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WNV in the 
United 
States

• Spatial & temporal variability

• Even in low transmission years 
there are portions of the country 
with high incidence
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Hydrology/Precipitation Contradictory

▶ Rainfall 
– Near-surface humidity, enhances 

mosquito flight activity and host-seeking 
behavior 

– Can increase breeding sites1

▶ Heavy rain
– Decrease larval survival though flushing 

and consequently reduce the vector 
population2 

▶ Drought 
– More water used at home increase 

potential exposure
– Reduced predators3

– Pushed birds and mosquitoes together 
creating optimal conditions for WNV 
amplification4 

1Shaman & Day 2007; 2Koenraadt & Harrington;3Chase & Knight 2003; 
4Shamanet et al. 2005
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Humidity
▶ Positively correlated with an 

increase in host-seeking 
behavior and mosquito 
population dynamics1-3

▶ Small arthropods have high 
surface area to body volume 
and easily lose moisture 
through evaporation 

▶ They have waxy layer on 
external cuticle to limit water 
loss but it still occurs through 
respiration and defecation 

▶ Prefers 60- 80% relativity 
humidity, shows signs of 
stress < 40% 

1Paz, 2006; 2 Paz et al. 2013; 3Walsh et all 2008
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Temperature

▶ Influence mosquito development 
rates

▶ Shorten the duration of the 
gonotrophic period1

– time interval between host-
seeking activity  

▶ Decrease the extrinsic incubation 
period of the virus2-5 

– virus to develop more quickly
▶ Warmer temperature decreases 

vector survival6

1Reisen et al. 1992; 2Hartley  et al. 2012; 3Reisen et al. 2006; 4Richards et al. 2007; 5Kilpatrick  et al. 2008; 5Mordecai et al. 2013  
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Prevention

o No human vaccine or specific treatment
o Personal protection 

o Mosquito repellent
o Long sleeve shirts and pants

o Community based mosquito control programs

Background



Public health decision support tools

– Infectious disease patterns continually shift
– Within infectious disease outbreak, response is reactive

• Based on ongoing surveillance
– Accurate, reliable forecasts with sufficient lead times would provide greater 

opportunity to plan adaptive mitigation and control efforts
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Temporal variability of Mosquito 
infection rates



Climatology & Mosquito Population

▶ Mosquito population 
normalized by trap 
night

▶ Pronounced 
bimodal structure

▶ Conversely, the IM 
peaks during the 
summer 

▶ Annual variability in 
these trends was 
observed. 

Historical CV Culex mosquito abundance, IM and ATMP between 2006 - 2022. Left: Weekly mean number of mosquitoes 
trapped per night (boxplot, dots = outliers > 2*SD), maximum daily ATMP (red line), and temperature threshold for mosquito 
population decline (30 ºC, red dotted line). Right: Average weekly IM (boxplot, dots = outliers > 2*SD), minimum daily 
ATMP (red line), and temperature threshold for viral amplification (14.3 ºC, black dashed line) (Reisen et al., 2006). 



Annual infected mosquitoes 
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Spatial 
forecast



Database Assembly

▶ Downloaded, processed and assembled 
environmental remote sensing data

▶ We matched and processed 17 years of 
mosquito   and WNV data to the environmental 
data

▶ Evaluated different spatial scales of each 
environmental data sources

▶ NLDAS

▶ Correlation analysis of environmental variables 
led us to choose a single measure of 
temperature (ATMP) and a single measure of 
hydrology (ET) for use in our models

▶ Nov-1 though July to predict annual IM

Spatial 
forecast



Multi-model inference system

▶ Annual MLE per 1000 mosquitoes at the NLDAS level as the outcome

▶ Identified the best models using whole model goodness-of-fit estimated 
from AIC (Burnham & Anderson, 2002)

▶ A mixed effects negative binomial model with grid cell as the random 
effect produced the best AIC

▶ Used to make predictions with four monthly-environmental variables of 
ATMP and ET in each model

▶ Weighted and ranked models selecting the top models whose AIC 
weights summed to ≥ 0.95

▶ glmmADMB package in R

Spatial 
forecast



Environmental predictions at 13 km2

Results Spatial 
forecast



Validation

▶ LOYO; 2006 - 2018
▶ 2006 - 2018 -> predicted 2019, 2020, 2021
▶ compared observed vs. predicted
▶ 2006 - 2021 -> predict 2022

Variable weights contributing to LOYO models for 2006 
- 2021 (Red = ATMP, Blue = ET). Year indicated the 
annual data removed from the LOYO model. 

Agreement between observed and predicted IM stratified by NLDAS grid 
in the CV for 2019 - 2021. Top Row: Observed IM in 2019, 2020, and 
2021. Middle Row: Predicted IM in 2019, 2020 and 2021 using a four-
predictor model ensemble trained on years 2006 - 2018. Bottom Row: 
Proportion of cells in agreement with the ensemble model using one 
infected mosquito per 1,000 tested as a cutoff value/threshold.



Real-time forecast 2022
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Data assimilation 
method 
(EAKF)

Forecast System

• Model-EAKF system relies on three 
components:

1. WNV surveillance data

2. Mathematical model that can freely 

simulate the spread of WNV in 

mosquitoes, birds, and humans

3. Data assimilation method

• Ensemble adjustment Kalman filter 
(EAKF) 

Data

-State variables
-Parameters

Model

temporal 
forecast



Monitoring DataData

Trap Sort PC
R



Mosquito SurveillanceData

Mosquito trap

Mosquito identification

Polymerase 
chain 

reaction



Pooled Testing

Maximum likelihood estimation 
• Estimate the proportion of infected 

mosquitoes in the wider population
• Assume it follows a Bernoulli 

distribution
• Numerically solve for the minimum 

due to different samples sizes of 
mosquitoes

Date Week 
Numbe
r

No. 
Mosquitoes

+/- Trap 
Location

8/4/14 32 38 0 1

8/4/14 32 42 1 2

8/7/14 32 47 0 3

8/7/14 32 50 0 3

8/7/14 32 50 0 3

8/11/14 32 23 0 4

8/12/14 32 36 1 5

8/12/14 32 42 1 6

8/13/14 32 45 0 7

Data



Average Outbreak Structure
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Baseline Compartmental Model

Parameters:
• μM – birth and death rate of mosquitoes
• δB – bird recovery rate
• β(t) – contact rate between birds and 

mosquitoes at time t
• η –risk of spill-over to humans

Model



β(t) = A+ K − A
1+ e −r t−t0( )( )

Mosquitoes feeding patterns, 
Impact transmission between birds and mosquitoes 
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Ensemble Adjusted 
Kalman Filter 

• Data assimilation technique designed 
to estimate the true state of a system 
given both observations and model 
simulation of that state 

• Unobserved state 
variables and parameters 
are adjusted using cross 
ensemble co-variability

(Anderson 2001)http://www.princeton.edu/~adamsc/documents/Kalm
anFilterBayesDerivation.pdf

Filtering 
method 
(EAKF)



EAKF Optimization
▶ 12 dimensional system

▶ Can the EAKF optimize this?

– Given 2 data streams

▶ In real world do not know the 

truth

▶ Model simulation we know 

state variables and parameters
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Data assimilation 
method 
(EAKF)

Forecast

▶ Training period:

• Model-EAKF system updates state 

variables and parameters

• Updated model is better aligned with 

local dynamics of the observed 

outbreak

▶   Forecast:

• Simulate model to end of season 

Data

-State variables
-Parameters

Model



Retrospective ForecastResults

29



Forecast AccuracyResults

A forecast was deemed 
accurate if:
• ± 25% total number of 

human cases
• Peak timing within ± 1 week 

of the observed peak of 
infectious mosquitoes

• Maximum mosquito infection 
rate was within ± 25% of the 
observed peak infection rate

30



Retrospective ForecastResults

31



Retrospective ForecastResults
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Retrospective ForecastResults

33



Retrospective ForecastResults
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Retrospective ForecastResults
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Retrospective ForecastResults
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Retrospective ForecastResults
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Retrospective ForecastResults
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Retrospective ForecastResults
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Retrospective ForecastResults
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Retrospective ForecastResults
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Retrospective ForecastResults

42



Retrospective ForecastResults
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Retrospective ForecastResults
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Retrospective ForecastResults
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Retrospective ForecastResults
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Lead Week Explanation

Calibration

Date

Lead week 
-4



Lead Week Explanation
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Lead Week Explanation

Date
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3
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Human Cases Lead Week

-6 -4 -2 0 2 4 6 8
Lead week

0

0.2

0.4

0.6

0.8

1

Fr
ac

tio
n 

re
po

rt
ed

Human cases

25 30 35 40 45 50
Forecast week

0

0.2

0.4

0.6

0.8

1

Fr
ac

tio
n 

re
po

rt
ed

Data



-6 -4 -2 0 2 4 6 8
Predicted lead week

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fr
ac

tio
n 

ac
cu

ra
te

Peak timing
Human cases
Peak infection rate
Season infection rate

Forecast Calibration



Mosquito Survival to Transmit
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Extrinsic Incubation Period 

Vonnie D.C. Shields, 
2017

Background
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Surveillance
Data

Weekly Infected Mosquitoes per 1,000 Tested



Surveillance
Data
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ClimatologyData
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Climatology and 
Infected Mosquitoes  

Data



Data
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Temperature Forced 
Compartmental Model

Parameters:
• μM – birth and death rate of 

mosquitoes

• δB – bird recovery rate

• Κβ(t) – temperature 
forcing contact rate 
between birds and 
mosquitoes at time t

• η –risk of spill-over to 
humans

• αM – rate of WNV seeding 
into the model domain

Model



Differences Between Baseline 
and Temperature Forcing
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Forecast Calibration Forecast Lead
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Short-term Forecast Accuracy for Human 
Cases

Results



Human Cases Forecast Week
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Forecast Calibration Forecast Week
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Forecast Calibration Forecast Week
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• Weeks 31 to 40:
• Predicting human cases, 

10% 
• Peak timing of infectious 

mosquitoes,  12%
• Peak magnitude of 

infectious mosquitoes  
6%



Results

▶ Up to a 9 week lead in predicting the last human 
case

▶ Accurately predict human cases prior to the majority 
of case being reported
– 63% at peak of infectious
– 70% 1 week past
– 73% 2 weeks past

▶ Temperature-forcing model improves forecast 
accuracy in:
– Predicating human cases, 10%
– peak timing of infectious mosquitoes, 12%
– peak magnitude of infectious mosquitoes 6%

• Prior to the majority of the number of human cases reported
• provide considerable advanced warning

67



Implications

▶ Accurate retrospective forecasts of mosquito 
infection rates and human cases can be 
generated

▶ Foundation for a statistically rigorous system for 
real time forecasting 

▶ Such a decision support tool would help public 
health officials and mosquito control programs: 

– Target control of infectious mosquito populations

– Alert the public to future periods of elevated WNV 
spillover transmission risk

▶ This is the first step to a real-time forecast 
system of WNV

68



What is Needed to Implement Real-time Forecasting?

69

▶ Mosquito monitoring

▶ Quality of mosquito monitoring 
practices

▶ Lag between collecting 
mosquitoes and testing for WNV

– State labs vs. onsite labs 

Human WNV case reporting
▶ Human cases of WNV as a 

nationally notifiable disease 
– 7 days to report
– only 51% were reported within 7 

days1 
– California 1 day 

1Boehmer et al. 
2011 

Challenges related to real time forecasting:
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Summary

▶ Meteorological conditions influence transmission 

▶ Fluctuations in meteorological conditions can help identify risk areas

▶ Public health agencies and vector control use surveillance data and models 
to reduce outbreaks and hopefully reduce exposures 

▶ Operational Real-time forecasting 

– Key is reporting and confirming cases with limited delay 
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