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Introduction

Most epidemic models assume infection occurs via pairwise

interaction of individuals.

mass action models λxy

Network models

In practice, mixing occurs in groups larger than 2.

Aim of talk – develop and analyse a model in which mixing events can

involve > 2 people.

Other models with non-pairwise transmission include

Greenwood chain-bimomial model

Highly infectious household model (Becker and Dietz(1995))

Replace λxy by λf(x, y) (e.g. λxyα – O’Neill and Wen (2012)).
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Epidemic model

SIR model with infectious period ∼ Exp(γ) among a population of size n.

Mixing events occur at the points of a Poisson process having rate nλ.

Sizes of successive mixing events C
(n)
1 , C

(n)
2 , · · ·

i.i.d.
∼ C(n), where C(n) takes

values in a subset of {2, 3, . . . , n}. Suppose C
(n)
i = c. Then c individuals are

chosen uniformly at random from the population to form the mixing event.

At a mixing event of size c, any infective has probability πc of making an

infectious contact with any given susceptible, with all such contacts occurring

independently.

Infectives cannot infect susceptibles at the mixing event in which they were

infected.

Initially, mn infectives and n−mn susceptibles.

(Ball and Neal (2022), Cortez (2022))
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Example with P(C(n) = 3) = 1 and π3 = 1
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Susceptible – blue dashed, infective – red, recovered –
black dot-dash.
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Special case – P(C(n) = 2) = 1

Suppose P(C(n) = 2) = 1, so all mixing events have size
2.

If there are s susceptibles and i infectives at time t, the
probability that a mixing event involves one infective

and one susceptible is si/
(

n
2

)

= 2si
n(n−1) , so the rate at

which new infections occur is nλ× 2si
n(n−1)

× π2 =
2λπ2

n−1 si.

Model reduces to a standard homogeneously mixing
stochastic SIR epidemic with individual-to-individual

infection rate 2λπ2

n−1 and recovery rate γ.
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Outline of talk

Derive model properties

Early stages of an epidemic – branching process
approximation

Main body of an epidemic – approximating
deterministic model and functional CLT

Final outcome – CLT

Effect of π and distribution of C on epidemic properties
– comparison with standard homogeneously mixing
model

SEIR model and model with demography

Concluding comments

An epidemic model with short-lived mixing groups – p. 6



Approximating branching process B

Suppose C(n) D
−→ C as n → ∞, where P(C = c) = pC(c)

(c = 2, 3, . . . ).

The early stages of an epidemic can be approximated by a branching

process B, which assumes every mixing event that contains infectives

has one infective with all others at the mixing event being susceptible.

Consider a typical infective i∗. The probability a mixing event of size c

involves i∗ is c
n

, so mixing events involving i∗ occur at rate

nλ
∑

∞

c=2 pC(c)
c
n
= λµC , where µC = E[C], and the size C̃ of a typical

mixing event involving i∗ has the size-biased distribution

pC̃(c) = P(C̃ = c) = µ−1
C cpC(c) (c = 2, 3, . . . ).

Thus in B, an individual has lifetime ∼ Exp(γ), during which they have

birth events at rate λµC . The number of offspring Z̃ produced at a

typical birth event has the mixed-binomial distribution Bin(C̃ − 1, πC̃).
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Basic reproduction number R0

Let R be the number of offspring of a typical individual in B. Then,

R = Z̃1 + Z̃2 + · · ·+ Z̃G,

where Z̃1, Z̃2, · · ·
i.i.d.
∼ Bin(C̃ − 1, πC̃) and G has the geometric

distribution

P(G = k) =
γ

γ + λµC

(

λµC

γ + λµC

)k

(k = 0, 1, . . . ).

R0 = E[R] = E[G]E[Z̃] = λµC

γ
E[(C̃ − 1)πC̃ ] =

λ
γ

∑

∞

c=2 πcc(c− 1)pC(c).

If the infection probability πc is independent of mixing event size

(i.e. πc = π for all c), then

R0 =
λπ

γ
E[C(C − 1)].
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Extinction probability of B

Let z be the extinction probability of B given a single ancestor.

By standard branching process theory, z is given by the smallest

solution in [0, 1] of fR(s) = s, where

fR(s) =

∞
∑

k=0

γ

γ + λµC

(

λµC

γ + λµC

)k

(fZ̃(s))
k
=

γ

γ + λµC (1− fZ̃(s))
,

with (recall Z̃ ∼ Bin(C̃ − 1, πC̃))

fZ̃(s) =
∞
∑

c=2

pC̃(c)(1− πc + πcs)
c−1 =

1

µC

∞
∑

c=2

pC(c)c(1− πc + πcs)
c−1.

If πc = π for all c,

fR(s) =
γ

γ + λµC − λf ′

C(1− π + πs)
.
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Exponential growth rate r of B

Let L ∼ Exp(γ) denote a typical lifetime. The mean rate that an

individual produces offspring at age t is

P(L > t)λµCE[Z̃] = e−γtγR0 (t > 0),

so the Lotka-Euler equation is
∫

∞

0
e−rtγe−γtR0 dt = 1, yielding

r = γ(R0 − 1).

If R0 and γ are fixed, then the exponential growth rate r is the same

for all corresponding choices of the distribution of C and (πc), and

equals that of a standard homogeneously mixing epidemic.
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Threshold theorem

Theorem 1 Suppose that mn = m for all sufficiently large n, C(n) D
−→ C

and E[(C(n))2] → E[C2] as n → ∞, where E[C2] < ∞. Suppose also that

lim
n→∞

√
n

∞
∑

c=2

c

∣

∣

∣p
(n)
C (c)− pC(c)

∣

∣

∣ = 0 and lim
n→∞

∞
∑

c=2

πcc
3p

(n)
C (c) =

∞
∑

c=2

πcc
3pC(c) < ∞.

(a) Let T (n) be the final size of the epidemic E(n). Then

P(T (n) ≥ logn) → 1− zm as n → ∞.

(b) If also R0 > 1, then there exists δ > 0 such that

P(T (n) ≥ δn | T (n) ≥ logn) → 1 as n → ∞.
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Outcome of mixing event

Lemma 1 Consider a mixing event of size c, in which individuals are independently

susceptible, infective or recovered with probabilities x, y and 1− x− y. Let Z be the number

of new infectives created at the mixing event, µc(x, y) = E[Z] and µc,2(x, y) = E[Z2]. Then,

µc(x, y) = cx
[

1− (1− yπc)
c−1

]

and

µc,2(x, y) = cx
[

1− (1− yπc)
c−1

]

+ c(c− 1)x2
{

1− 2(1− yπc)
c−2 + [1− yπc(2− πc)]

c−2
}

.

Proof Label the individuals at the event 1, 2, . . . , c. Let

χi =







1 if individual i is infected at the event

0 otherwise .

Then

E[Z] = E[χ1 + χ2 + · · ·+ χc] = cP(χ1 = 1)= cP(1 is susceptible)P(1 is infected| 1 is susceptible)

= cx
[

1− (1− yπc)
c−1

]

.

An epidemic model with short-lived mixing groups – p. 12



Epidemics with many initial infectives

Let S(n)(t) and I(n)(t) be the numbers of susceptibles and infectives at time t.

{(S(n)(t), I(n)(t))} = {(S(n)(t), I(n)(t)) : t ≥ 0} is an (asymptotic) density

dependent population process (Ethier and Kurtz (1986), Pollett (1990)).

Suppose n−1mn → ε > 0 as n → ∞. Then, for any t0 > 0,

sup
0≤t≤t0

∣

∣

∣
n−1(S(n)(t), I(n)(t))− (x(t), y(t))

∣

∣

∣

p
−→ 0 as n → ∞,

where {(x(t), y(t)) : t ≥ 0} satisfies the following ODE:

dx

dt
= −λxg(y),

dy

dt
= λxg(y)− γy, (x(0), y(0)) = (1− ε, ε), (1)

where

g(y) =
∞
∑

c=2

pC(c)gc(y), with gc(y) = c
[

1− (1− yπc)
c−1].

Models of the general form (1) were studied by Capasso and Serio (1978).
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Functional CLT

In the limit as n → ∞, the process {(S(n)(t), I(n)(t))} has infinitesimal drift function

F (x, y) = (−λxg(y), λxg(y)− γy)

and infinitesimal variance/covariance matrix

G(x, y) = λh(x, y)





1 −1

−1 1



+ γy





0 0

0 1



, where h(x, y) =
∞
∑

c=2

pC(c)µc,2(x, y).

Suppose that
√
n(n−1mn − ε) → ε0 as n → ∞, where ε > 0. Then,

{√
n
[

n−1(S(n)(t), I(n)(t))− (x(t), y(t))
]

: t ≥ 0
}

⇒ {V (t) : t ≥ 0} as n → ∞,

where {V (t) : t ≥ 0} is a zero-mean Gaussian process with V (0) = (−ε0, ε0). Further,

Σ(t) = var (V (t)) satisfies the ODE

dΣ

dt
= G(x(t), y(t)) + ∂F (x(t), y(t))Σ+Σ[∂F (x(t), y(t))]⊤, Σ(0) = 0.
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Illustration of functional CLT
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100 simulated realisations of trajectories of fraction infected y(t) in population of

size n = 100, 000, with 100 initial infectives, R0 = 2 and π = 1. Left panel: C ∼

logarithmic distribution with µC = 3.95. Right panel: C ∼ geometric distribution

with µC = 5.
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Final outcome

Let τ (n) = inf{t > 0 : I(n)(t) = 0}. Then the final size T (n) of the epidemic is

given by T (n) = n− S(n)(τ (n)).

Suppose n−1mn → ε > 0 as n → ∞. Then τ (n) p
−→ ∞ as n → ∞.

Let {(S̃(n)(t), Ĩ(n)(t))}, be the random time-scale transformation of

{(S(n)(t), I(n)(t))} in which, at any time t ≥ 0, the clock is speeded up by a

factor n

I(n)(t)
.

T (n) D
= T̃ (n), where T̃ (n) = n− S̃(n)(τ̃ (n)) and τ̃ (n) = inf{t > 0 : Ĩ(n)(t) = 0}.

n−1{(S̃(n)(t), Ĩ(n)(t))}
p

−→ {(x̃(t), ỹ(t))} as n → ∞, where

dx̃

dt
= −λx̃g̃(ỹ),

dỹ

dt
= λx̃g̃(ỹ)− γ, (x̃(0), ỹ(0)) = (1− ε, ε),

with

g̃(y) =







y−1g(y) if y 6= 0,
∑∞

c=2 pC(c)c(c− 1)πc if y = 0.
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Final outcome LLN and CLT

Time-transformed deterministic model

dx̃

dt
= −λx̃g̃(ỹ),

dỹ

dt
= λx̃g̃(ỹ)− γ, (x̃(0), ỹ(0)) = (1− ε, ε).

For t ≥ 0, we have x̃(t) = 1− ỹ(t)− γt, so ỹ(t) satisfies

dỹ

dt
= λ(1− ỹ − γt)g̃(ỹ)− γ, ỹ(0) = ε.

Note τ̃ε = inf{t > 0 : ỹ(t) = 0} < ∞, so the deterministic final size is

1− x̃(τ̃ε) = γτ̃ε.

n−1T (n) p
−→ γτ̃ε as n → ∞.

If mn = m for all n and R0 > 1, then n−1T (n) | T (n) ≥ logn
p

−→ γτ̃0 as

n → ∞.

Corresponding CLTs are available using a functional CLT for

{(S̃(n)(t), Ĩ(n)(t))} and solving the associated boundary crossing problem.
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Force of infection when πc = π for all c
Force of infection acting on an individual is

λg(y) = λ

∞
∑

c=2

pC(c)gc(y) = λ

∞
∑

c=2

pC(c)c
[

1− (1− yπ)c−1].

Recall R0 = λπ
γ
E[C(C − 1)].

Hence,

λg(y) =
γR0

πE[C(C − 1)]

∞
∑

c=2

pC(c)c(c− 1)

∫ 1

1−πy

uc−2 du = γR0U(y),

where

U(y) =
1

π

∫ 1

1−πy

∞
∑

c=2

pC(c)c(c− 1)

E[C(C − 1)]
uc−2 du =

1

π

∫ 1

1−πy

fĈ−2(u) du =

∫ y

0

fĈ−2(1− πv) dv

and Ĉ has the "size-biased" distribution

P(Ĉ = c) =
pC(c)c(c− 1)

E[C(C − 1)]
(c = 2, 3, . . . ).

An epidemic model with short-lived mixing groups – p. 18



Model comparisons – effect of π

Recall,

U(y) =

∫ y

0

fĈ−2(1− πv) dv.

Final size τ̃ε = τ̃ε(R0, C, π) = inf{t > 0 : ỹ(t) = 0} < ∞, where ỹ(t) satisfies

dỹ

dt
= γR0

U(ỹ)

ỹ
(1− ỹ − γt)− γ, ỹ(0) = ε.

Extinction probability z = z(R0, C, π) is the smallest solution in [0, 1] of

1

1 +R0U(1− s)
= s.

For fixed R0 and event size distribution C,

τ̃ε(R0, C, π) decreases with π and z(R0, C, π) increases with π.

When P(C = 2) = 1, τ̃ε and z are independent of π, say τ̂ε(R0) and ẑ(R0).

τ̃ε(R0, C, π) ↑ τ̂ε(R0) and z(R0, C, π) ↓ ẑ(R0) as π ↓ 0.
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Model comparisons – effect of C

Recall,

U(y) =
1

π

∫ 1

1−πy

fĈ−2(u) du.

PGF ordering of random variables

C ′
g

≤ C if and only if fC′(s) ≥ fC(s) for all 0 ≤ s ≤ 1.

Suppose π is fixed and Ĉ ′
g

≤ Ĉ. Then,

τ̃ε(R0, C
′, π) ≥ τ̃ε(R0, C, π), with strict inequality if C

D

6= C ′.

z(R0, C
′, π) ≤ z(R0, C, π), with strict inequality if R0 > 1 and C

D

6= C ′

For any C with P(C = 2) < 1 and any π ∈ (0, 1],

τ̃ε(R0, C, π) ≤ τ̂ε(R0), with strict inequality if ε > 0 or R0 > 1.

z(R0, C, π) ≥ z(R0), with strict inequality if R0 > 1.
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Large mixing events

Suppose all mixing events have size c. Then in the deterministic

model

dy

dt
=

γR0

(c− 1)π

[

1− (1− yπc)
c−1

]

x− γy

≤ γ

[

R0

(c− 1)π
− y

]

=⇒ y(t) ≤
R0

(c− 1)π
for all t.

If c is large,

epidemics have long duration,

size of epidemic is only just greater than 1− 1
R0

.
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Large mixing events
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Trajectories of fraction susceptible x(t) and fraction infective y(t) when R0 = 2,

γ = 1, π = 1 and initial fraction infective ε = 0.001. * indicates when x(t) = 1/R0.

An epidemic model with short-lived mixing groups – p. 22



Event size distributions

Logarithmic C ∼ Log(α).

pC(c) = κα
(1− α)c

c
(c = 2, 3, . . .),

where κα = [− log(α)− (1− α)]−1.

µC = κα(1−α)2

α
, R0 = λπκα(1−α)2

γα2 ,

U(y) = αy

α+(1−α)πy
, fĈ−2(s) =

(

α
1−(1−α)s

)2

.

Deterministic model explicitly soluble in the (x, y) plane (Capasso and

Serio (1978), Cortez (2022)).

Geometric C ∼ Geom(α)

pC(c) = (1− α)c−2α (c = 2, 3, . . .).

µC = 1 + α−1, R0 = 2λπ
γα2 ,

U(y) = αy[2α+(1−α)πy]

2[α+(1−α)πy]2
, fĈ−2(s) =

(

α
1−(1−α)s

)3

.
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SEIR final size τ̃0
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C ∼ Log(α), α = 1, 0.55, 0.35, 0.2, 0.1 (µC = 2.00, 2.21, 2.59, 3.54, 5.78),

R0 = 2, γ = 1, latent period ∼ Exp(δ)
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Concluding comments

New class of epidemic models in which disease transmission is via

mixing events

For fixed R0, the distribution of mixing event size C has a significant

impact on epidemic properties

Standard homogeneously mixing model (C ≡ 2) is a worst-case

scenario

Extensions

non-exponentially distributed infectious periods

Other models for transmission at mixing events

household models

multitype models
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