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• Significant amount of phylogenetic uncertainty

• More parameters to be estimated with a limited amount of information

• Cannot directly estimate the timing of index case
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Sequence-based appraoch relying on phylogeny

Guinat et al. (Trends in Ecology & Evolution 2021)



• Significant amount of phylogenetic uncertainty

• More parameters to be estimated with a limited amount of information

• Cannot directly estimate the timing of index case
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Phylogeny-based approaches could be limited under 
low viral genetic diversity

Guinat et al. (Trends in Ecology & Evolution 2021)



• Significant amount of phylogenetic uncertainty

• More parameters to be estimated with a limited amount of information

• Cannot directly estimate the timing of index case
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Phylogeny-based approaches could be limited under 
low viral genetic diversity

Guinat et al. (Trends in Ecology & Evolution 2021)

Jhwueng et al. (Diversity, 2022)



• Significant amount of phylogenetic uncertainty

• More parameters to be estimated with a limited amount of information

• Cannot directly estimate the timing of index case
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Phylogeny-based approaches could be limited under 
low viral genetic diversity

Guinat et al. (Trends in Ecology & Evolution 2021)

Pekar et al. (Science, 2021)
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Phylogeny-free approach:
Using genetic variation as time series
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The number of segregating sites
• Classic population genetic statistic summarizing genetic diversity
• The number of sites with more than one allele
• Directly obtained from sequence data
• Depends on the sample size
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Phylogeny-free approach:
Using genetic variation as time series
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Phylogeny-free approach:
Using genetic variation as time series
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Segregating site trajectory is obtained by
• Determine the window size for time series
• Bin sequences according to the sampling date
• Count the number of segregating sites for each window
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Segregating site trajectories are 
informative of the underlying dynamics 
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Estimation of 
R0 and timing of the index case

with application to early France
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State-space model and particle filtering
Model and inference framework:
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https://kingaa.github.io/pomp/vignettes/getting_started.html
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State-space model and particle filtering
Model and inference framework:
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State-space model and particle filtering
Model and inference framework:

Endo et al. (Epidemics. 2020)



State-space model and particle filtering
Model and inference framework:
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State-space model and particle filtering
Model and inference framework:
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State-space model and particle filtering
Model and inference framework:
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State-space model and particle filtering
Model and inference framework:
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Observation process obtains particle weight
Model and inference framework:

https://kingaa.github.io/pomp/vignettes/getting_started.html
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Observation process obtains particle weight
Model and inference framework:

https://kingaa.github.io/pomp/vignettes/getting_started.html

(observation process)The number of 
segregating sites

Sampling
𝑛! samples 

I R

𝑠!"!# = 3

3

3

7

2 {3}
{3,4 }
{3,4 }
{3,    8 , 9 }G

en
et

ic
 

di
ve

rs
ity

Time

𝑛! = 4
𝑠! = 4

https://kingaa.github.io/pomp/vignettes/getting_started.html


19

Observation process obtains particle weight
Model and inference framework:
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Observation process obtains particle weight
Model and inference framework:
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Estimation of R0
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Validation using simulated data:

True R0

Mock data with proportional sampling is used
True R0 is recovered



Joint estimation of R0 and timing of index case 
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Validation using simulated data:

Mock data with proportional sampling is used
True R0 and t0 is recovered True R0

True t0
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Statistical evaluation of hypotheses 
regarding transmission dynamics

with application to early Wuhan

In-progress work:



Pekar et al. (Science 2022)

Two SARS-CoV-2 lineage in early Wuhan

C8782 
T28144

T8782 
C28144
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Single-introduction

(1) 

(2) (3) 
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Index case

∅
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Multiple-introduction

!! !" !# !$ !%!&,(

Index case 
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Index case
for lineage Y

!&,)
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Single vs. multiple introduction hypotheses
Model selection:

Estimation of t0 and R0 for the 
ancestor lineage

Joint estimation of t0,A, t0,B and R0 

for the lineages A and B and ndiff

Compare 
AIC

AIC = 2𝑘 − 2ln(6𝐿)
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Simulating dynamics using generation time
Single-introduction model:

(1) 

(2) (3) 

𝑡! 𝑡!$%

Window 
starts

(4) 

∅

{1,2}

∅

{3}
{3, 4}

1) Number of secondary infections
2) 
3) 
4)

Repeated until every individual infected 
in a window reproduces

infection sampling

infection-to-sampling

secondary
infection

generation time

primary
infection

{5}

Window 
ends

𝑡!&%
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Simulating dynamics using generation time
Single-introduction model:

(1) 

𝑡! 𝑡!$%

Window 
starts

∅
1) Number of secondary infections 

Window 
ends

𝑡!&%

Negative binomial distribution 
parameterized based on 𝑅', 𝑘
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Simulating dynamics using generation time
Single-introduction model:

(1) 

(2) 

𝑡! 𝑡!$%

Window 
starts

∅
1) Number of secondary infections
2) Timing of secondary infections

Window 
ends

𝑡!&%

Zhao et al. (Epidemics. 2021)

Gamma distribution 
(𝜇 = 6.7, 𝜎 = 1.8)
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Simulating dynamics using generation time
Single-introduction model:

(1) 

(2) (3) 

𝑡! 𝑡!$%

Window 
starts

∅
1) Number of secondary infections
2) Timing of secondary infections
3) Sampling time of secondary infections

Window 
ends

𝑡!&%

Infection-to-sampling

Infection Sequenced
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Simulating dynamics using generation time
Single-introduction model:

(1) 

(2) (3) 

𝑡! 𝑡!$%

Window 
starts

∅
1) Number of secondary infections
2) Timing of secondary infections
3) Sampling time of secondary infections

Window 
ends

𝑡!&%

Infection-to-sampling

Infection Symptom onset Sequenced

Onset-to-samplingIncubation period
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Simulating dynamics using generation time
Single-introduction model:

(1) 

(2) (3) 

𝑡! 𝑡!$%

Window 
starts

∅
1) Number of secondary infections
2) Timing of secondary infections
3) Sampling time of secondary infections

Window 
ends

𝑡!&%

Infection-to-sampling

Incubation period

Infection Symptom onset Sequenced

Log-normal distribution
(𝜇 = 5.2, 𝜎 = 3.9)

Li et al. (N Engl J Med. 2020)
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Simulating dynamics using generation time
Single-introduction model:

(1) 

(2) (3) 

𝑡! 𝑡!$%

Window 
starts

∅
1) Number of secondary infections
2) Timing of secondary infections
3) Sampling time of secondary infections

Window 
ends

𝑡!&%

Infection-to-sampling

Onset-to-samplingIncubation period

Infection Symptom onset Sequenced

Obtained by matching
• symptom onset date 

from the literature
• sampling dates of 

sequences
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Simulating dynamics using generation time
Single-introduction model:

(1) 

(2) (3) 

𝑡! 𝑡!$%

Window 
starts

∅
1) Number of secondary infections
2) Timing of secondary infections
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Window 
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Infection-to-sampling

Onset-to-samplingIncubation period

Infection Symptom onset Sequenced
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Simulating dynamics using generation time
Single-introduction model:

(1) 

(2) (3) 

𝑡! 𝑡!$%

Window 
starts

(4) 

∅

{1,2}

{3}

1) Number of secondary infections
2) Timing of secondary infections
3) Sampling time of secondary infections
4) Number of mutations

Window 
ends

𝑡!&%

Poisson distribution with
mutation probability per 

transmission 𝜇
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Simulating dynamics using generation time
Single-introduction model:

(1) 

(2) (3) 

𝑡! 𝑡!$%

Window 
starts

(4) 

∅

{1,2}

∅

{3}
{3, 4}

1) Number of secondary infections
2) Timing of secondary infections
3) Sampling time of secondary infections
4) Number of mutations

Repeated until every individual infected 
in a window reproduces

{5}

Window 
ends

𝑡!&%
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Observing dynamics as segregating sites
Single-introduction model:

(1) 

(2) (3) 

𝑡! 𝑡!$%

Window 
starts

(4) 

∅

{1,2}

∅

{3}
{3, 4}

{5}

Window 
ends

𝑡!&%

𝑛() = 2
𝑠() = 4

For k grabs
• Sample ni individuals from candidates 

• Count the number of segregating sites
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Multiple-introduction model with two lineages
Multiple-introduction model:

Assumptions for lineages

• Two lineages start with their own index case

• Two lineages are not interacting with each 
other

• Two index cases have nucleotide difference 
of ndiff, which is a new parameter

• Mutation in each lineages occur in different 
sites

𝑡% 𝑡* 𝑡+ 𝑡) 𝑡,𝑡-,/

Index case for 
lineage X

Index case
for lineage Y

𝑡-,0

n d
iff
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Multiple-introduction model with two lineages
Multiple-introduction model:

𝑡% 𝑡* 𝑡+ 𝑡) 𝑡,𝑡-,/

Index case for 
lineage X

Index case
for lineage Y

𝑡-,0

Counting the segregating sites
• Individuals are sampled from each lineage

• Number of segregating sites is obtained and the 
nucleotide difference between index cases are 
summed

n d
iff

For t), 
𝑛(),/ = 2
𝑛(),0 = 2
𝑠() = 4

{1}

{1, 3}

{1’}
𝑠GHIJK = 4 + 𝑛LJMM{2’}



Data availability during the early phase and 
inference reliability

with application to Omicron variant in South Africa
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In-progress work:



• For more recently emerged VOCs, 
available sequences have accumulated 
rapidly.

• However, the temporal signal might not 
be sufficient
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Omicron BA.1 variants in South Africa

Viana et al. (Nature. 2020)



• Sequences sampled until 
different time points

• Using each snapshot for 
parameter estimation 

• Compare the point estimates 
and interval estimates from 
each snapshot
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Snapshots of segregating sites

Viana et al. (Nature. 2020)



Conclusion 
• Viral genome sequences contains information regarding epidemiological 

and evolutionary dynamics and can be used to infer the epidemiological 
dynamics

• When genetic diversity is low, inference using segregating site trajectory 
could be a good complement for tree-based inference.

• Segregating site-based approach can be also used for statistical 
evaluation of hypotheses or model selection.

Katia KoelleMike Martin


