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How fast will the pathogen adapt to vaccination?
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(2) Transient dynamics and host heterogeneity

(3) Inferring variant life-history traits
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Conclusions (1)

Adaptation to vaccination is driven by:

- Introduction of escape variants by mutation
- Mutation rate
- Vaccination speed
- Non Pharmaceutical Interventions

- Invasion (or not) of the escape mutation
- Life-history traits (b,,, and d,,)

- Vaccination speed
- Non Pharmaceutical Interventions

But invasion does not imply fixation

If there is invasion, what is the speed of adaptation?



(2) Transient dynamics in heterogeneous
host populations

Gandon, S., & Lion, S. (2022). Targeted vaccination and the speed of SARS-CoV-2
adaptation. PNAS, 119(3)
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Speed of adaptation

The frequency of a vaccine-adapted variant changes as follows

Pm = Pm(1 — Dm)Sm

Where:
pm(l — pm) is the genetic variance
S = I,y — T, is the selection coefficient

How to account for host heterogeneities in s,,,?
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Host heterogeneity

ﬂ
High transmission Low transmission
Low mortality High mortality

Who should we vaccinate?

Aim #1: reduce mortality (epidemiology)

Aim #2: slow down adaptation (evolution)
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Speed of adaptation

Consider a mutation of small effect: e = e,,, — ¢,
The selection coefficient can be approximated by:

dR,, f
de,

Sm = EV

Where:

Rm
de;,

transitions between classes (transmission, recovery...)
« f is a vector of class frequencies: host class « quantity »
(fraction of the pathogen population in a given class)
v Iis a vector of reproductive values: host class « quality »
(contribution to the future of the pathogen population)

IS a matrix that collects all the effects of the mutation and
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Approximate speed of adaptation

sm = B(1 —c(t))AE(St + Mm28H)

A vaccine-adapted variant will spread faster if:

« transmission is high and there is less control (i.e. c(t) small)
« the mutation has a large effect on immunity escape

« the densities of vaccinated uninfected hosts are high

In addition, the evolutionary weight of hosts with more contacts is M2,
so a 2-fold increase in contact number translates into a

4-fold increase in evolutionary quality (for the pathogen).



Mutant frequency

Targeted vaccination

vaccination
NPI NPI
Targeting hosts with more
contacts speeds up the spread
- Novasdinaon of vaccine-adapted variant
— Ttk Lot
100 200 300 400 500



Mutant frequency

Incidence

1.00 1

0.754

0.50 4

0.25 4

0.00 4

0.20 4

o
S
(6)]

e
o

0.05 4

0.00 4

NPI

NPI

Targeted vaccination

vaccination

- = = No vaccination
- Target H hosts
- Target L hosts

Targeting hosts with more
contacts speeds up the spread
of vaccine-adapted variant

Targeting hosts with more
contacts delays the epidemic
but yields higher epidemic peak



Mutant frequency

Incidence

Deaths

1.00 1

0.754

0.50 4

0.25 4

0.00 4

0.20 4

0.154

0.104

0.05 4

0.00 4

0.02 4

0.01 4

0.00 1

Targeted vaccination

vaccination

NPI NPI

- = = No vaccination
- Target H hosts
- Target L hosts

Targeting hosts with more
contacts speeds up the spread
of vaccine-adapted variant

Targeting hosts with more
contacts delays the epidemic
but yields higher epidemic peak

Targeting hosts with more
contacts yields a higher
cumulated number of death



Conclusions (2)

The analysis of deterministic models can be used to
understand the transient (and long-term) evolutionary
impact of public health interventions in
heterogeneous host populations



Conclusions (2)

The analysis of deterministic models can be used to
understand the transient (and long-term) evolutionary
impact of public health interventions in
heterogeneous host populations

Public health recommendations need to integrate not
only epidemiological and social dimensions, but also
their potential evolutionary consequences



Conclusions (2)

The analysis of deterministic models can be used to
understand the transient (and long-term) evolutionary
impact of public health interventions in
heterogeneous host populations

Public health recommendations need to integrate not
only epidemiological and social dimensions, but also
their potential evolutionary consequences

Numerous extensions towards further biological
realism are possible: natural immunity, age structure,
spatial structure, number of vaccine doses, multilocus
dynamics...
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