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(2) Transient dynamics in heterogeneous
host populations

Gandon, S., & Lion, S. (2022). Targeted vaccination and the speed of SARS-CoV-2 
adaptation. PNAS, 119(3)

with S. Lion
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How to account for host heterogeneities in ? 
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Host heterogeneity

Who should we vaccinate?

Aim #1: reduce mortality (epidemiology)

Aim #2: slow down adaptation (evolution)

High transmission
Low mortality

Low transmission 
High mortality
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Consider a mutation of small effect: 

The selection coefficient can be approximated by:

Speed of adaptation

Where:

• is a matrix that collects all the effects of the mutation and 

transitions between classes (transmission, recovery…)

• is a vector of class frequencies: host class « quantity »

(fraction of the pathogen population in a given class)

• is a vector of reproductive values: host class « quality »

(contribution to the future of the pathogen population)



Another toy model

L
o

w
-t

ra
n

sm
is

si
o

n
 

h
o

st
s 

(h
ig

h 
ri

sk
)

H
ig

h
-t

ra
n

sm
is

si
o

n 
h

o
st

s 
(l

o
w

ri
sk

)
ℎ

𝜌 𝑒 ℎ

ℳℎ

ℳ𝜌 𝑒 ℎ



Another toy model

L
o

w
-t

ra
n

sm
is

si
o

n
 

h
o

st
s 

(h
ig

h 
ri

sk
)

H
ig

h
-t

ra
n

sm
is

si
o

n 
h

o
st

s 
(l

o
w

ri
sk

)
ℎ

𝜌 𝑒 ℎ

ℳℎ

ℳ𝜌 𝑒 ℎ

Contact rate Mortality



Approximate speed of adaptation



Approximate speed of adaptation



Approximate speed of adaptation

A vaccine-adapted variant will spread faster if:

• transmission is high and there is less control (i.e. small)



Approximate speed of adaptation

A vaccine-adapted variant will spread faster if:

• transmission is high and there is less control (i.e. small)

• the mutation has a large effect on immunity escape



Approximate speed of adaptation

A vaccine-adapted variant will spread faster if:

• transmission is high and there is less control (i.e. small)

• the mutation has a large effect on immunity escape

• the densities of vaccinated uninfected hosts are high



Approximate speed of adaptation

A vaccine-adapted variant will spread faster if:

• transmission is high and there is less control (i.e. small)

• the mutation has a large effect on immunity escape

• the densities of vaccinated uninfected hosts are high

In addition, the evolutionary weight of hosts with more contacts is , 
so a 2-fold increase in contact number translates into a
4-fold increase in evolutionary quality (for the pathogen).
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Targeted vaccination

time
0          100        200        300        400        500 0          100        200        300        400        500 

vaccination

Targeting hosts with more
contacts yields a higher
cumulated number of death

Targeting hosts with more
contacts delays the epidemic
but yields higher epidemic peak

Targeting hosts with more
contacts speeds up the spread 
of vaccine-adapted variant
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Conclusions (2)

The analysis of deterministic models can be used to 
understand the transient (and long-term) evolutionary 
impact of public health interventions in 
heterogeneous host populations

Public health recommendations need to integrate not 
only epidemiological and social dimensions, but also 
their potential evolutionary consequences

Numerous extensions towards further biological 
realism are possible: natural immunity, age structure, 
spatial structure, number of vaccine doses, multilocus
dynamics...
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