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Background
• WNV is a flavivirus with an almost global distribution

• Transmitted by mosquitoes (mainly genus Culex)

• Birds (mainly passerines) are the reservoir hosts

• Humans, equids, other mammals are dead-end hosts

• Infection in reservoir and dead-end host can result in severe disease
~25% of human infections develop into West Nile fever
~1% develop neuroinvasive disease which carries 10% CFR 

• No pharmaceutical prevention or treatment options for human infections
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History and recent expansion of WNV

• First human case observed in West Nile district in 
Uganda 1937

• Until early 90s sporadic cases and outbreaks in Africa, 
Eurasia, and Middle East

• On the rise during recent decades: 
• Introduction to Americas in 1999 

• Expansion and intensification in Europe since late 1990s

• Strong evidence that changes in climate can create 
more suitable conditions driving and facilitating such 
processes
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Role of models in WNV research 
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Process-based dynamical models
• Biological/Ecological mechanisms 
• Simulation of outbreaks and seasonal patterns
• Testing of hypotheses 
• Can directly incorporate interventions
• Highly interpretable but hard to build and parameterize

Data-driven statistical & machine learning models
• Build associations between predictors and disease occurrence
• Good at predicting presence/absence
• Can be hard to interpret

Both provide means for
• Early-warning systems
• Climate change trend estimates & projections

Source: Ewing et al. 2019



WNV transmission cycle – a first simple dynamical model
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Parameters
Λ!: mosquito birth rate
a: biting rate
𝑏!: vector competence
𝜇!: vector mortality rate
1/𝛼: extrinsic incubation period

Λ": host recruitment rate
𝑝": host competence
𝑏": host susceptibility
𝜇": host mortality rate
𝛾": host recovery rate



Basic reproduction number
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My project
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Central incentive: Model of seasonal WNV transmission in Europe 
Key goals

• Incorporate established biological mechanisms 
• Include known & suspected climatic (and land cover) drivers

• Process-based model to study seasonal patterns, interventions, and climate 
change impacts

• Pay attention to avian hosts ecology
àRole of host mobility? 

Building blocks
• Mosquito population model
• Bird population model
• Local transmission model

• Movement model
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Challenges in modeling WNV dynamics 
• Birds
• Mosquitoes
• Climate sensitivity



Challenges 1: Birds

• early studies focused on host species abundance, host 
infectiousness/competence, and serology

• later it became clear that these factors alone can be 
misleading 

• missing component: mosquito host/biting preference!

àPreferred species can act as sink or source of 
transmission depending on their host competence

• information about the decisive factors: abundance, 
competence, and mosquito biting preference only 
available for few species and locations

10

Who is to blame?

𝑅# =
𝑎$𝑏!𝑏"𝑝%&'

𝑁!∗
𝑁"∗

𝜇!(𝛾"+𝜇")



• It is common practice to calculate host competence from species’ viraemia profile and generalized 
viraemia-infectiousness relationships

• Based on these host competence indices phylogenetic imputation has been used to predict 
community competence

• Unfortunately
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The problem with host competence



General model with preferred host species
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Host ecology – model host population

13

𝑁̇!% = 𝛽!% 𝑡 𝑁!% − 𝑑!% + ℎ!% 𝑡, 𝑁! 𝑁!%

𝑁̇!$ = Ω. 𝑡 + 𝛽!$ 𝑡 𝑁!$ − 𝑑!$ + ℎ!$ 𝑡, 𝑁! 𝑁!$ − Ω/ t 𝑁!$
𝑁! 𝑡 = 𝑁!% 𝑡 + 𝑁!$ (𝑡)

• Differentiate resident 𝑁!% & migratory 𝑁!$ populations

• Birds in temperate regions only breed in spring and summer

à 𝛽0(𝑡) should capture seasonal birth pulse

• ℎ0 . describe density-dependent mortality 

à usually highest during breeding season 

à likely depends on local resource avail. (land cover etc.)

• Ω.(𝑡), Ω/(𝑡) are immigration and emigration, resp.

à represent seasonal migration (pulse in spring/fall) 

• Local movements (where do species really co-occur)?

Large scale 
movement

Reproduction

Death
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Simulation of hypothetical scenario: Migration of preferred bird species slows 
down outbreak and shifts mosquito bites
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Bigger picture – Large scale seasonal migrations of birds

• Twice a year millions of birds migrate in response to biological needs

• Provides mechanism to spread pathogens along migration routes

• Shifts to species distribution and abundance can impact local 
transmission

Impact on WNV?

It is unclear… but:
• Reintroductions of WNV to temperate regions likely not needed for 

seasonal transmission

• Impacts on local transmission have been observed 

• Phylogenetic studies show rapid “long”-distance movements

• Likely played a role in rapid dissemination of WNV in North America and 
might act in synergy with climate change in Europe

Source: BirdLife International

Source: Lu et al. 2023



Modeling bird migrations
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Markov model derived from species-
specific abundance data Network model based on dispersal 

kernel and knowledge about location 
of migration routes



Challenges 2: Mosquitoes

• Various mosquito species identified as competent to transmit 
WNV including species from genus Aedes and Culex

• Only Culex  considered primary vectors of WNV due to 
mamalophilic biting of Aedes species

• Despite predominantly ornithophilic Culex also considered 
main bridge vectors

• Within Culex genus species differ in their characteristics and 
behavior (e.g., habitat, diapause, biting)

• Even within intraspecific differences can be significant (e.g., 
Culex pipiens biotype pipiens vs biotype molestus)

• Hybrid populations can develop their very own 
characteristics as well

à Such heterogeneities often neglected in models
17



Modeling mosquito population dynamics 

18

𝐸̇ = 𝛽 (𝑀 +𝑀)*) − 𝜇%𝐸 − 𝛿%𝐸
𝐿̇ = 𝛿%𝐸 − 𝜇+𝐿 − 𝑓(𝐿)𝐿 − 𝛿+𝐿
𝑃̇ = 𝛿+𝐿 − 𝜇'𝑃 − 𝛿'𝑃
𝑀̇ = 𝜔𝛿'𝑃 − 𝜇!𝑀 − 𝜙𝑀
𝑀̇* = 𝜙𝑀 − 𝜎𝑀*
𝑀̇)* = 𝜎𝑀* − 𝜇!+,𝑀)*

Source: CDC Factsheet

Typical age-structured ODE-model

• Mosquito life cycle divided into life stages characterized 
by different environments and biological needs

• Juvenile stages aquatic, Adult stages flying
• Larva compete for space and resources
• Adults can enter dormancy 

• Life-history parameters often derived from lab studies
à Mismatch between lab and field
à Density-dependent effects often not accounted

• Density in juvenile stage also impacts development rates, 
adult size, adult fecundity …

• In real settings very hard to describe due to variations in 
land cover, nutrients, breeding site availability, species
à Very sensitive to environmental fluctuations



Challenges 3: Climate sensitivity

Vectors & pathogen - Temperature

• Mosquitoes are ectotherms 
à Temperature directly impacts life-history traits 

• Species-specific!

• Temperature also modulates replication of virus inside 
mosquitoes 
à Extrinsic incubation period and vector competence

Humidity

• Known to impact vector lifespan and biting rate

• When considered often treated as independent of 
temperature but response to high temperatures likely 
depends on desiccation (wet vs dry heat)

19

Source: Shocket et al. 2020



Water body availability

• Mosquitoes depend on aquatic breeding sites for egg laying 
& juvenile development

• Human water storing behavior complicates the picture

• Negative impacts of heavy rainfall 

• Precipitation can impact vector-host contact rates

• Drought can benefit larval development by disrupting food-
web structures and concentrate nutrients in remaining water 
pools

Sunlight hours

• Regulates proportion of adult mosquitoes in diapause

Further impacts of windspeed … 

20

Source: Caldwell et al. 2021



Incorporate response of parameters in the model (diapause neglected)
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T: Temperature, W: Water avail., H: Humidity

𝐸̇ = 𝛽 𝑇 (𝐴 + 𝐴12) − 𝜇# 𝑇 𝐸 − 𝛿# 𝑇 𝐸
𝐿̇ = 𝛿# 𝑇 𝐸 − 𝜇3 𝑇 𝐿 − 𝑓 𝐿,𝑊 𝐿 − 𝛿3 𝑇 𝐿
𝑃̇ = 𝛿3 𝑇 𝐿 − 𝜇%(𝑇)𝑃 − 𝛿%(𝑇)𝑃
𝑀̇ = 𝜔𝛿% 𝑇 𝑃 − 𝜇" 𝑇,𝐻 𝑀

Source: Shocket et al. 2020
𝑆̇" = 𝜔𝛿% 𝑇 𝑃 − 𝑎(𝑇,𝐻) ' 𝑏"(𝑇) ' 𝑆" '

𝐼!
𝑁!

− 𝜇"(𝑇, 𝐻)𝑆"

𝐸̇" = 𝑎(𝑇,𝐻) ' 𝑏"(𝑇) ' 𝑆" '
𝐼!
𝑁!

− (𝛼(𝑇) + 𝜇"(𝑇, 𝐻))𝐸"
̇𝐼" = 𝛼𝐸" − 𝜇"(𝑇, 𝐻)𝐼"

𝑆̇! = Λ! − 𝑎(𝑇,𝐻) ' 𝑏! ' 𝐼" '
𝑆!
𝑁!

− 𝜇!𝑆!

̇𝐼! = 𝑎(𝑇,𝐻) ' 𝑏! ' 𝐼" '
𝑆!
𝑁!

− 𝛾!𝐼! − 𝜇!𝐼!
𝑅̇! = 𝛾!𝐼! − 𝜇!𝑅!

Mosquito population

Disease transmission

𝑀 = 𝑆" + 𝐸" + 𝐼"



Application examples

• Seasonal dynamics of vector populations and impact on transmission

• Incorporate response of parameters into 𝑹𝟎
à climatic/environmental transmission suitability measure
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Source: Shocket et al. 2020
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Avian hosts & climate

• Climatic changes known to impact 

• Migratory behavior, timing and routes

• Bird populations composition and species abundance …

• To best of my knowledge these impacts are currently only 
incorporated phenomenologically in WNV models
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Summary of main challenges
• Host heterogeneity + lacking knowledge on their role in amplification

à Impact of (species-specific) host ecology on transmission very hard to study

• Vector diversity further complicates parameterization of models 

• Climate sensitivity beyond the temperature-vector-pathogen relationship not understood in 
depth

à Many aspects are understood phenomenologically but not mechanistically and not 
quantified!

24

Maybe not if we truly account for the multi-disciplinarity of the problem
à Better data and collaboration is needed
à Human-centered approach likely not sufficient

Is West Nile unpredictable?



Thank you!
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