vector-host contact rates §s ‘\\ sjj', ‘\i \\0%%’*
8\
* Drought can benefit larval development by disrupting food- E‘r‘;edm;‘\ //l “‘ \‘\
web structures and concentrate nutrients in remaining water Ea@;lmu'g; ===t 'Heavyram‘
Rainfall
pools ) >

Source: Caldwell et al. 2021

Sunlight hours

« Regulates proportion of adult mosquitoes in diapause

Further impacts of windspeed ...

20
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Rate (d

Rate (day‘1)

Incorporate response of parameters in the model (diapause neglected)
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Source: Shocket et al. 2020

val probability

Survi

Time (days)

Larval-to—-Adult Survival (pLA)

Temperature (°C)

Mosquito population

E = B(T)(A+ Apg) — ug(T)E — 8g(T)E

L = 65(T)E — pu (T)L — f(L,W)L — §,(T)L
P =6,(T)L — up(T)P — &p(T)P

M = wép(T)P — uy (T, H)M

Disease transmission

| Sg

Sp = Ap —a(T»H)'bB'IM‘N——ﬂBSB
B

| Sg

Ig =a(T,H)-bg Iy -——velg — uplp

Ng
Rp = yplp — ugRp
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. I
Sy = w8p(T)P — a(T, H) - by (T) - Sy N—B — (T, H)Sy

B

) I
Ey = a(T,H) - by (T) - Suy * 1= = (@(T) + pay (T, ) Eyy

B

Iv = aEy — uy (T, H)Iy

T: Temperature, W: Water avail, H: Humidity
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Relative Ry
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Application examples

« Seasonal dynamics of vector populations and impact on transmission

* Incorporate response of parameters into Ry

a(T)2by (Tbyp?* (1) 2 ll)
- climatic/environmental transmission suitability measure Ry(T) = Ny

v (T)(ys+us)

WNV in 4 Cx. vectors

average relative RO August 2022 Germany Yearly average relative RO Germany
0.081
0.80
. 0.061
— ; 0.60 o
ﬁ (0]
£ 0.041
—+ 0.40 °
. 1 0.20 0.02
10 5 20 25 30 35 L 000
Temperature (°C)

Source: Shocket et al. 2020
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Avian hosts & climate

« Climatic changes known to impact
« Migratory behavior, timing and routes

» Bird populations composition and species abundance ..

« To best of my knowledge these impacts are currently only
incorporated phenomenologically in WNV models

23



Summary of main challenges

« Host heterogeneity + lacking knowledge on their role in amplification
- Impact of (species-specific) host ecology on transmission very hard to study

« Vector diversity further complicates parameterization of models

« Climate sensitivity beyond the temperature-vector-pathogen relationship not understood in
depth

- Many aspects are understood phenomenologically but not mechanistically and not

quantified!

Is West Nile unpredictable?

Maybe not if we truly account for the multi-disciplinarity of the problem
- Better data and collaboration is needed
- Human-centered approach likely not sufficient



Thank you!
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