Consequences of waning immunity

Population level protection vs. herd-immunity

James Bull Rajat Desikan Katia Koelle Jennie Lavine

Consequences of waning immunity to respiratory viruses – Cov-2 is not measles

- Waning and boosting of immunity to influenza and CoVs
- Measures of immune efficacy <-- Halloran, Longini and others
- A toy model for the consequences of waning immunity
 - Disease prevalence vs severity
 - Antigenic changes
- Open puzzles
 - What are the rules for waning and boosting of immunity

Waning immunity and reinfection for endemic hCoV's

Virus spikes indicate reinfections every few years

Serology – antibody titers

Galanti et al JID 2020

Edridge et al Nat. Med. 2020

Experimental infections

Shedding after first innoculation

From Zhou et al 2013 plotted in Lavine et al 2021

Seroprevelance

Individuals cannot rely on COVID-19 herd immunity: Durable immunity to viral disease is limited to viruses with obligate viremic spread

Jonathan W. Yewdell 🔯

Virus	Initial Infection Site	Lymph/Blood Dissemination for Disease/ Transmission	Durable Immunity Infection	Durable Immunity Vaccination
Corona	Airway	No	No	N/A
Influenza A, B	Airway	No	No	No
Metapneumonia	Airway	No	No	No
Parainfluenza 1–3	Airway	No	No	N/A
Respiratory Syncytial	Airway	No	No	N/A
Rhino	Airway	No	No	N/A
Ebola	Airway	Yes	Yes	Yes
Measles	Airway	Yes	Yes	Yes
Mumps	Airway	Yes	Yes	Yes
Parvovirus	Airway	Yes	Yes	N/A
Rubella	Airway	Yes	Yes	Yes
Varicella	Airway	Yes	Yes	Yes
Variola	Airway	Yes	Yes	Yes
Noro	Gastrointestinal	No	No	
Rota	Gastrointestinal	No	No	No
Hepatitis A	Gastrointestinal	Yes	Yes	Yes
Polio	Gastrointestinal	Yes	Yes	Yes
Dengue fever	Blood	Yes	Yes	Yes
Hepatitis B	Blood	Yes	Yes	Yes
Yellow Fever	Blood	Yes	Yes	Yes

https://doi.org/10.1371/journal.ppat.1009509.t001

Yewdell PLOS pathogens 2020

Measures of immune efficacy

Immune efficacy IE

$$IE = 1 - RR$$

Outline of the model

Transition from epidemic to endemicity

Transition from severe epidemic to relatively mild endemicity (as individuals acquire immunity against disease)

Distribution of immunity in the population

Comparison of infecteds for low and high Ro

Comparison of infecteds for low and high Ro

Increasing transmission

increases infection prevalence but decreases disease burden

Relationship between transmission and disease

Reduce susceptibility vs protection from disease

Implications for NPIs and vaccination

- For highly transmissible respiratory infections reducing transmission will reduce infection prevelance but may not reduce disease
- Vaccines
 - Focus on reducing disease rather than reducing community transmission (herd immunity)
 - Focus on the vaccinating high-risk individuals
 - Natural infection automatically keeps immunity abreast with currently circulating strains
- Similar patterns have been suggested for Dengue (Nagao and Koelle 2008 PNAS)

Waning of immunity

Quantifying the waning of immunity

Measles

Tetanus

Amanna et al NEJM 2007

Teunis et al suggest waning follows a power-law

Teunis et al Epidemics 2016

Waning of CD8 T cell immunity to YFV

Fuertes Marraco et al 2014

Akondy et al 2014

Power-laws work astonishingly well

Boosting of immunity

Strain variation gives rise to complex patterns of boosting

Strain variation gives rise to complex patterns of boosting

Fonville et al 2014 Science

Summary

- Responses to respiratory viruses show waning of immunity and reinfections
- It is important to consider different measures of protection (from infection vs disease)
- Reducing the force of infection will decrease the number of cases but may increase the frequency and number of severe infetions
- We are only just beginning to get a quantitative understand the immunological mechanisms for the waning and boosting of immunity to respiratory infections

Acknowlegments

Hasan Ahmed Jennie Lavine Veronika Zarnitsyna

Katia Koelle Rajat Desikan James Bull

NIH funding

Rafi Ahmed Susi Linderman Carl Davis Rama Akondy

Mark Slifka Ian Amanna Nichole Carson