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SPILLOVERS: A GROWING THREAT

Deforestation and other changes have increased the likelihood of
animal viruses jumping into people, with globalization and a higher
density of human populations having increased the chance that

Number of continents

such spillover events will be catastrophic. The annual economic 1 2 3 4 5 6
loss from viral zoonoses since 1918 is US$212 billion.
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*Data are from viral outbreaks of zoonotic origin that resulted in ten or more deaths; figures in parentheses are total estimated
deaths spread over multiple years (and over multiple outbreaks, in some instances) rounded to the nearest ten.
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The virion as the unit of selection
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Process scales
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Process scales

integrating theory across scales of viral fitness
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fitness considerations: the virus has to maintain functional
genotypes and generate genetic vatiation

constraints: processes of generating variation also introduce
deleterious variation and the mutational neighbourhood of a
genotype may affect its fitness [1]

fitness considerations: the virus has to replicate its genetic
material and proteins, then package into virions and exit the
cell

constraints: there may be trade-offs between replication
speed and replication fidelity [2] and immune activation [3].
Sociovirological concerns may be relevant [4]
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Figure 1. Integrating theory across scales of viral fitness. 1, [44]; 2, [45]; 3, [46]; 4, [47]; 5, [48]; 6, [21]; 7, [49]; 8, [50]; 9, [51]; 10, [10]; 11, [52]. Created with

Biorender.com. (Online version in colour.)

E. Visher, M. Boots, Proceedings of the Royal Society B: Biological Sciences. 287,20201230 (2020).
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Mechanisms of spillover

Data and models: linking virology, immunology, 4 ‘ b

physiology with ecology & epidemiology
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Figure 1. Biological data needed to understand and predict spillover (left) aligned to the key
mechanisms of spillover (right). In addition, epidemiology and social sciences are employed to
understand human exposure. Adapted from Plowright et al. [1].

R. K. Plowright, P. J. Hudson, Viruses. 13, 1298 (2021).
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Intraspecific transmission

1. With implicit within-host processes 2. With explicit within-host processes
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Across-population transmission

But what is s?
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.Natl. Acad. Sci. U.S.A. 93, 4398-4402 (1996).
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Multi-species (n) and multi-pathogen (m) SIS
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Species contact structure where we can
define for instance “species overlap”
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Basic reproduction number (R, or R)) given by the spectral radius R. — D (_ TZ‘l)
of the next-generation matrix: 0



Deterministic approximation of evolutionary dynamics

ds; dR/(s;,S)
dt ds.




Host adaptation: niche evolution
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|. ultra partitioning (NVH)
2. strict phenotypic differentiation (NVH)
3. dual expansion (NVH)

4. parallel release

5. homogenizing generalization
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Resources
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® beluga whale
® gulls
@® roe deer
® mouflon
® chamois
® ringed seal
® Nucella
® Tropidurus
® Ameiva ameiva
® perch
Brazilian frogs
® Micrablepharus
® Anolis
® Cnemidophorus
® three-spine stickleback



(New)

Population 1 Population 2

Virus host-adaptation
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Evolutionary 5
adaptation
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Compatibility space

Population 1 and 2 has a 0.01
overlap.

All parameters are fixed
except of niche position.

Neutral cost to generalism.
(1) Degree of host specificity?

(2) Degree of cross-species
interaction?



Example: Pairwise invisibility plots
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Spillover

Adaptation
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Spillover

Species overlap = 0.01 Species overlap = 0.5
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Host width can evolve

Replication- and cell-infection rates can evolve

Antigenic drift/adaptation (Willian Silva)

Virulence feedback to contact rates (Willian Silva)

Explicit network-based species contact structure (Peter Fransson)

Phylogenetic pathogen-host compatibility space (Peter Fransson)
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