Infectious diseases in a changing environment: Forecasting West Nile virus

Nicholas DeFelice, PhD

POISON!

Assistant Professor

Department of Environmental Medicine and Public Health

NORDITA, Stockholm Sweden

nicholas.defelice@mssm.edu

6/9/2023

Icahn School of Medicine at **Mount Sinai**

WNV in the United States

- Spatial & temporal variability
- Even in low transmission years there are portions of the country with high incidence

West Nile Virus Transmission Cycle

3

Hydrology/Precipitation Contradictory

- ► Rainfall
 - Near-surface humidity, enhances mosquito flight activity and host-seeking behavior
 - Can increase breeding sites¹
- Heavy rain
 - Decrease larval survival though flushing and consequently reduce the vector population²
- Drought
 - More water used at home increase potential exposure
 - Reduced predators³
 - Pushed birds and mosquitoes together creating optimal conditions for WNV amplification⁴

¹Shaman & Day 2007; ²Koenraadt & Harrington; ³Chase & Knight 2003; ⁴Shamanet et al. 2005

Humidity

- Positively correlated with an increase in host-seeking behavior and mosquito population dynamics¹⁻³
- Small arthropods have high surface area to body volume and easily lose moisture through evaporation
- They have waxy layer on external cuticle to limit water loss but it still occurs through respiration and defecation
- Prefers 60- 80% relativity humidity, shows signs of stress < 40%</p>

¹Paz, 2006; ² Paz et al. 2013; ³Walsh et all 2008

Temperature

- Influence mosquito development rates
- Shorten the duration of the gonotrophic period¹
 - time interval between hostseeking activity
- Decrease the extrinsic incubation period of the virus²⁻⁵
 - virus to develop more quickly
- Warmer temperature decreases vector survival⁶

¹Reisen et al. 1992; ²Hartley et al. 2012; ³Reisen et al. 2006; ⁴Richards et al. 2007; ⁵Kilpatrick et al. 2008; ⁵Mordecai et al. 2013

Prevention

- No human vaccine or specific treatment
- Personal protection
 - o Mosquito repellent
 - $\,\circ\,$ Long sleeve shirts and pants
- Community based mosquito control programs

Public health decision support tools

- Infectious disease patterns continually shift
- Within infectious disease outbreak, response is reactive
 - Based on ongoing surveillance
- Accurate, reliable forecasts with sufficient lead times would provide greater opportunity to plan adaptive mitigation and control efforts

Temporal variability of Mosquito infection rates

Climatology & Mosquito Population

- Mosquito population normalized by trap night
- Pronounced
 bimodal structure
- Conversely, the I_M peaks during the summer
- Annual variability in these trends was observed.

Historical CV *Culex* mosquito abundance, I_M and ATMP between 2006 - 2022. Left: Weekly mean number of mosquitoes trapped per night (boxplot, dots = outliers > 2*SD), maximum daily ATMP (red line), and temperature threshold for mosquito population decline (30 °C, red dotted line). Right: Average weekly I_M (boxplot, dots = outliers > 2*SD), minimum daily ATMP (red line), and temperature threshold for viral amplification (14.3 °C, black dashed line) (Reisen et al., 2006).

Spatial forecast

Annual infected mosquitoes

Database Assembly

- Downloaded, processed and assembled environmental remote sensing data
- We matched and processed 17 years of mosquito and WNV data to the environmenta data
- Evaluated different spatial scales of each environmental data sources
- ► NLDAS
- Correlation analysis of environmental variables led us to choose a single measure of temperature (ATMP) and a single measure of hydrology (ET) for use in our models
- Nov⁻¹ though July to predict annual I_M

Multi-model inference system

- Annual MLE per 1000 mosquitoes at the NLDAS level as the outcome
- Identified the best models using whole model goodness-of-fit estimated from AIC (Burnham & Anderson, 2002)
- A mixed effects negative binomial model with grid cell as the random effect produced the best AIC
- Used to make predictions with four monthly-environmental variables of ATMP and ET in each model
- Weighted and ranked models selecting the top models whose AIC weights summed to ≥ 0.95
- glmmADMB package in R

Environmental predictions at 13 km²

Validation

- ▶ LOYO; 2006 2018
- 2006 2018 -> predicted 2019, 2020, 2021
- compared observed vs. predicted
- ▶ 2006 2021 -> predict 2022

Variable weights contributing to LOYO models for 2006 - 2021 (Red = ATMP, Blue = ET). Year indicated the annual data removed from the LOYO model.

Agreement between observed and predicted I_M stratified by NLDAS grid in the CV for 2019 - 2021. Top Row: Observed I_M in 2019, 2020, and 2021. Middle Row: Predicted I_M in 2019, 2020 and 2021 using a fourpredictor model ensemble trained on years 2006 - 2018. Bottom Row: Proportion of cells in agreement with the ensemble model using one infected mosquito per 1,000 tested as a cutoff value/threshold.

Real-time forecast 2022

Observed - 2022

16

temporal forecast

Forecast System

- Model-EAKF system relies on three components:
 - 1. WNV surveillance data
 - 2. Mathematical model that can freely simulate the spread of WNV in mosquitoes, birds, and humans
 - 3. Data assimilation method
 - Ensemble adjustment Kalman filter (EAKF)

Monitoring Data

Data

Mosquito Surveillance

Mosquito trap

Polymerase chain reaction

Data

Pooled Testing

Maximum likelihood estimation

- Estimate the proportion of infected mosquitoes in the wider population
- Assume it follows a Bernoulli distribution
- Numerically solve for the minimum due to different samples sizes of mosquitoes

Date	Week Numbe r	No. Mosquitoes	+/-	Trap Location
8/4/14	32	38	0	1
8/4/14	32	42	1	2
8/7/14	32	47	0	3
8/7/14	32	50	0	3
8/7/14	32	50	0	3
8/11/14	32	23	0	4
8/12/14	32	36	1	5
8/12/14	32	42	1	6
8/13/14	32	45	0	7

Average Outbreak Structure

Model

Baseline Compartmental Model

Parameters:

- μ_M birth and death rate of mosquitoes
- δ_B bird recovery rate
- β(t) contact rate between birds and mosquitoes at time t
- η –risk of spill-over to humans

Mosquitoes feeding patterns, Impact transmission between birds and mosquitoes

Model

Simulation of Outbreak

Ensemble Adjusted Kalman Filter

- Data assimilation technique designed to estimate the true state of a system given both observations and model simulation of that state
- Unobserved state variables and parameters are adjusted using cross ensemble co-variability

t-1 t (Anderson 2001)

EAKF Optimization

- ► 12 dimensional system
- ► Can the EAKF optimize this?
 - Given 2 data streams
- In real world do not know the truth
- Model simulation we know state variables and parameters

Synthetic Test

Forecast

- ► Training period:
 - Model-EAKF system updates state variables and parameters
 - Updated model is better aligned with local dynamics of the observed outbreak
- ► Forecast:
 - Simulate model to end of season

Retrospective Forecast

07/31

Week

09/19

......

0

06/11

Forecast Accuracy

A forecast was deemed accurate if:

- ± 25% total number of human cases
- Peak timing within ± 1 week of the observed peak of infectious mosquitoes
 Maximum mosquito infection rate was within ± 25% of the observed peak infection rate

Week

Retrospective Forecast

Week

Retrospective Forecast

37

Retrospective Forecast

39

Calibration

Lead Week Explanation

Calibration

Lead Week Explanation

Calibration

Lead Week Explanation

Human Cases Lead Week

Mosquito Survival to Transmit

Reisen et al. 1992; Reisen et al. 2006; Hartley et al. 2012

Extrinsic Incubation Period

Surveillance Data

Weekly Infected Mosquitoes per 1,000 Tested

Average Observed Human WNV Cases by

Data

Climatology

Data

Climatology and Human Cases

Model

Temperature Forced Compartmental Model

Parameters:

- μ_M birth and death rate of mosquitoes
- δ_B bird recovery rate
- Kβ(t) temperature forcing contact rate between birds and mosquitoes at time t
- η –risk of spill-over to humans
- α_M rate of WNV seeding into the model domain

Model

Differences Between Baseline and Temperature Forcing

Forecast Calibration Forecast Week

Forecast Calibration Forecast Week

- Weeks 31 to 40:
 - Predicting human cases, 10%
 - Peak timing of infectious mosquitoes, 12%
 - Peak magnitude of
 infectious mosquitoes
 6%

- Up to a 9 week lead in predicting the last human case
- Accurately predict human cases prior to the majority of case being reported
 - 63% at peak of infectious
 - 70% 1 week past
 - 73% 2 weeks past
- Temperature-forcing model improves forecast accuracy in:
 - Predicating human cases, 10%
 - peak timing of infectious mosquitoes, 12%
 - peak magnitude of infectious mosquitoes 6%
 - Prior to the majority of the number of human cases reported
 - · provide considerable advanced warning

Implications

- Accurate retrospective forecasts of mosquito infection rates and human cases can be generated
- Foundation for a statistically rigorous system for real time forecasting
- Such a decision support tool would help public health officials and mosquito control programs:
 - Target control of infectious mosquito populations
 - Alert the public to future periods of elevated WNV spillover transmission risk
- This is the first step to a real-time forecast system of WNV

Data **What is Needed to Implement Real-time Forecasting**?

Human WNV case reporting

- Human cases of WNV as a nationally notifiable disease
 - 7 days to report
 - only 51% were reported within 7 days¹
 - California 1 day

Summary

- ► Meteorological conditions influence transmission
- ► Fluctuations in meteorological conditions can help identify risk areas
- Public health agencies and vector control use surveillance data and models to reduce outbreaks and hopefully reduce exposures
- Operational Real-time forecasting
 - Key is reporting and confirming cases with limited delay

Acknowledgements:

- Mosquito abatement and health departments:
 - Shamika Smith and the rest of the staff of the city of Chicago's arboviral surveillance efforts
 - Kelly Bemis and the Cook County health department
 - Paul Geery and the staff of the Des Plaines Valley Mosquito Abatement District,
 - Patrick Irwin and the staff of the Northwest Mosquito Abatement District,
 - Suffolk County Arthropod-Borne Disease Laboratory, the Division of Vector Control, and the New York State Department of Health Arbovirus Laboratory for assistance in mosquito and arboviral surveillance efforts and viral analysis of the mosquito samples;
 - The staff of the Southern Nevada Health District, especially Heather Anderson-Fintak and Vivek Raman, and Christopher T. Bramley
 - Kevin Caillouet and the staff of St. Tammany Parish Mosquito Abatement District
 - Clark County Department of Public Works
 - the staff of Iberia Parish Mosquito Abatement District

- Maricopa County Environmental Services Department and assistance from Irene Ruberto and Hayley D. Belisle-Yaglom at the Arizona Department of Health Services;
- Michael "Doc" Weissmann and the staff at the Colorado Mosquito Control, and Leah Colton at the Colorado Department of Public Health and Environment; and
- Dr. Jacklyn Wong and Ervic Aquino at the Vector-Borne Disease Section, California Department of Public Health.
- Jennifer Lehman, Dr. Erin Staples, and the CDC Division of Vector-Borne Infectious Diseases who provided us with weekly human WNV case data.
- Vector Control & Environmental Services Fort Wayne-Allen County Department of Health and Taryn Stevens of the Vector-Borne Epidemiology Resource Center Indiana State Department of Health

- Funders:
 - NASA (ECOSTRESS18-0046 and the Health and Air Quality Program), Universities Space Research Association, the Pacific Southwest Regional Center of Excellence in Vector-Borne Diseases and the Centers for Disease Control and Prevention (1U01CK000649-01), the Coachella Valley Mosquito and Vector Control District, and the Department of Environmental Medicine and Public Health at the Icahn School of Medicine at Mount Sinai (NIEHS P30ES02351, K25 HD109509-01) for their support of this research.
- Team:
 - Meytar Sorek-Hamer, Aman Patel, Krishna Vemuri, Matthew Ward

National Institutes of Health