The importance of vaccinated individuals to population-level evolution of pathogens

Alternative title

Population heterogeneity in within-host evolution: consequences for vaccine escape

Maria A. Gutierrez (she/her) PhD student, supervised by Prof. Julia Gog

Email: mag84@cam.ac.uk questions very welcomed (even if you aren't here for the talk!)

Department of Applied Mathematics and Theoretical Physics (DAMTP), University of Cambridge

Context: SARS-CoV-2 vaccine escape...

- Cobey et al. <u>Concerns about SARS-CoV-2</u> evolution should not hold back efforts to expand <u>vaccination</u>. *Nature Reviews Immunology* (2021)
- Thompson et al. <u>SARS-CoV-2 incidence and vaccine escape</u>. The Lancet Infectious Diseases (2021)
- Saad-Roy et al. <u>Epidemiological and evolutionary considerations of SARS-CoV-2 vaccine dosing</u> regimes. *Science* (2021)
- Gog et al. <u>Vaccine escape in a heterogeneous population: insights for SARS-CoV-2 from a simple</u> <u>model</u>. *Royal Society Open Science* (2021)
- Rella et al. <u>Rates of SARS-CoV-2 transmission and vaccination impact the fate of **vaccine-resistant** strains. Scientific Reports (2021)</u>
- Gandon et al. <u>Targeted vaccination and the speed of SARS-CoV-2 adaptation</u>. PNAS (2021)
- Day, Gandon et al. <u>Pathogen evolution during vaccination campaigns</u>. PLOS Biology. (2022)
- Lobinska et al. Evolution of **resistance to COVID-19 vaccination** with dynamic social distancing. Nature Human Behaviour (2022)
- Zhang et al. <u>A spatial vaccination strategy to reduce the risk of **vaccine-resistant variants**. *PLOS Computational Biology* (2022)</u>

...but hopefully broadly applicable to evo-epi models

Talk plan

- 1. Published work
 - a. Evolutionary approach
 - b. Epidemic models
 - c. Escape pressure results
- 2. Work in progress
 - a. Reinfections
 - b. Immunocompromised
 - c. Multi-wave evolution
- 3. Discussion
 - a. Conclusions
 - b. Applications
 - c. Further ideas

The importance of vaccinated individuals to population-level evolution of pathogens. *Journal of Theoretical Biology* (21 June 2023)

Maria A. Gutierrez (Cambridge)

Published work

Evolutionary approach

Simplified scales of selection

Maria A. Gutierrez (Cambridge)

Population level

[overall constant of proportionality unimportant, focus on relative pressure]

key parameter!

Escape pressure (rate)

hosts

Epidemic wave

Cumulative escape pressure (time integral of above)

$$P' = C_U + heta_E C_V$$

[assumes wave unaffected by new strain(s)]

Maria A. Gutierrez (Cambridge) - mag84@cam.ac.uk

Endemic equilibrium

Escape pressure rate at equilibrium

$$P^* = I^*_U + heta_E I^*_V$$

Gutierrez & Gog, JTB 2023

Within-host level

Q: Do infections in vaccinated hosts contribute more or less to the escape pressure than infections in unvaccinated hosts?

vaccines =>

- more within-host selection for escape
- BUT lower viral load, so less mutations

Epidemic model

Transient SIR epidemic wave (endemic also in paper)

à

<u>Polarised ("all-or-nothing") vaccine immunity</u> (leaky immunity also in paper)

$$egin{aligned} & {
m unvaccinated} S_U(0) = 1-c \ {
m (fraction)} & S_U(0) = c \ {
m (fraction)} & {$$

C: vaccination coverage in population,

- vaccines given before wave

٦

- no waning of immunity
- no reinfections

 $\boldsymbol{\alpha}$

Assumptions: well-mixing constant R0, not time-since-infection, same infectious period, not SEIR/SIAR, no quarantined hosts...

Maria A. Gutierrez (Cambridge) - mag84@cam.ac.uk

Gutierrez & Gog, JTB 2023

Analytical final size solution leads to escape pressure

Same ratio of vaccinated to unvaccinated maintained in each stage

$$egin{aligned} &(S_V,I_V,R_V)=rac{c heta_S}{1-c}(S_U,I_U,R_U)\ &R_e=R_0(1-c(1- heta_S heta_I)) \end{aligned}$$
 Vaccine transmission-blocking factor appears on R number

Can integrate SIR for final sizes C_U, $P = C_U$

$$P = C_U + heta_E C_V$$

$$P = (1 - c(1 - heta_S heta_E))(1 + R_e^{-1}W(-R_e e^{-R_e}))$$

Maria A. Gutierrez (Cambridge) - mag84@cam.ac.uk

Gutierrez & Gog, JTB 2023

Results

The **relative escape contribution** (ThetaE) of vaccinated hosts regulates the shape of the escape pressure

Maria A. Gutierrez (Cambridge) - mag84@cam.ac.uk

Gutierrez & Gog, JTB 2023

The vaccine efficacies (thetaS, thetaI) are also important

Maria A. Gutierrez (Cambridge) - mag84@cam.ac.uk

Gutierrez & Gog, JTB 2023

Work in progress

Reinfections

What if infections only protect give partial immunity?

all infections in hosts with prior immunity

Modified model to allow for reinfections

Vaccinated individuals have reduced susceptibility (θ_S) and recovered individuals also have reduced susceptibility (θ'_S)

Still can find final size analytically! Maria A. Gutierrez (Cambridge) - mag84@cam.ac.uk If vaccines give equal or more protection than infection, the escape pressure always decreases with the vaccination coverage

If vaccines give less protection than infection, the escape of hosts with prior immunity determines the shape of the escape pressure

Population heterogeneity (eg, immunocompromised)

Population heterogeneity $R_e = R_0 rac{(x-c_1(1- heta_S heta_I))+m^2(1-x-c_2(1- heta_S heta_I))}{x+m^2(1-x)}$

Two population groups (as in Gog et al 2021)

#1, size x: high escape contribution p>1 ("vulnerable"/ immunocompromised) ,
#2, size 1-x: larger contact rate m>1 ("mixers"/youth)

 $pC_1 + C_2$

Add vaccination in:

 $P = p(C_{U,1} + \theta_E C_{V,1}) + C_{U,2} + \theta_E C_{V,2}$

Adapt SIR model from before Can still solve analytically

$$P = (p(x - c_1(1 - heta_S heta_E)) + m(1 - c_2(1 - heta_S heta_E))\left(1 + rac{W(-R_e e^{-R_e})}{R_e}
ight)$$

Best strategy to minimise escape.. (and maybe also severe disease outcomes!) is to vaccinate first the group with more contacts...can get bimodal shape

Higher p (increased escape in immunocompromised) leads to bimodality

Multi-wave evolution

Single-strain waves, cross-immunity from escape pressure

Cross-immunity: **exponentially decaying** with antigenic distance (escape pressure here) [Boni, Andreasen et al 2004]

Original transient model for each wave, effective susceptible size changes

Results 1D map for effective susceptible size S, gives effective R=S*R0

$$S' = S\left(1 - (1 + W/R) \exp\left[-\frac{\mu}{1 + \theta_E} \frac{(1 - c(1 - \theta_S \theta_E))}{1 - c(1 - \theta_S)} S(1 + W/R)\right]\right)$$
(W:=W[-Rexp(-R)]) [weight and normalization factors] [final size]

If R'=S'*R0 >1, continue to new wave (can include stochastic extinction)

How to quantify escape over multiple waves? Total (expected) number of cases

New patterns; stochastic extinction matters

With stochastic extinction

Discussion

Maria A. Gutierrez (Cambridge)

Conclusions

- 1. Importance of **relative escape from vaccinated individuals**: We shouldn't make uninformed assumptions about its value!
- 2. More generally, importance of heterogeneous escape
 - a. immunocompromised
 - b. reinfections
- 3. Vaccine efficacies also matter for escape; especially susceptibility VE
- 4. More possibilities for escape pressure than "peak at intermediate values of immunity" (described by others)
 - a. monotonically decreasing
 - b. bimodal

Applications

- 1. Value in measuring or estimating (or modelling?) the relative escape contribution from each host type?
- 2. Vaccine design to minimise escape
- 3. Vaccination strategies given a vaccine, to minimise escape (& disease)
- 4. Target genomic sequencing at populations with highest escape pressure

Further ideas – suggestions encouraged!

- 1. Invasion dynamics
 - a. Stochastic extinction changing susceptible size due to original strain
 - b. Replacement or coexistence?
 - c. Fitness cost from escape?
- 2. **Multiple strains**: mutation rates dependent on immune history
- 3. Within-host dynamics and selection...estimate ThetaE
- 4. Waning immunity
 - a. from infection and/or vaccination
 - b. within wave or across waves
- 5. Recombination / multiple infections

A final thought: ThetaE depends on "escape strain" of interest and specific vaccine(s)

Acknowledgements

Many thanks to my supervisor **Julia Gog** and the rest of the group in Cambridge.

Email: mag84@cam.ac.uk

Questions?

Funding:

Gutierrez, M. A. and Gog, J. R. (2023). The importance of vaccinated individuals to population-level evolution of pathogens. *Journal of Theoretical Biology*

Maria A. Gutierrez (Cambridge)