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Seasonal epidemics



Seasonal epidemics

Onset of epidemic season

If susceptible population exceeds threshold

an epidemic occurs
↓

During epidemic season

SIR-type epidemic – burn-out
↓

Between epidemic seasons

Other processes add to size of susceptible population
↓

• Strong seasonal component

• Discrete renewal of hosts
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Outline

• The single deterministic epidemic in a structured

population

• Virus competition in seasonal epidemics

• Seasonal epidemics in the description of influenza

epidemiology
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Phase Portrait for the SIR-model
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SIR-model no demographics

S′(t) = −R0SI
I ′(t) = R0SI − I

dI/dS = −1 + 1/R0S

SIR-model with demographics

S′(t) = −R0SI+µ(1− S)
I ′(t) = R0SI − I−µI
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The single epidemic – Structured population

Ṡk = −Sk
∑
j

bkjIj

İk = Sk
∑
j

bkjIj − νIk

• Final size in terms of φk = Sk(∞)/Sk(0) determined by n implicit
equations.

• There exists a unique positive root iff R0 > 1 (provided B is
nonnegative and primitive)

Andreasen(2011) Rass & Radcliffe: Spatial deterministic epidemics (2003)
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The single epidemic – proportionate mixing

Ṡk = −τkΛSk
İk = τkΛSk − νIk
Λ =

∑
σkIk k = 1, . . . n

• Proportionate mixing in the sense of Barbour (1978): bkj = τkσj

• Threshold: R0 = 1
ν

∑
k τkσkSk(0) > 1

• Final size can be found analytically – as an implicit function in φ =
SJ(∞)/SJ(0) for index group J = k

• The epidemic in the structured population is smaller than that of
a homogeneously mixing population with same R0 provided that
Cov(σ, τ) > 0

Gart(1968) Andreasen(2011) Katriel (2012) Clancy & Pearce (2012)
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Seasonal epidemics - coexistence

• Inspired by the gypsy-moth NPV system

• Gypsy moth is an annual insect - larvae hatch in spring

• Larvae get infected with NPV by eating contaminated leaves

• After ca 2 weeks infected larvae burst and spread new virus

• A few virus particles survive the winter and seed the epidemic next year

Gypsy Moth
(Lymantria dispar)

Larvae with Nuclear
Polyhedrosis Virus

Experimental
epidemics

G Dwyer et al, Am. Nat. 156: 105 (2000)
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Season-to-season model - Formulation Joint w G Dwyer
Am Nat 201: 639 (2023)

During the season: Ṡ = −RI
0SI

İ = RI
0SI − I

Start of next season:
Sn+1(0) = 1− In+1(0)

In+1(0) = WI

∫ ∞
0

In(t) dt = WIZ
n(∞)

Final size: Zn(∞) + 1
RI

0
log(1− Zn(∞))/(1− In(0)) = 0

S, I given as fraction of total population at onset.
Z Removed/recovered is given implicitly since Z = 1− S − I.
Time in units of duration of infection.

Theorem: If RI
0 > 1, then there exists a unique stable equilibrium I†(0).
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Invasion condition for a new strain Y

Assume that I(0) = I†(0) is at equilibrium and Y (0)� I(0).
Will Y (0) for next season increase?

Ṡ = −RI
0SI − uRY

0 SY

İ = RI
0SI − I

Ẏ = uRY
0 SY − uY

Y (0) increases if:

Y next(0) = WY

∫ ∞
0

uY (t) dt > Y (0)
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Linearization

Assume that RY
0 is sufficiently small that repeated epidemics does not

occur: RY
0 S

I
∞ < 1.

Since Y (0)� I(0), Y (t)� I(t) for all t

By linearization, the red term vanishes

Ṡ† = −RI
0S
†I†−uRY

0 S
†Y

İ† = RI
0S
†I† − I†

Ẏ = uRY
0 S
†Y − uY

Since the problem is now linear in Y (0) we may assume Y (0) = 1
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Solving the model

Express dynamics in terms of x = 1− S x ∈ (I0;x
∗)

I ′(x) = 1− 1

RI
0(1− x)

I(I0) = I0

Y ′(x) = u

(
RY

0 (1− x)

RI
0(1− x)I(x)

− 1

RI
0(1− x)I(x)

)
Y (x) Y (I0) = 1

where

I(x) = x+
1

RI
0

log(1− x)/(1− I0)
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Assymptotic expansion in WI � 1

(WI � 1 coresponds to I0 = WI(1− S†(∞))� 1)

Y
′
(x) =

u

RI
0I(x)

(
RY

0 −
1

1− x

)
Y (x) Y (I0) = 1

where I(x) = x+ 1

RI0
log(1− x)/(1− I0)

For I0 = 0, x = 0 is a regular singular point and solutions have the form

Y (x) = x
γ
A(x)

where γ = u(RI
0 − 1)/(RY

0 − 1) is the incidental coefficient and A is an analytical

function (Fuchs)

Thus Y (0) = 0 for all solutions and we use multiple time scales to find the solution on

the short time scale.
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Short time scale

Set ε = I0/u(RI
0 − 1) and τ = x/ε.

Y ′b (τ) =
Yb

1 + τ/γ
Y (I0) = 1.

Matching the solutions

Y (x) =

(
x/γε+ 1

RI
0

)γ
ξ(x)

where ξ solves ξ(0) = 1

ξ′(x) =
u
x−1 − γ

x+log(1−x)
x2

RI
0 − 1 + x+log(1−x)
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Invasion condition

We set Y (0) = 1, so Y can invade if

1 < Y next(0) = WY

∫ ∞
0

uY (t) dt

= WY

∫ ∞
0

u

(
x/γε+ 1

RI
0

)γ
ξ(x) dt

since ε = I0/u(RI
0 − 1) and I0 = WI(1− S†(∞))

≈WYW
−γ
I /D

DW γ
I < WY
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Mutual invasibility
Repeating the analysis for

I invades Y

D1W
γ
I < WY < D2W

γ
I

There exists a range of
parametervalues such that D1 < D2.
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Coexistence and seasonality

• Pathogen co-existence is possible in a seasonal environment

• Not so in a constant environment Bremermann & Thieme J Math Biol 27: 179 (1989)

• Separation in timing. Rogers Ecology 66: 701 (1985)

• Coexistence in continuous environment

• WI �WY may be relaxed in heterogeneous environments

Yellow Adder’s tongue
(Erythoronium
americanum)

Five Leaved Ivy
(Parthenocissus
quinquefolia)

Seasonal epidemics 15/29



Annual epidemics and influenza epidemiology

• Influenza’s natural history

• The epidemiology of a drifting virus

• Pruning of flu phylogeny
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Earn et al (2002)
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Reinfection of vaccinees

Pease, 1987 after Gill & Murphy 1976
Much more is known now: Koelle et al Science (2006) Kucharski et al
PLOS Bio. (2018)
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Evolutionary vs classical epidemiology

Pease(1987)
Inaba(1998, 2002)
Andreasen & Gog
(2020)
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Epidemiology of a drifting virus
discrete version of model by Pease 1987

• In each season one new strain appears

• Prior to each season the strain drifts a fixed
amount

• If possible an epidemic occurs

• Epidemic burns out before season is over

• Susceptibility and infectivity depends of number
of seasons since last infection

• SIR-type dynamics

• No vital dymanics
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Annual model for flu drift

Si : # of hosts who have not been infected in this season

and whoes most recent infection occurred i seasons ago

Ii : # of hosts who are currently infected

and whoes most recent infection occurred i seasons ago

Sn, In n or more seasons ago

At start of season
∑
Si(0) = 1

∑
Ii(0)� 1

Immunity depends on last infection σi ≤ σi+1, τi ≤ τi+1
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During epidemic

Ṡi = −τiΛSi
İi = τiΛSi − νIi
Λ = β

∑
σiIi

Outcome of epidemic φ = Sn(∞)
Sn(0)

Re =
β

ν

∑
σiτiSi(0)

If Re> 1 then 0 < φ < 1 solves
0 = log φ+ β/ν

∑
σiSi(0)(1− φτi)

and φτi = Si(∞)/Si(0)
If Re< 1

No epidemic φ = 1
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Year-to-year dynamics
(onset → onset)

F :


S1

S2
...

Sn−1

 7→

∑

(1− φτi)Si
φτ1S1

...
φτn−2Sn−2


Sn = 1−

∑
Si is redundant

Γ = {S |
∑
Si ≤ 1, si ≥ 0 } F : Γ→ Γ

Case n = 3, τi = 1,
i.e. infectivity reduction only; ⇒ φ-eqn simplifies
0 = log φ+ q(1− φ) q = R0

∑
σiSi(0)
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Bifurcation diagram for annual flu epidemics, n = 3

Andreasen 2003
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Attractor in annual flu model, n = 3

Andreasen JMB (2003) Roberts et al JMB (2019)
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Virus Phylogenies

Dushoff et al unpubl, Data from Rambaut et al 2001 and Fitch 1997
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Pruning the flu tree
w. A Sasaki, 2006

• Strain a sweeps through the population
• Strain b then enters the population

3 2 1 0 years ago

• → • → • → • a-lineage

↘
• b-lineage

Cross-immunity (infectivity reduction) to b-strain ρk
Only the fraction v of hosts can be reinfected

S1 Sk, k ≥ 2
Infected this season ρ1 = τ1 ρk = τ2
Not infected in season ρ1 = τ1 ρk = τk = 1− αk
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Branching conditions

Andreasen & Sasaki, TPB (2006)
Agent-based approach: Ferguson et al Nature (2003) Tria et al J Stat Mech: Theor Exp (2005)
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Applications

• Disease-induced selection in diploid hosts (Gillespie, 1975)
• Disease regulation of (insect) hosts (May, 1985; Dwyer et al 2000)
• Disease in life-stock (Roberts & Heesterbeek, 1998)
• Influenza drift (Andreasen,2003)
• Influenza drift and epidemic size (Boni et al, 2004)
• Age-structured populations (Andreasen & Frommelt, 2005))
• Pruning of influenza phylogeny (Andreasen & Sasaki, 2006)
• Skipping dynamics of childhood diseases (Stone et al, 2007)
• Influenza-immunology: The original anti-genic sin

(Kucharski & Gog, 2012)
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