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WNYV in the
United
States

Spatial & temporal variability

Even in low transmission years
there are portions of the country
with high incidence
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West Nile Virus Transmission Cycle

Amplifier Host

Zoonotic
Transmission Cycle

Host

Incidental
. Transmission
Dead End “SpﬂlOVer”




| Background |

Hydrology/Precipitation Contradictory

» Rainfall

— Near-surface humidity, enhances
mosquito flight activity and host-seeking

behavior
— Can increase breeding sites’

» Heavy rain
— Decrease larval survival though flushing
and consequently reduce the vector
population?
» Drought
— More water used at home increase
potential exposure
— Reduced predators?

— Pushed birds and mosquitoes together
creating optimal conditions for V
amplification?

IShaman & Day 2007; ?Koenraadt & Harrington;*Chase & Knight 2003;
4Shamanet et al. 2005



| Background |

Humidity

» Positively correlated with an
increase In host-seeking
behavior and mosquito
population dynamics'-3

» Small arthropods have high
surface area to body volume
and easily lose moisture
through evaporation

» They have waxy layer on
external cuticle to limit water
loss but it still occurs through
respiration and defecation

» Prefers 60- 80% relativity
humidity, shows signs of
stress < 40%

IPaz, 2006;2 Paz et al. 2013; 3Walsh et all 2008



| Background |

Temperature
» Influence mosquito development em
rates il 1
» Shorten the duration of the
gonotrophic period? |
— time interval between host- o/ g
seeking activity Srop Joss 2
» Decrease the extrinsic incubation °
period of the virus2-° R
_ virus to develop more quickly e B

» Warmer temperature decreases Femperature °C
vector survival®

IReisen et al. 1992; 2Hartley et al. 2012; 3Reisen et al. 2006; “Richards et al. 2007; Kilpatrick et al. 2008; SMordecai et al. 2013



| Background |

Prevention b
o No human vaccine or specific treatment §
o Personal protection )
o Mosquito repellent ®
o Long sleeve shirts and pants 4 % & o
o Community based mosquito control programs B 3A




Public health decision support tools

— Infectious disease patterns continually shift

— Within infectious disease outbreak, response is reactive
e Based on ongoing surveillance

— Accurate, reliable forecasts with sufficient lead times would provide greater
opportunity to plan adaptive mitigation and control efforts




Temporal variability of Mosquito
infection rates
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Climatology & Mosquito Population

» Mosquito population =

normalized by trap )

night

» Pronounced :

bimodal structure I '

» Conversely, the Iy 3. :

pea ks durin g the ; B P AL M HefiByas 1421
summer 2

» Annual variability in ‘L : 5 : - 5 5 5 5 _
th ese tre n d S was Historical CV Culex mosql‘:’iiz( abundance, I, and ATMP between 2006 - 2022. Left: Weekly mv(:;er'; number of mosquitoes

(0) bS e I’VGd . trapped per night (boxplot, dots = outliers > 2*SD), maximum daily ATMP (red line), and temperature threshold for mosquito

population decline (30 eC, red dotted line). Right: Average weekly I, (boxplot, dots = outliers > 2*SD), minimum daily
ATMP (red line), and temperature threshold for viral amplification (14.3 °C, black dashed line) (Reisen et al., 2006).
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Spatial
forecast

Annual infected mosquitoes
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[ Spatial ]
Database Assembly forecast
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avsftsfc.10 + tmp2m.10
avsfisfc.5 + tmp2m.5
avsftsfc.6 + tmp2m 6
avsfisfc.4 + tmp2m 4
avsftsfc.3 + tmp2m.3
avsftsfc.1 + tmp2m.1

» Downloaded, processed and assembled w2 yin2
environmental remote sensing data ooeat ——————————¢
a2+ o 12 [
avstse.a + o2 o |
» We matched and processed 17 years of e
. . evpstcd + evpste s [
mosquito and WNV data to the environmenti - . e———
. ; avstsic + otz o |
» Evaluated different spatial scales of each b ———————|
environmental data sources e I
tmp2m.4 + evpstc.10 [ RRDD

> N L D AS asiisic.4 + evpsie. 10 [ MM

» Correlation analysis of environmental variables
led us to choose a single measure of
temperature (ATMP) and a single measure of
hydrology (ET) for use in our models

» Nov-' though July to predict annual |y,




[ Spatial ]
forecast

Multi-model inference system

» Annual MLE per 1000 mosquitoes at the NLDAS level as the outcome

» Identified the best models using whole model goodness-of-fit estimated
from AIC (Burnham & Anderson, 2002)

» A mixed effects negative binomial model with grid cell as the random
effect produced the best AIC

» Used to make predictions with four monthly-environmental variables of
ATMP and ET in each model

» Weighted and ranked models selecting the top models whose AIC
weights summed to =2 0.95

» glmmADMB package in R



Results

ET

TEMP

Environmental predictions at 13 km?

90

[ Spatial ]
forecast

Effect on Iy

Increase
Decrease

Nov Dec Jan

Cooler/drier
winter

e Birds migrating into valley
* Mosquitoes and birds in

same location - Salton Sea
(“Island Effect”)

e WNV

Feb

Mar
Month

M'ay

Warm/wetter
spring

e Shortened EIP

e Faster mosquito
reproduction and
development

¢ Continued Island
Effect

Jun Jul

Cooler
summer

¢ Transmission
continues

High heat events
characteristic of CV
summers postponed
WNYV able to spread
North



Validation
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Real-time forecast 2022 -
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[

temporal ]

forecast Forecast System

Model-EAKF system relies on three

components:
1.
2.

WNYV surveillance data

Mathematical model that can freely
simulate the spread of WNV in
mosquitoes, birds, and humans

Data assimilation method

« Ensemble adjustment Kalman filter
(EAKF)

Data assimilation

method
(EAKF)

-State variables
-Parameters




Data Monitoring Data
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Data

Mosquito Surveillance

Mosquito trap Polymerase

chain
reaction

Mosquito identification




Data

Pooled Testing
Maximum likelihood estimation T [ +- | Trap
» Estimate the proportion of infected Numbe | Mosquitoes Location
mosquitoes in the wider population 4
_ _ 8/4/14 32 38 0 1
« Assume it follows a Bernoulli
N . 8/4/14 32 42 1 2
distribution
_ o 8/7/14 32 47 0 3
* Numerically solve for the minimum
: . 8/7/14 32 50 0 3
due to different samples sizes of e .
mosquitoes > -
8/11/14 32 23 0 4
8/12/14 32 36 15
8/12/14 32 42 1 6
8/13/14 32 45 0 7



Data

Average Qutbreak Structure

Observed infectious mosquitoes

30
3% Observed *ﬂe*
*
20
- * *, *
10 - - Re
0 * * * *** | | | * |
20 25 30 35 40 45
8- Observed human WNV cases
Tar *
.‘*‘
2t ¥
ot
0 Lk e : : J
20 25 30 35 40 45

Week

XS (‘3




Model

Baseline Compartmental Model

Parameters:

Hum— birth and death rate of mosquitoes
oz bird recovery rate

B(t) - contact rate between birds and
mosquitoes at time t

n —risk of spill-over to humans

Susceptible
Birds
SB

Susceptible
Mosquitoes
S

M

Infectious
Mosquitoes

v

Ffectious

R UIERS

ly




Mosquitoes feeding patterns,

Impact transmission between birds and mosquitoes

0.4

0.35

0.05

o Posterior i
Logistic Function &

June July August September October
Month



Model

Simulation of OQutbreak
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Filtering
method

(EAKF) Ensemble Adjusted
Kalman Filter

Data assimilation technique designed
to estimate the true state of a system
given both observations and model

simulation of that state

Measurement
e

e e =

< A
MUt =
Prediction | ypdate

o,
\
\ \
\ \
v Ve
\
o

Ne-SE
\J

X,
http://www.princeton.edu/~adamsc/do¥uments/Kalm
anFilterBayesDerivation.pdf

- Unobserved state

variables and parameters
are adjusted using cross
ensemble co-variability

= Truth
- EAKF
X Observation

‘f
-
P -”
-

>
t-1 t (Anderson 2001)



EAKF Optimization

» 12 dimensional system
» Can the EAKF optimize this?
— Given 2 data streams
» In real world do not know the
truth

» Model simulation we know
state variables and parameters

Infectious Mosquitoes

Truth
* Ob: ti
” 30 * * servation
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3 20 *
3 *
s
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0 ot * % L % % L *
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[ e e S
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150 200
Day

1 |
250 300
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Forecast

» Training period:

* Model-EAKF system updates state
variables and parameters

« Updated model is better aligned with
local dynamics of the observed
outbreak method

(EAKF)

Data assimilation

» Forecast:

« Simulate model to end of season

-State variables
-Parameters




Results

Retrospective Forecast
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Suffolk 25-Jun-2010
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Results

Forecast Accuracy

A forecast was deemed
accurate if:
e + 25% total number of
human cases
e Peak timing within = 1 week

% Observed (training)
Posterior

L of the observed peak of
infectious mosquitoes
—_+ Maximum mosquito infection

* K K x %

06/11 07/31 09/19

T 20~

rate was within £ 25% of the
observed peak infection rate

° .
06/11 07/31 09/19

30



Results

Retrospective Forecast
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Results

Retrospective Forecast
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Suffolk 09-Jul-2010
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Results

Retrospective Forecast

Suffolk 16-Jul-2010
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Results

50
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Observed (training)

Retrospective Forecast

Suffolk 23-Jul-2010

- Posterior
-------- Forecast
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*e——x "/ 1 I
06/11 07/31 09719
# gt
I *
*
*
*
i *
> *
s '
06/11 07/31 09/19
Week

34



Results
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40

30
=

20
10

0

40

30

T 20

10

Retrospective Forecast

Suffolk 30-Jul-2010

% Observed (training)
B Posterior
-------- Forecast
= #* Observed
B / *
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Results

Retrospective Forecast

Suffolk 06-Aug-2010
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Results
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Retrospective Forecast
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Results

Retrospective Forecast

s Suffolk 20-Aug-2010

% Observed (training)
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Results

50

40

30
=

20

10

0

40

30

=T 20

10

Retrospective Forecast

Suffolk 27-Aug-2010

Week
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-------- Forecast
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Results

Retrospective Forecast

Suffolk 03-Sep-2010
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Results

50

40

30
=

20

10

0

40

30

=T 20

10

Retrospective Forecast

Suffolk 10-Sep-2010
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Results
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Retrospective Forecast
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Results
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Retrospective Forecast

Suffolk 24-Sep-2010

% Observed (training)
B Posterior
-------- Forecast
- # Observed
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Results
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Retrospective Forecast

Suffolk 01-Oct-2010
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Results
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Retrospective Forecast

Suffolk 08-Oct-2010
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Results
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Retrospective Forecast

Suffolk 15-Oct-2010
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Calibration

Lead Week Explanation
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Suffolk County 05-Aug-2017

Lead week

# Observation

Baseline Posterior
-------- Baseline Forecast
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Calibration

Lead Week Explanation

20

0
06/04

T4+

0
06/04

Suffolk County 12-Aug-2017

Lead week # Observation
_2 Baseline Posterior
-------- Baseline Forecast

07/24 09/12 11/01

12/21

07/24 09/12 11/01
Date

12/21



Calibration

Lead Week Explanation

Suffolk County 09-Sep-2017

# Observation
Baseline Posterior

Lead week | Baseline Forecast

06/04 07/24 09/12 11/01 12/21

L2r

0
06/04 07/24 09/12 11/01 12/21




Data
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Fraction accurate

Forecast Calibration

=== Peak timing
=== Human cases

Peak infection rate
== Season infection rate

-2 0 2 4 6 8
Predicted lead week



| Background |

Mosquito Survival to Transmit

20

18 -

14 -

Days

10 -

6

4+

2 L I

— E|P
smun GP

wes Daily Survival

-10.74

-10.68

20 25 30
Temperature °C

0.62
35

Probability

0.045

0.04

0.035

0.03

o
o
]
a

0.02

Probability

0.015

0.01

0.005

Probability of Transmitting Virus

| °
. ® 2" feeding
® 3" feeding ¢
- ® 4" feeding ®
th . L
® 5" feeding P
{ ]
B { ]
{ ]
i ® o [
o ) )
®e®e °
L L P [ )
e 00 0 g 0o ‘ ' ‘ ' : '
18 20 22 24 26 28 30 32 34

Temperature °C

Reisen et al. 1992; Reisen et al. 2006; Hartley et al. 2012



| Background |

Extrinsic Incubation Period

)~ Dissemination to
Viremic @ Infection of midgut w secondary tissues

host .
Ps 0
S\
°
:

Extrinsec Incubation
Period

ﬁ, ) Salivary gland’s

“% """" infection

1@ i
Vonnie D.C. Shields,
2017
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Surveillance
Data

Weekly Infected Mosquitoes per 1,000 Tested
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Surveillance

Average Observed Human WNYV Cases by
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Data

Cmatology
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Data

LITIT

atology and
Cted Mosquitoes
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Data

Climatology and
Human Cases
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Model

Temperature Forced

Compartmental Model
Parameters:
« My- birth and death rate of
mosquitoes
* &z- bird recovery rate S ata i Infecous
« KpA(t) - temperature Bsd S Binlds

forcing contact rate
between birds and
mosquitoes at time t

Susceptible Infectious Infectious

® ’7 —riSk Of Spill-Over to : Mosquitoes Mosquitoes Humans
humans | Su hw

« oy, -rate of WNV seeding
into the model domain
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Results

Accuracy

Accuracy

Forecast Calibration Forecast Lead
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Results

Short-term Forecast Accuracy for Human
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Forecast Calibration Forecast Week

Human cases 1. Peak timing
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Results

Forecast Calibration Forecast Week

* Weeks 31 to 40:
* Predicting human cases,
10%
* Peak timing of infectious
mosquitoes, 12%

Peak timing
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Results

» Up to a 9 week lead in predicting the last human
case

» Accurately predict human cases prior to the majority
of case being reported

— 63% at peak of infectious
— 70% 1 week past
— 73% 2 weeks past
» Temperature-forcing model improves forecast
accuracy In:
— Predicating human cases, 10%
— peak timing of infectious mosquitoes, 12%

— peak magnitude of infectious mosquitoes 6%
* Prior to the majority of the number of human cases reported
+ provide considerable advanced warning

67



Implications

» Accurate retrospective forecasts of mosquito
infection rates and human cases can be
generated

» Foundation for a statistically rigorous system for
real time forecasting

» Such a decision support tool would help public
health officials and mosquito control programs:

— Target control of infectious mosquito populations

— Alert the public to future periods of elevated WNV
spillover transmission risk

» This is the first step to a real-time forecast
system of WNV
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Data What is Needed to Implement Real-time Forecasting?

Challenges related to real time forecasting:

- Reporting Delays During 2018

— Human WNYV case reporting

» Human cases of WNV as a
nationally notifiable disease

— 7 days to report

— only 51% were reported within 7
days’

— California 1 day

Fraction reported
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== Report 7 days
0 1 1 1 1 1 1 1 |
0 1 2 3 4 5 6 7 8 'Boehmer et al.
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Summary

Meteorological conditions influence transmission
Fluctuations in meteorological conditions can help identify risk areas

Public health agencies and vector control use surveillance data and models
to reduce outbreaks and hopefully reduce exposures

Operational Real-time forecasting

— Key is reporting and confirming cases with limited delay
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