Spatially extended SIR models & quadratic growth
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Exponential vs quadratic growth

Examples
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To display:

e Exponential growth? = InN proportional to t
e (Quadratic growth? = N2 proportionalto t
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in the 2014—15 Ebola epidemic in West Africa (Santermans et al., 2016). However, that the growth turns out to be quadratic to
high accuracy already since January 20 is rather surprising and has not previously been predicted by any of the recently
developed models of the COVID-19 epidemic (Chen et al., 2020; Liang, Xu, & Fu, 2020; Zhou, Liu, & Yang, 2020). It is therefore

important to verify the credibility of the officially released data; see Robertson et al. (2019) for similar concerns in another
context.



Early exponential growth?
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t = days since January 20

Residual? res = [N(t)/Ng¢(t) — 1] Ngi (t) = exp[(t —to)/7] (exponential fit).



Comparison: quadratic growth (first part)
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Quadratic growth also for the second part
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The temporal growth in the number of deaths in the COVID-19 epidemic is subexponential.
Here we show that a piecewise quadratic law provides an excellent fit during the thirty
days after the first three fatalities on January 20 and later since the end of March 2020.
There is also a brief intermediate period of exponential growth. During the second
quadratic growth phase, the characteristic time of the growth is about eight times shorter
than in the beginning, which can be understood as the occurrence of separate hotspots.
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t = days since January 20

res = [N (t)/Ng¢ () — 1]

N (t) = [(t —to)/7]*



Quadratic growth still persists today
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SIR model with spatial extent
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e Usually just exponential growth + saturation

— Now also spreading (depends on A and k)
— Constant front speed ¢ = 2v/Ax (Murray, 2003)

— width /s/A=10"%



Originally by Noble (1974, Nature 250, 726)

1350

1349

1348

Fig. 1 Approximate chronology of the black death, 1347 to
1350 (From The Black Death by William L. Langer. Copyright
€ 1964 by Scientific American, Inc. All rights reserved.)

At the time of the Black Death (1347 Ap) the population
density U of Europe was about 50 mile 2. To try to get a rough
idea of what D should be, we note that communication was
such that one might expect minor news or gossip to diffuse a
distance on the order of 100 miles in a year, that is D~ 104
mile? yr! (ref. 4). The area swept out in ambulation at a
nominal 1 mile h-! slow walk, assuming < fb> ~0.5 foot (corres-
ponding to a 5-foot flea-hop times a 109 average transmission
probability) is 0.4 mile? yr*! and so KU~20 yr-!. Assuming
a mortality rate of p~15 yr! (corresponding to a 2-week
infectious period) we expect a velocity of propagation of 200-
400 mile yr=*. This velocity is in substantial agreement with
that which can be estimated from Fig. 1. (All the numbers
given above were educated guesses, but the resulting speed is
insensitive to their values since v~/ KUD. My object in making
these guesses was primarily to indicate the reasonableness of
the model and its predictions.)

e 1000 km?/yr
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How long can left and right handed life
forms coexist?

Axel Brandenburg and Tuomas Multamaki
NORDITA, Blegdamsvej 17, DK-2100 Copenhagen @, Denmark

Abstract: Reaction-diffusion equations based on a polymerization model are solved to simulate the
spreading of hypothetic left and right-handed life forms on the Earth’s surface. The equations exhibit
front-like behavior as is familiar from the theory of the spreading of epidemics. It is shown that the
relevant time scale for achieving global homochirality is not, however, the time scale of front
propagation, but the much longer global diffusion time. The process can be sped up by turbulence and
large scale flows. It is speculated that, if the deep layers of the early ocean were sufficiently quiescent,
there may have been the possibility of competing early life forms with opposite handedness.

Received 3 April 2004, accepted 31 July 2004

Key words: exobiology, homochirality, origin of life.
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Excess on outer periphery?

e 123 discs?
e 126 discs?
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Excess on outer periphery?

e 123 discs?
e 126 discs?
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SIR model with spatial extent: multiple spreading centers

-3 -2 -1 2 o 3

Date when first case in each first-level administration &~
was reported

e Other 8 hotspots with much smaller initial /.

e Growth faster because of larger surface area



20 100 150 200 250 3
t

0 200 400 600 800 1000

1.0 E_ (b) ------ = -
0.8} + = . .

: (1) N ;
0.6 o) .

0.4 F R .

0.2F T -
00—
0 200 400 600 800 1000

<[>1/7?

pawIjuod Apoajiad ymoab onelpenb asimadaid



Piecewise quadratic:
depends on # of structures

e Overshoot (spike)?

o Offset?

— Not captured by simple
peripheral growth model
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Difference: without/with spatial extent

100 R
u=0
10 2 0.02% _
0.1
107* - S
10 6 10% _
0 50 100 150 200

e Saturation very quickly
e Declinein 0D

e But further spreading in 2D




Speed depends on k (diffusivity)
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determined quantity

e Comes out as huge =2 to
be checked

e Spatially variable k 2
intermediate decline?
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affected continents on the Earth. Assuming that k= (A72k?) !, we see that with k=(1000 km)~', 1 = (10days) ', and 7 =
1 day, we have k=10%km?/ day, which is much larger than the diffusion coefficient estimated for the spreading of the Black
Death in 1347, for which a diffusion coefficient of the order of 102km2/ day has been estimated (Noble, 1974).



Late decrease in slope: how to model this?
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e Finally consequence of containment?



Modeling late decrease

e Natural consequence of
merging hotspots

e Slope close to that at the
beginning
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(a) No reinfection, low recovery = =
(b) Same with reinfection %j
(c) Same as (b), but with larger recovery %
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Increase of slope modeled by increasing K
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e |san empirically determined quantity
e Comes out as huge = to be checked

e Spatially variable k = intermediate decline?



Model decrease as decrease of reinfection rate
(make vy decrease smoothly)
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Conclusions

e Piecewise quadratic growth observed
— Explained by peripheral growth
— Second phase explained several hotspots
— Third phase explained by merging

e Useful descriptive model
e |mplications?

— Near-saturation locally

— Subsequent spreading
e Can this be substantiated?

Date when first case in each first-level administration &
was reported



