Inferring the ecological and evolutionary determinants of pathogen re-emergence

Mumps
 RNA virus - Paramyxoviridae 150,000 cases annually

Jin et al., Reviews Medical Virology 2015

Competing explanations for mumps re-emergence

Waning

Evolution/strain mismatch

Gouma et al., Scientific Reports, 2018

Modes of vaccine failure

"Primary" failure: each dose associated with probability ε_{A} of failure (Halloran et al. 1992; Am. J. Epid.; McLean \& Blower 1993;
 Proc R Soc B)

Protected

Susceptible

Modes of vaccine failure

"Waning" vaccine: perfect but transient protection

Modes of vaccine failure

Developing latent-state models and testing hypotheses of vaccine failure

Erlang waning distribution

Demographic Model
C

Model Co-variates

Booster shapes

 sub-hypotheses

POMP

- Partially Observed Markov Process

Process model

Observation Process
$\mathscr{L}(\theta)=\prod_{i=1}^{5}\left(\prod_{t} P\left(D_{i}(t) \mid \rho_{i} \eta_{a} C_{i}(t ; \theta)\right) \times\left(\prod_{t} P\left(D^{u}(t) \mid \stackrel{\rightharpoonup}{\rho}_{u}\left(1-\eta_{a}\right) \sum_{i=1}^{5} C_{i}(t ; \theta)\right)\right.\right.$

$$
P\left(. \mid \rho_{i}^{s} C_{i}, \sqrt{\rho_{i}^{s} C_{i}\left(1-\rho_{i}^{s}+\psi_{i}^{2} C_{i}\right)}\right)
$$

We know $\mathbb{P}\left(X_{t} \mid X_{t-1}\right)$ and $\mathbb{P}\left(Y_{t} \mid X_{t}\right)$

How do the models perform?

-Wohl et al. (2020): "we found no genetic evidence that variants arising during this outbreak "contributed to vaccine escape"

Case Trajectory/
Log Density

$$
\begin{array}{ll}
\text { — Observed Cases } & \text { - Waning (Erlang, } \mathrm{x}=3 \text {) } \\
\text { No Loss } & \text { - Leaky }
\end{array}
$$

- Waning (Exponential)

Prediction
Intervals
No Loss
Waning (Exponential)
Waning (Erlang, $x=3$)

Hypothesis \square No Loss \square Waning (Exponential) \square Waning (Erlang, $\mathrm{x}=3$) \square Leaky

	Model			
Parameter/Quantity	No Loss	Waning (Exponential)	Waning (Erlang, N = 3)	Leaky
$\Delta A I C$	207.288	0	26.853	10.87
R_{0}	42.414	13.992	31.371	22.199
R_{p}	2.29	6.45	20.211	1.789
ζ	0.946	0.539	0.356	0.919
β_{1}	0.185	0.036	0.341	0.735
σ^{-1} (Days)	12.022	24.998	16.894	24.999
δ^{-1} (Years)	-	111.456	56.457	-
ϵ	-	-	-	0.028
$p_{\text {intro }}$ (Age cohort)	-	-	-	$[15,25)$
$t_{\text {intro }}$	-	-	-	2000
Booster shape	Constant	Sigmoid	Sigmoid	Constant

How do we validate the fitted model?

Waning model reasonably recapitulates observed dynamics

Fits for younger age-cohorts better, relative to older population

On an average, simpler dynamics in test epochs result in better fits than training epoch

Why is the out of fit R^{2} better?

Straightforward to observe similarly good R2 values for other 6-year segments of in-sample fit

Model captures upward trend in mean age of first infection

Highest discrepancies in relative age-distributions lie in regions of low incidence, but they are also highly variable

i

Mean Age Of

First Infection \begin{tabular}{lll}
Age

Cohort

\quad

Prediction

Epoch
\end{tabular}

How does fitted model explain mumps resurgence?
$P($ Immune Loss $)=e^{-\delta t}$

Immune loss is proportional to vaccination intensity

Age-shift in susceptibility profile causes shift in incidence age-distribution

B

E

Age $-[0,5)-[15,25)->40$
Dose
Type
Neonatal Booster

F

Epidemic - Super-critical
Signature - Sub-critical

Two important points

Leonard \& Grad estimated mean duration of immunity of 27.4 y ($95 \% \mathrm{Cl}, 16.7$ to 51.1 y)

Lewnard and Grad,
Science Translational
Medicine, 2018

For direct comparison with model estimate, need to calculate expected time to loss of immunity $\left(T_{L}\right)$ conditioned on survival of an individual (i.e., $T_{L}<T_{D}$, where T_{D} is time to death)

$$
\mathbb{E}\left[T_{L} \mid T_{L}<T_{D}\right]=\frac{1}{\delta}-\frac{\tau e^{-\tau \delta}}{1-e^{-\tau \delta}}=35.3 \mathrm{y}
$$

Vaccine impact:

$$
\begin{aligned}
& \phi=\left(1-\varepsilon_{A}\right)(1-\varepsilon w)\left(1-\varepsilon_{L}\right) \\
& \text { where } \varepsilon_{W}=\alpha /(a+\mu) \\
& \Rightarrow \text { Eradication threshold: } \\
& p_{c}=\left(1-1 / R_{0}\right) \times 1 / \phi
\end{aligned}
$$

-Individual vaccine impact estimate ~59\% (54\%, 67\%).

- R_{0} estimate ~ 14
\Rightarrow routine immunization with current vaccines cannot lead to eradication

Vaccine effectiveness and waning intensity

Media stories

A Mumps Outbreak among Fully Vaccinated People

This multistate problem carries implications for our responses to future epidemics

[^0]

READ THIS NEXT

-

public health
How Fungal Meningitis Outbreaks Can Happen after Cosmetic Procedures and Other Surgeries
Lauren. .Young
conservation
Colombia's 'Cocaine Hippo' Population Is
Even Bigger Than Scientists Thought
Luke Taylor and Nature magazine
climate change
Rich Nations Owe $\$ 192$ Trillion for

Majority of mumps cases are among the vaccinated, ODC finds
As many as 94 percent of children and adolescents who contracted the highly contagious virus had been vaccinated.

Relative prevalence increases monotonically with age

P(Immune Loss By Age 18)

Dose Type
\square Neonatal Booster

Quantity

- $\xi-\mathrm{R}_{\mathrm{p}}$
Age Cohort
$\square[0,5)$ $[15,25)$
>40

Summary

- Mumps re-emerged in US, despite high estimated vaccine coverage
- At population level, models indicate waning of vaccine-derived immunity drives recent epidemics
- Vaccines with long-lasting immunity can bring about substantial decrease in prevalence of mumps
- But, in resurgence era, most cases among previously vaccinated
- Validated transmission models can inform age-stratified boosting schedule to maintain high levels of herd immunity

Influenza forecasting

Influenza forecasting

Transmission model

Forna et al. (ms in prep)

Omid Arhami

Acknowledgements

Centers of Excellence for Influenza Research and Response (CEIRR)
2. Odum School

ANAD funded international research network created to study influenza and combat influenza outbreaks.
 GEORGIA

[^0]: By Ekemini Hogan, Akpabio Akpabio, Utibe Eftiong on June 24, 2020

