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An important issue in population biology is the dynamic inter-
action between pathogens. Interest has focused mainly on the
indirect interaction of pathogen strains, mediated by cross
immunity1–4. However, a mechanism has recently been proposed
for ‘ecological interference’ between pathogens through the
removal of individuals from the susceptible pool after an acute
infection. To explore this possibility, we have analysed and
modelled historical measles and whooping cough records. Here
we show that ecological interference is particularly strong when
fatal infections permanently remove susceptibles. Disease inter-
ference has substantial dynamical consequences, making multi-
annual outbreaks of different infections characteristically out of
phase. So, when disease prevalence is high and is associated with
significant mortality, it might be impossible to understand

epidemic patterns by studying pathogens in isolation. This new
ecological null model has important consequences for under-
standing the multi-strain dynamics of pathogens such as dengue
and echoviruses.
The possibility that epidemics of unrelated pathogens might

interact has been raised in the classical epidemiological literature5,
but has not been explained. Recently, a new mechanism has been
proposed for negative ecological interference between pathogens
through the temporary removal of susceptibles, arising from infec-
tion by a competing pathogen and the ensuing quarantine period6.
Interference should be particularly apparent in the violent recurrent
epidemics of strongly immunizing childhood infections such as
measles and whooping cough. However, recent parallel records of
the two infections in England and Wales show equivocal evidence
for interference, partly because of the relatively low pathogenicity of
the infections6. Here we test for interference in older data, collected
whenmeasles andwhooping coughwere significant killers5. Because
a fatal infection involves the permanent removal of susceptibles, we
would expect the imprint of interference to be particularly strong.
We begin by exploring the predictions of simple models, based

on extensions of the classic one-disease seasonally forced SEIR
(susceptible–exposed–infectious–removed) model7–9, with two
important biological refinements (see Methods). First, the model
includes a convalescent class6, within which disease-induced deaths
can occur; and second, we model the dynamics of two diseases
simultaneously, categorizing hosts according to infection history
relative to each disease.We are interested primarily in evaluating the
dynamical impact of quarantine and disease-induced mortality on
the community of pathogens. As with single-disease models, the
dynamics of this system are determined largely by the recruitment
rate of susceptibles (that is, the population birth rate7,8,10; Fig. 1).
Very low/high per-capita birth rates result in annual epidemics, with
biennial dynamics observed for intermediate levels8.When there is a
disease-related mortality rate, r, the window of biennial behaviour
is progressively delayed, with the period-doubling bifurcation
taking place at higher birth rates (Fig. 1a). This is because high
mortality due to one infection in effect lowers the recruitment rate
of susceptibles for the ‘competing’ disease. In general, the bifur-
cation structure of the model is dictated by the infection with the
higher transmission rate—in this case, measles6. Whooping cough
epidemics, which in isolation would be rigidly annual for all
parameter combinations, now follow the same pattern as measles
(Fig. 1b–d).
When epidemics are annual because of a low/high birth rate8,

seasonal forcing causes strong positive correlation between infec-
tion outbreaks. However, given biennial epidemics, measles and
whooping cough outbreaks are negatively correlated (out of
phase)—much more so than if their dynamics were independent6.
We use this negative correlation between disease dynamics as an
indicator of potential interference in data.
We test for interference effects in case fatality reports for measles

and whooping cough from Aberdeen (1883–1900) and from 15
European cities in the years before (1904–1914) and after (1922–
1932) the First World War (Fig. 2). These data encompass large
demographic heterogeneities, both spatial (between cities) and
temporal (in the different eras). There were also systematic declines
in the measles- and whooping-cough-induced death rates between
periods before and after the war, which, along with the wide range of
birth rates, provide an excellent opportunity to test the interference
hypothesis in different regions of parameter space.
Children are typically affected by many more microparasitic

infections than just measles and whooping cough (mumps, rubella
and chickenpox within the childhood infections alone). However,
we have focused on these two infections, because interference is
likely to be most pronounced when diseases have very similar mean
ages at infection, as dictated by their basic reproductive ratio, R0

(ref. 7). Of potential childhood infections prevalent in the eras
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Figure 2 Weekly case fatality reports for measles (black) and whooping cough (grey) in
five European cities. a, b, Case reports (a) and fatality (b) data for Aberdeen in the
years 1882–1902. Sqrt, square root. c–fWeekly deaths due to these two infections from
1904 to 1914 (c, e), and from 1922 to 1932 (d, f). Data are shown for Birmingham (c),

Glasgow (d), Berlin (e) and Liverpool (f). g, h, Correlation coefficients (left) between
measles and whooping cough deaths, and their associated epidemic phase differences

(right) as a function of the per-capita birth rates (grey symbols/lines refer to the

1904–1914 era; black symbols/lines represent the period 1922–1932).

Figure 1 Analysis of the two-disease model dynamics. a, The bifurcation diagram
illustrates the dynamics of the model as a function of the per-capita birth rate and the

fraction of infecteds that suffer mortality. The black region highlights annual (and

positively correlated) disease outbreaks; white regions identify biennial (negatively

correlated) epidemics. The circles show the comparison with pre-war (mortality rate of

15%) and post-war (mortality rate of 2.5%) data. Negatively correlated data are

represented by grey circles; positive correlation is marked by a white circle. Panels b–d
show time series for b, measles and c, whooping cough dynamics in single disease
models compared with d, the two-disease model. The parameter values were: per-capita
birth/death rate, 0.02; amplitude of seasonality, 0.3; incubation periods, 8 days; measles

infectious period, 5 days; whooping cough infectious period, 14 days; measles

convalescence period, 14 days; and whooping cough convalescence period, 21 days.
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Fig. 1. (A) Monthly reported total number of people infected by
echoviruses in Japan during the period 1982–1996. The black dots
indicate the reported numbers in July. (B) Time changes in the
morbidity of three echovirus sub-types, echo9 (green line), echo18
(red), and echo30 (blue). Dominant sub-types change between
years.

(also see for SIR model in [4,6]). However, these
models have been focused only on the dynamics of
the single strain epidemics. In the case of echovirus
epidemics, there are almost 30 serologically defined
sub-types (echo1, echo2, etc.), and the major types
change year by year. A recent nationwide outbreak
occurred in 1991 in Japan with the major type echo30.
In 1992, however, very few echo30 infections have
been reported, and instead, echo9 caused most of the
infections [7].
Fig. 1A shows the reported numbers of infections

of echovirus sub-types from 1983 to 1996 in Japan.
Although there are 33 sub-types in echoviruses, three
sub-types are shown in Fig. 1B. A roughly ordered
emergence by a set of sub-types is a characteristic
of the echovirus outbreaks—the same sub-type tends
to reemerge for about every 10 years. This contrasts
with the pattern of outbreaks by influenza A viruses,

in which each year’s nationwide outbreak is caused
by a new type which is slightly deviated from the last
year’s major strain [8]. To understand the dynamics
of those epidemics caused by a set of antigenically di-
verse sub-types, the extension of mathematical models
is necessary.
Schwartz and Smith [3] showed that seasonal forc-

ing causes the period doubling in the density of in-
fected hosts by using the single strain SEIR model.
In this study, we focus on an effect of the seasonal
forcing in the single and multiple strain SIR model to
investigate the pattern of the period doubling or the bi-
furcation in the host density. The reason why we used
the SIR model rather than the SEIR model is that it
is easier to extend to the multi-strain model which is
not analyzed in [3].
When we consider the multiple strain model, we

need a new parameter called cross-immunity between
strains. Usually, once a host is infected by a cer-
tain viral strain, the host will be never infected by
the same strain because of the acquired immunity for
it. The immunity works to other viral strains which
are antigenically close to the original one and hence
the host will be rarely infected by such strains, al-
though the immunity is less effective generally than to
the original strain. This phenomenon is called cross-
immunity.
In this study, we focus on the effect of sea-

sonal forcing and the effect of the new parameter,
cross-immunity. First, we investigate the conventional
single strain SIR model and the way the bifurca-
tion occurs by increasing the degree of the season-
ality. Then the model is extended to a two strain
model.

2. SIR model

We first introduce a conventional SIR model with
seasonality. The densities of the susceptible (S), the
infected (I) and the recovered (R) hosts change with
time as

Ṡ = −βSI− µS + µ, İ = βSI− γ I − µI,

Ṙ = γ I − µR, (1)
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Abstract

We study dynamical behavior and bifurcation structure of amulti-strain SIR epidemiological model with seasonal forcing in
transmission rate. The conventional single strain SIRdynamicswith seasonal forcing is known to showa cascade of bifurcations
as the strength of seasonality increases. In this study with an extension to multiple strains of pathogens, we first investigate the
bifurcation patterns of the two strain SIR model. In the two strain SIR model, a new parameter called cross-immunity between
strains plays a key role in the dynamical behavior. As analogous to the single strain model, we found that the period doubling
bifurcation occurs as the strength of seasonal forcing is increased. However, bifurcation patterns differ greatly both in their
subharmonic periods and the relative phase of cycles between strains, depending mostly on the degree of the cross-immunity
between strains. With strong and weak cross-immunities, the period doubling cascade proceeds gradually toward chaotic cy-
cles. On the other hand,with intermediate cross-immunity, the loss of stability of annual cycle attractor is immediately followed
by chaotic cycles. Asynchronous cycles of two strains are robust outcome when annual cycles lose stability, but the population
can converge to perfectly synchronized biennial cycles if two strains are antigenically distant from each other. Second, we
found that there are simultaneously stable multiple attractors in two strain SIR model. Biennial and chaotic attractors, e.g., oc-
casionally coexist at the same degree of seasonal forcing, and the trajectories converge to one of them depending on the initial
conditions. Suchmultiple attractors arewidely seen betweenbiennial and annual cycles, or among the different types of biennial
cycles, at the same strength of the seasonality. Finally, we found that the population may switch from one attractor to another
by introducing a small random noise in seasonally varying transmission rate. © 2002 Elsevier Science B.V. All rights reserved.

Keywords: Seasonal forcing; Multi-strain SIR model; Cross-immunity; Multiple attractors

1. Introduction

Echoviruses are known as a causative agent of
the aseptic meningitis epidemics in Japan. Their out-
breaks in Japan show seasonality: the reported number
of infected hosts becomes the largest mostly in July
(Fig. 1A). The seasonality in outbreak is common
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E-mail address: kamo@bio-math10.biology.kyushu-u.ac.jp
(M. Kamo).

among infectious disease, as in the widely known
example of flu outbreaks.
Many epidemiological models have been studied to

account for the sustained oscillation in the number of
infected hosts (e.g. [1–5]). These models reveal that
the introduction of seasonally varying transmission
rate, e.g., well explain the annual, the biennial, and
the other periodicity in the outbreaks of pathogen.
Schwartz and Smith [3], e.g., showed in their SEIR
model that the temporal pattern of the infected density
is drastically changed by the strength of seasonality

0167-2789/02/$ – see front matter © 2002 Elsevier Science B.V. All rights reserved.
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ABSTRACT Cross-reactive antibodies produced by a
mammalian host during infection by a particular micropara-
sitic strain usually have the effect of reducing the probability
of the host being infected by a different, but closely related,
pathogen strain. Such cross-reactive immunological re-
sponses thereby induce between-strain competition within the
pathogen population. However, in some cases such as dengue
virus, evidence suggests that cross-reactive antibodies act to
enhance rather than restrict the severity of a subsequent
infection by another strain. This cooperative mechanism is
thought to explain why pre-existing immunity to dengue virus
is an important risk factor for the development of severe
disease (i.e., dengue shock syndrome and dengue hemorrhagic
fever). In this paper, we explore the effect of antibody-
dependent enhancement on the transmission dynamics of
multistrain pathogen populations. We show that enhancement
frequently may generate complex and persistent cyclical or
chaotic epidemic behavior. Furthermore, enhancement acts to
permit the coexistence of all strains where in its absence only
one or a subset would persist.

Many important pathogens of humans and other animals exist
as sets of discrete strains. In previous studies of the transmis-
sion dynamics and population genetics of such multistrain
pathogen systems, the focus of attention has been on the
effects of cross-immunity, generated by recovery from infec-
tion with one strain, which acts to inhibit infection with another
strain (mediated by immunological responses to antigens or
epitopes shared by all strains) (1–5). It has been shown that
antigens eliciting strongly inhibitory immune responses will act
to organize pathogen populations into discrete strains with
minimal overlap between them in the important variable
epitopes (3). At intermediate levels of inhibition, discrete
strain structure still forms, but may be unstable with cyclical or
chaotic temporal changes in strain abundance (5). No discrete
strain structure forms under weak immune selection.

Other pathogens, however, are believed to induce enhance-
ment rather than inhibition of infection with strains of the
same infectious agent. One such example is antibody-
dependent enhancement (ADE) of viral infections, where
cross-reactive antibodies generated by a previous exposure to
a heterologous strain are believed to facilitate the within-host
replication of a second invading strain. Enhancement of viral
replication has been observed in vitro for dengue (6–8) and a
variety of flaviviruses and other viruses (9, 10), including HIV
(11, 12).

In this paper the epidemiological consequences of this form
of antibody-mediated between-strain interaction are explored,

where previous exposure may increase rather than decrease
the probability of transmission of a second strain. Analyses
focus on exploring the range of transmission dynamics and
epidemic behavior that may be exhibited by such interactions,
and the consequences of this phenomenon for the persistence
of multistrain pathogens within human populations.

In the case of dengue, ADE is thought to be responsible for
the observation that pre-existing immunity (detected via se-
rology) to one of the four strains of the viral etiological agent
is an important risk factor for the development of severe
disease such as dengue shock syndrome and dengue hemor-
rhagic fever (13–19). An enhanced risk of serious disease is
observed even when the initial immunity is maternally ac-
quired (6). Because of the complexity of the relationship
between dengue disease and infection, we restrict ourselves to
modeling the dynamics of infection, rather than symptomatic
case incidence.

Model Structure

We consider the simplest case of two strains circulating within
a human community. We assume that infection with a given
strain i (where i ! 1 or 2) confers lifelong strain-specific
immunity, such that the fraction of the population already
exposed to strain i, xi, cannot be infected again by the same
strain. The deterministic dynamics of xi are defined by:

dxi!dt ! "1 " xi##i " $xi , [1]

where #i is the force or per capita rate of infection of strain i,
and $ is the mortality rate of the host (1!$ ! host life
expectancy). Host population size is assumed to be constant.
The population is structured into a proportion susceptible to
both strains, s, a proportion infectious with a primary infection
with strain i, yi, and a proportion with a secondary infection
with strain i having previously been exposed to the other strain
j, yji. The dynamics of these infectious fractions are described
by the following equations:

ds!dt ! $ " s$k#k " $s , [2]

dyi!dt ! s#i " %yi , [3]

dyji!dt ! "1 " xj " s##i " %yji , [4]

where 1!% is the average duration of infectiousness. Note that
% also is taken to incorporate host mortality, $ (where $ & %),
and that the model uses overlapping compartments, so that
individuals in the yi or yji categories are also in the xi category.
Eq. 4 is obtained by noting that 1 % xj % s, the fraction of the
population that is neither susceptible nor previously exposed
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In other words the primary invading infective needs to gen-
erate more than one secondary infection for the invasion to
succeed.

Because all four dengue serotypes (! strains) are known to
be able to coexist in some human communities, Eq. 7 often
must be satisfied for both i ! 1 and i ! 2 in the dengue system.
However, of greatest importance is the observation that the
coexistence equilibrium point is unstable for large regions of
the parameter space, resulting in the system exhibiting complex
cyclical or chaotic behavior. The remarkable range and com-
plexity of the nonlinear dynamics exhibited is illustrated in Fig.
1a for a range of possible values of !1 and !2. Note that no
cycles are seen for the case of entirely neutralizing cross-
reactive antibodies (i.e., no enhancement) for a two-strain
system. In contrast, cyclical and chaotic dynamics are common
if one or both strains experience ADE. Further insight into the
complex nature of these epidemic dynamics generated by
antibody-dependent enhancement can be gained from Fig. 1c,
which shows the dynamical bifurcation structure along a line
through the parameter space of Fig. 1a. Qualitatively, en-
hancement generates oscillations by causing epidemics of the
enhanced strain to ‘‘overshoot’’ in the presence of the other
strain (compared with the behavior seen when only one strain
is present), until the unexposed population is temporarily
exhausted and incidence falls dramatically. The magnitude of
this overshoot is sufficient to destabilize the endemic equilib-
rium.

Our model system ignores many complexities inherent in
natural host-infectious disease systems, such as the discrete
structure of real populations, spatial structure, and chance
effects (! stochasticity), that may effect the long-period cycles
or large amplitude chaos predicted by the basic model (24). An
obvious problem is that stochastic effects may cause disease
extinction in the deep inter-epidemic troughs. Indeed, in this
way, the generation of epidemic cycles can be seen to reduce
the probability of disease persistence, or, equivalently, increase
the critical community size required for the disease to persist.
To examine these factors we take account of the known
infection reservoir in mosquito vectors and other primate
species via the inclusion of a small background force of
infection, "0i, to represent a constant trickle of new infections

entering the population. For simplicity, we assume that the
background force of infection is the same for each strain ("01
! "02 ! "0). As shown in Fig. 1b, the effects of this modifi-
cation on the behavior of the deterministic model is to replace
the long-period cycles with cycles of shorter period in the range

FIG. 2. (a–c) Sero-prevalence time series for system with R01 ! R02 ! 2, # ! 100!yr, 1!$ ! 50 yr, !1 ! !2 ! 2.5. (a) Deterministic model,
with "0 ! 0. Note that the dynamics are chaotic with a quasi-period of about 25 yr. A symmetry-breaking bifurcation has given rise to partially
nonsynchronized oscillations of the two strains. (b) Deterministic model with "0 ! 10"6. The background force of infection eliminates
large-amplitude limit cycle or chaotic attractors, simplifying the dynamics and restoring exact synchronization of the oscillations of both strains.
(c) Stochastic model with "0 ! 10"6. The dynamics show the ‘‘ghost’’ of the deterministic chaotic attractor from a modifying the simple limit cycles
dynamics of b. (d) As in c but showing infection incidence. (e–h) As in a–d, but with !1 ! 0.75 and !2 ! 1.5. Dynamical trends are similar to the
pure ADE case, but average prevalences now differ and the limit cycles of the two strains are never now in phase.

FIG. 3. (a) Dependence of epidemic period (in yr) on R0 of strains
and recovery rate, #, for deterministic model with 1!$ ! 50 yr, R01 !
R02, !1 ! 0.8, !2 ! 2, and "0 ! 10"6. (b) Numbers of cases associated
with the four serotypes as reported by Briseno-Garcia et al. (21) for the
period 1982–1995 in Mexico.

792 Population Biology: Ferguson et al. Proc. Natl. Acad. Sci. USA 96 (1999)



Virus-Virus interactions
Virus-virus interactions grouped into three general categories:  

1) Direct interactions 
➡Nucleic acids/proteins of one virus physically interact with genes/gene products of 

coinfecting virus 

➡May involve helper viruses, pseudotype viruses, superinfection exclusion, genomic 
recombination, embedded viruses, and heterologous transactivation 

2) Environmental interactions 
➡Viral infection may change pathogenic conditions in host 

➡May involve indirect transactivation of genes, breakdown of host physical barriers against 
infection, altered receptor expression, heterologous activation of antiviral pro-drugs, and 
modification of the interferon-induced antiviral state 

3) Immune effects  
➡only in host species with an adaptive immune system 

➡altering activation state of cellular components of immune system, induction of autoimmune 
responses that cross-react with viral antigens, antibody-dependent enhancement of 
subsequent viral infections, re-shaping T cell memory repertoire. Immunological interactions 
can occur between viral infections that are completely separated in time

DaPalma et al. 2010; Vir Res
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Inference 
• Assume Y(t) is observed data for pair of strains:

•  ={y1(t), y2(t),…, ym(t)} for t = 1, 2, …, n
• System state given by X(t)
• Observation model: fθ(Y(t) | X(t))

• fθ assumed to be poisson

L(�) = f(Y (1), Y (2), . . . , Y (n)|�)
= �n

t=1f�(Y (t)|Y (t� 1), Y (t� 2), . . . , Y (t))

= �n
t=1Lt(�)

log(L(�)) =
nX

j=1

log(Lt(�))



Our Protocol
• For any combination of parameters, we generate 40 years 

if monthly strain-specific incidence data 

• True number of new infections are assumed to be sampled 
according to a Poisson distribution, with reporting fidelity ρ

• For each simulated data set, we compute profile 
likelihoods over parameters of interest 

• Sequential Monte Carlo algorithm to calculate likelihood 
(using 30,000 particles) 

• 5 replicate SMC calculation per parameter combination



Our Protocol

Inference for multi-pathogen systems Shrestha, King & Rohani
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Figure 1. Schematics of a two pathogen model with various interaction mechanisms. Each box
represents a possible host state, with individuals Xij categorized according to their status with regards to the
two pathogens. Letters S, I, C, and R stand for susceptible, infected, convalescent, and recovered, respectively.
The horizontal arrows follow the progression of a host’s infection due to the first pathogen, and the vertical
arrows follow the progression of the second. The diagonal arrows represent disease independent births and
deaths. The transitions denoted by red arrows are a�ected by pathogen interaction.

Table 1. Model parameters and their corresponding ranges.

Parameter Description Range
N Host population size 10 million
µ Per capita host birth/mortality rate 0.02 per year
1/⇥i Average infectious period 2 weeks
1/⇤i Average convalescent period 0.1 years
�i Transmission rate 70 per year
�i Interaction during infectious period 0� 2
⌃i Interaction during convalescent period 0� 2
 i Interaction during recovered period 0� 2
⌦i Force of infection due to immigration 10�7

⌅ Std. deviation of the gamma-distributed white noise (dW/dt) 0.01⇥year
⌥ Reporting rate 1

5

• Assume fix parameter set 

• Strain-specific R0 ∼ 2.7



Phase association

solutions 10%–20% of the time. More generally, for any
combination of parameters, there is a moderate chance (between
10% to 50%) of observing either in-phase or anti-phase
trajectories. The important practical implication is that phase
relationship may be a poor predictor of the mechanism of
pathogen interaction. Indeed, phase relationship alone appears to
be of little use in indicating even the cooperative or competitive
sense of pathogen interactions.

Basic identifiability of pathogen interaction mechanisms
To establish whether likelihood offers an improved basis for

inferring the nature of pathogen interactions from epidemiological
data, we performed another simulation study. We focused on
parameters intended to be typical of closely related pathogen
strains. In particular, we assumed symmetry between interacting
pathogens, ie, b1~b2, c1~c2, d1~d2, v1~v2, w1~w2, j1~j2,
and x1~x2. To keep the complexity manageable in this proof-of-
principle study, we focused on the interactions parameters by
assuming the strictly epidemiological parameters (contact rates,
infectious periods, immigration rates, and durations of the
temporary C stage) to be known. Moreover, we assumed the
short-term interaction parameters to be identical, ie, w~j. Table 1
gives the values to which these parameters were set. With these
parameters, the net reproductive number, R0, is 2.7 (in the
absence of pathogen interaction).
We examined the identifiability of the interaction parameters in

three distinct scenarios (Fig. 2):

Scenario I: No pathogen interactions, w~j~x~1. Since each
pathogen is independent of the other, this serves as a null model.
Scenario II: Perfect short-term cross-protection, no long-term

interaction, w~j~0, x~1. The ecological interference proposed
to explain measles-pertussis interactions (eg, [18]) is an example.
Scenario III: Moderate short-term cross-protection, permanent

enhancement, w~j~0:6, x~1:4. These effects have been posited
for the 4 dengue serotypes in hyper-endemic regions.
For each scenario, we present log-likelihood profiles for the two

interaction parameters of interest: short-term (w~j) and long-term
(x). We plot differences of log-likelihoods, Dloglik, and compute
confidence regions using likelihood ratio tests. We scale log-
likelihoods such that the 95% confidence region corresponds to
Dloglikw0. Further details of the profile likelihood construction
are provided in the supplementary information (Text S1).

Scenario I: No interaction. Here, the pathogens are
independent; oscillations are noisy and phase relationship is
variable. In particular, when epidemics are observed over only
40 yr, pathogen-specific oscillations can appear to be in phase, out
of phase, or neither. We selected two superficially different data
sets (Fig. 3): one realization displays large-amplitude oscillations
with strongly in-phase dynamics; the other, smaller-amplitude
fluctuations and strongly asynchronous dynamics.
Perhaps surprisingly, the log-likelihood profiles derived from

these two data sets are similar for both short- and long-term
interaction parameters. Despite the noticeable qualitative dynam-
ical differences between these data sets, the long-term interaction

Figure 2. Phase relation between the two epidemics in the simulation of the model. Level contours plot the fraction of time epidemics are
in-phase [Left], and anti-phase [Right]. Phase difference is calculated by considering 5000 years of simulation (100 years of transients are excluded),
computing the fraction of the time series during which strains are in-phase and anti-phase and averaging these fractions over 40 stochastic replicates.
Strains are categorized as in phase if the phase difference is less than an eighth of the period, and anti-phase if the difference is 1=2+1=8 of a period.
The three points marked (I), (II) and (III) are distinct scenarios examined in our inference tests. Model parameters are as in Table 1, with
v1~v2~10{6 .
doi:10.1371/journal.pcbi.1002135.g002
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on parameter values [4, 36]. When oscillations exist, cooperative interactions tend to generate in-phase cycles
while competitive interactions tend to lead to out-of-phase oscillations. However, as Kamo & Sasaki [37] showed
in a somewhat similar, but seasonally forced, system, the phase relationship between strains can be sensitive
to stochasticity. Specifically, they demonstrated that noise can destabilize the in-phase solution, leading to
asynchronous fluctuations. Similarly, in our stochastic system, phase relationships are variable. For all parameter
values we examined, stochastic trajectories drift in and out of phase.
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Figure 2. Phase relation between the two epidemics in the simulation of the model. Level contours
plot the fraction of time epidemics are in-phase [Left], and anti-phase [Right]. Phase di�erence is calculated by
considering 5000 years of simulation (100 years of transients are excluded), computing the fraction of the time
series during which strains are in-phase and anti-phase and averaging these fractions over 40 stochastic
replicates. Strains are categorized as in phase if the phase di�erence is less than an eighth of the period, and
“out-of-phase” if the di�erence is 1/2± 1/8 of a period. The three points marked (I), (II) and (III) are distinct
scenarios examined in our inference tests. Model parameters are as in Table 1, with ⌅1 = ⌅2 = 10�6.

3.2 Unreliability of phase as an indicator of interactions

To assess the reliability of between-strain phase relationship as an indicator of the nature of pathogen interactions,
we performed a simulation study. We varied the interaction parameters (⇥, �, ⇤) across broad ranges, simulating
40 realizations of 5000 yr duration at each point in parameter space. For each combination of parameters, the
phase di�erence in strain-specific incidence generally varies with time. Fig. 2 shows the fraction of time during
which oscillations are in-phase (left) and anti-phase (right), as a function of the strength and sense (cooperative
versus competitive) of both short- and long-term interaction. Even in multiply replicated time series of 5000 yr
duration, no consistent association between the cooperative or competitive nature of epidemiological interactions
and phase relationship emerges. While permanent cross-immunity (⇤ < 1), for example, frequently leads to
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40 realizations of 5000 yr duration at each point in parameter space. For each combination of parameters, the
phase di�erence in strain-specific incidence generally varies with time. Fig. 2 shows the fraction of time during
which oscillations are in-phase (left) and anti-phase (right), as a function of the strength and sense (cooperative
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Figure 3. Inference under scenario I: No pathogen interaction. Inference is carried out for two separate
data sets constructed from the same set of parameter values – results are shown in [Left] and [Right] columns
for each data set. [Top] Simulated case-data for the two infections are plotted in solid and dashed lines.
Log-likelihood profiles for parameters describing the short (⇥, �) [Middle] and the long term (⇤) [Bottom]
interactions. In the insets, we show close-ups of the profiles near the peaks. Plotted �loglik are relative
di�erence in the raw log-likelihood from the reference point set at �loglik = 0, indicated by the horizontal
dashed line. �loglik = 0 represents the 95% confidence interval—parameter values corresponding to a positive
�loglik are within the confidence bound. The gray dots indicate the repeated likelihood estimates (5 replicate
SMC calculations for each profile point, 30, 000 particles in each SMC calculation). The profiles are created by
fitting a smooth line through the log of the mean likelihoods (shown in black dots). The vertical red dashed line
is plotted at the actual parameter value used to generate the simulated case-data. Parameters not shown in the
graph are taken from Table 1.
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Figure 3. Inference under scenario I: No pathogen interaction. Inference is carried out for two separate
data sets constructed from the same set of parameter values – results are shown in [Left] and [Right] columns
for each data set. [Top] Simulated case-data for the two infections are plotted in solid and dashed lines.
Log-likelihood profiles for parameters describing the short (⇥, �) [Middle] and the long term (⇤) [Bottom]
interactions. In the insets, we show close-ups of the profiles near the peaks. Plotted �loglik are relative
di�erence in the raw log-likelihood from the reference point set at �loglik = 0, indicated by the horizontal
dashed line. �loglik = 0 represents the 95% confidence interval—parameter values corresponding to a positive
�loglik are within the confidence bound. The gray dots indicate the repeated likelihood estimates (5 replicate
SMC calculations for each profile point, 30, 000 particles in each SMC calculation). The profiles are created by
fitting a smooth line through the log of the mean likelihoods (shown in black dots). The vertical red dashed line
is plotted at the actual parameter value used to generate the simulated case-data. Parameters not shown in the
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Figure 3. Inference under scenario I: No pathogen interaction. Inference is carried out for two separate
data sets constructed from the same set of parameter values – results are shown in [Left] and [Right] columns
for each data set. [Top] Simulated case-data for the two infections are plotted in solid and dashed lines.
Log-likelihood profiles for parameters describing the short (⇥, �) [Middle] and the long term (⇤) [Bottom]
interactions. In the insets, we show close-ups of the profiles near the peaks. Plotted �loglik are relative
di�erence in the raw log-likelihood from the reference point set at �loglik = 0, indicated by the horizontal
dashed line. �loglik = 0 represents the 95% confidence interval—parameter values corresponding to a positive
�loglik are within the confidence bound. The gray dots indicate the repeated likelihood estimates (5 replicate
SMC calculations for each profile point, 30, 000 particles in each SMC calculation). The profiles are created by
fitting a smooth line through the log of the mean likelihoods (shown in black dots). The vertical red dashed line
is plotted at the actual parameter value used to generate the simulated case-data. Parameters not shown in the
graph are taken from Table 1.
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Figure 3. Inference under scenario I: No pathogen interaction. Inference is carried out for two separate
data sets constructed from the same set of parameter values – results are shown in [Left] and [Right] columns
for each data set. [Top] Simulated case-data for the two infections are plotted in solid and dashed lines.
Log-likelihood profiles for parameters describing the short (⇥, �) [Middle] and the long term (⇤) [Bottom]
interactions. In the insets, we show close-ups of the profiles near the peaks. Plotted �loglik are relative
di�erence in the raw log-likelihood from the reference point set at �loglik = 0, indicated by the horizontal
dashed line. �loglik = 0 represents the 95% confidence interval—parameter values corresponding to a positive
�loglik are within the confidence bound. The gray dots indicate the repeated likelihood estimates (5 replicate
SMC calculations for each profile point, 30, 000 particles in each SMC calculation). The profiles are created by
fitting a smooth line through the log of the mean likelihoods (shown in black dots). The vertical red dashed line
is plotted at the actual parameter value used to generate the simulated case-data. Parameters not shown in the
graph are taken from Table 1.
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Figure 4. Inference under scenario II: Temporary cross-immunity. Inference is carried out for two separate
data sets constructed from the same set of parameter values – results are shown in [Left] and [Right] columns
for each data set. [Top] Simulated case-data for the two infections are plotted in solid and dashed lines.
Log-likelihood profiles for parameters describing the short (⇥, �) [Middle] and the long term (⇤) [Bottom]
interactions. In the insets, we show close-ups of the profiles near the peaks. Plotted �loglik are relative
di�erence in the raw log-likelihood from the reference point set at �loglik = 0, indicated by the horizontal
dashed line. �loglik = 0 represents the 95% confidence interval – parameter values corresponding to a positive
�loglik are within the confidence bound. The gray dots indicate the repeated likelihood estimates (5 replicate
SMC calculations for each profile point, 30, 000 particles in each SMC calculation). The profiles are created by
fitting a smooth line through the log of the mean likelihoods (shown in black dots). The vertical red dashed line
is plotted at the actual parameter value used to generate the simulated case-data. Parameters not shown in the
graph are taken from Table 1.
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Figure 4. Inference under scenario II: Temporary cross-immunity. Inference is carried out for two separate
data sets constructed from the same set of parameter values – results are shown in [Left] and [Right] columns
for each data set. [Top] Simulated case-data for the two infections are plotted in solid and dashed lines.
Log-likelihood profiles for parameters describing the short (⇥, �) [Middle] and the long term (⇤) [Bottom]
interactions. In the insets, we show close-ups of the profiles near the peaks. Plotted �loglik are relative
di�erence in the raw log-likelihood from the reference point set at �loglik = 0, indicated by the horizontal
dashed line. �loglik = 0 represents the 95% confidence interval – parameter values corresponding to a positive
�loglik are within the confidence bound. The gray dots indicate the repeated likelihood estimates (5 replicate
SMC calculations for each profile point, 30, 000 particles in each SMC calculation). The profiles are created by
fitting a smooth line through the log of the mean likelihoods (shown in black dots). The vertical red dashed line
is plotted at the actual parameter value used to generate the simulated case-data. Parameters not shown in the
graph are taken from Table 1.
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Figure 5. Inference under scenario III: Partial and temporary cross-immunity, and delayed but
permanent enhancement. Inference is carried out for two separate data sets constructed from the same set
of parameter values – results are shown in [Left] and [Right] columns for each data set. [Top] Simulated
case-data for the two infections are plotted in solid and dashed lines. Log-likelihood profiles for parameters
describing the short (⇥, �) [Middle] and the long term (⇤) [Bottom] interactions. In the insets, we show
close-ups of the profiles near the peaks. Plotted �loglik are relative di�erence in the raw log-likelihood from the
reference point set at �loglik = 0, indicated by the horizontal dashed line. �loglik = 0 represents the 95%
confidence interval – parameter values corresponding to a positive �loglik are within the confidence bound. The
gray dots indicate the repeated likelihood estimates (5 replicate SMC calculations for each profile point, 30, 000
particles in each SMC calculation). The profiles are created by fitting a smooth line through the log of the mean
likelihoods (shown in black dots). The vertical red dashed line is plotted at the actual parameter value used to
generate the simulated case-data. Parameters not shown in the graph are taken from Table 1.
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Figure 5. Inference under scenario III: Partial and temporary cross-immunity, and delayed but
permanent enhancement. Inference is carried out for two separate data sets constructed from the same set
of parameter values – results are shown in [Left] and [Right] columns for each data set. [Top] Simulated
case-data for the two infections are plotted in solid and dashed lines. Log-likelihood profiles for parameters
describing the short (⇥, �) [Middle] and the long term (⇤) [Bottom] interactions. In the insets, we show
close-ups of the profiles near the peaks. Plotted �loglik are relative di�erence in the raw log-likelihood from the
reference point set at �loglik = 0, indicated by the horizontal dashed line. �loglik = 0 represents the 95%
confidence interval – parameter values corresponding to a positive �loglik are within the confidence bound. The
gray dots indicate the repeated likelihood estimates (5 replicate SMC calculations for each profile point, 30, 000
particles in each SMC calculation). The profiles are created by fitting a smooth line through the log of the mean
likelihoods (shown in black dots). The vertical red dashed line is plotted at the actual parameter value used to
generate the simulated case-data. Parameters not shown in the graph are taken from Table 1.
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Figure 9. Inference under scenario III with aggregated data. Inference is carried out for two separate data
sets constructed from the same set of parameter values – results are shown in [Left] and [Right] columns for
each data set. [Top] These are the same data sets used to make Fig. 5. For each data set, the two time series
are added together to form a single aggregated time series. Log-likelihood profiles for parameters describing the
short (⇥ = �) [Middle] and the long term (⇤) [Bottom] interactions. In the insets, we show close-ups of the
profiles near the peaks. Plotted �loglik are relative di�erence in the raw log-likelihood from the reference point
set at �loglik = 0, indicated by the horizontal dashed line. �loglik = 0 represents the 95% confidence interval –
parameter values corresponding to a positive �loglik are within the confidence bound. The gray dots indicate
the repeated likelihood estimates (5 replicate SMC calculations for each profile point, 30, 000 particles in each
SMC calculation). The profiles are created by fitting a smooth line through the log of the mean likelihoods
(shown in black dots). The vertical red dashed line is plotted at the actual parameter value used to generate the
simulated case-data. Parameters not shown in the graph are taken from Table 1.
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Figure 9. Inference under scenario III with aggregated data. Inference is carried out for two separate data
sets constructed from the same set of parameter values – results are shown in [Left] and [Right] columns for
each data set. [Top] These are the same data sets used to make Fig. 5. For each data set, the two time series
are added together to form a single aggregated time series. Log-likelihood profiles for parameters describing the
short (⇥ = �) [Middle] and the long term (⇤) [Bottom] interactions. In the insets, we show close-ups of the
profiles near the peaks. Plotted �loglik are relative di�erence in the raw log-likelihood from the reference point
set at �loglik = 0, indicated by the horizontal dashed line. �loglik = 0 represents the 95% confidence interval –
parameter values corresponding to a positive �loglik are within the confidence bound. The gray dots indicate
the repeated likelihood estimates (5 replicate SMC calculations for each profile point, 30, 000 particles in each
SMC calculation). The profiles are created by fitting a smooth line through the log of the mean likelihoods
(shown in black dots). The vertical red dashed line is plotted at the actual parameter value used to generate the
simulated case-data. Parameters not shown in the graph are taken from Table 1.
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were assessed daily, and seroconversion was measured 14 days 
a"er challenge.

Statistical Analysis

Statistical analysis was conducted using Prism, version 6.0g, 
unless otherwise indicated and is described in the #gure legends.

RESULTS

A(H1N1)pdm09 Infection Can Prevent or Alter the Kinetics of hRSV 

Infection

Ferrets were #rst infected with A(H1N1)pdm09 virus then 
challenged with hRSV 3, 7, or 11 days later, or vice versa 
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Figure 1. Virus shedding among ferrets infected with 2009 pandemic influenza A(H1N1) virus (A[H1N1]pdm09), followed at intervals of 3, 7, or 11 days by human respiratory 
syncytial virus (hRSV). A, Experimental plan and outcomes. Ferrets were infected via the intranasal route with A(H1N1)pdm09 and then challenged at various intervals (3, 
7, or 11 days later) with hRSV, or vice versa. Control ferrets were not infected with the primary infecting virus. Virus shedding in nasal wash specimens was assessed every 
second day after primary infection and daily after challenge. B–E, Ferrets underwent primary infection with 103.5 50% tissue culture infectious doses of A(H1N1)pdm09, 3.100 
followed by challenge with 105 plaque-forming units of hRSV strain Long 3 (C), 7 (D), or 11 (E) days later. Control animals were infected with hRSV alone (B). Quantitative 
reverse-transcription polymerase chain reaction analysis was used to detect the A(H1N1)pdm09 hemagglutinin gene (filled) and the hRSV N gene (striped) in viral RNA recov-
ered from nasal wash samples. The lower dotted lines indicate the limit of detection of infectious A(H1N1)pdm09, and the upper dotted lines indicate the limit of detection 
of infectious hRSV, as defined in Materials and Methods.
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Preliminary work: influenza A, SARS-
CoV-2 and virus-virus interactions
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will test this hypothesis using a similar model to what was used to assess interference with RSV4. 
Briefly, groups of six male and female ferrets will be infected with RSV or influenza virus 11, 7, or 
3 day prior to SARS-2 infection (A in Figure 1). A group of respiratory virus naïve ferrets will be 
included. Subsequently all animals will be infected with SARS-2 (CoV in Figure 1). Ferrets will be 
nasal-washed approximately every other day beginning with RSV/flu infection (A, Figure 1) and 
then to 14 days post-SARS-2 infection (CoV, Figure 1). Nasal washes will be assayed  for RSV, 
influenza, and/or SARS-2 load using RT-PCR to readily differentiate viruses in nasal wahses. We 
will complement PCR with focus forming assays using RSV, IAV, IBV, and SARS-2 specific detection 
antibodies (available in our laboratory or commercially) to confirm presence of infectious virus. 
We predict that prior respiratory virus infection will reduce the incidence and magnitude of SARS-
2 infection for at least 7 days, based upon prior studies1,2,4,5. We will bleed the ferrets prior to 
initial respiratory infection, day of SARS-2 infection and then days 7, 14, and 21  post-SARS-2 
infection to assess serological responses to infection, as well as to cryopreserve PBMCs. All ferrets 
will be humanely euthanized on day 14-21 (depending on initial SARS-2 model details) and 
necropsied for pathology and tissue collection for virus and immune response analysis. Details 
on immune response analysis are provided below. We will confirm that interference is not 
specific to the tested IAV, IBV, or RSV viruses by confirming interference with distinct virus strains. 
These studies will expand our understanding of the interactions of respiratory virus infections in 
a relevant animal model and contribute to understanding of susceptibility to respiratory virus, 
and specifically SARS-2 infection. Analysis of the immune response during co-infection may also 
inform potential susceptibility to later infection based upon immunity elicited during co-infection 
as well as explore potential mechanisms of interference. 

Based upon the findings of initial interference studies, we will select a the pre-SARS-2 infection 
time point to inoculate ferrets with RSV, IAV, or IBV and then 11, 7, or 3 day later infect ferrets 
with SARS-2. One day later we will add a naïve ferret to the cage to assess contract transmission 
and a naïve ferret to an adjacent cage with directional air flow to assess aerosol transmission 
from the inoculated ferret.20 We will utilized groups of n=6 ferrets (equal male and female) for 
inoculation and n=6 contact and n=6 aerosol transmission recipient animals.  
Virus load analysis:  Nasal washes will be clarified, aliquoted and stored at -80°C. Separate 
aliquots will be stored in RNAprotect at -80°C. Tissues from necropsy will be incubated in 
RNAlater overnight at 4°C and then stored at -80°C. RNA will be extracted from tissue and nasal 
wash samples using the RNeasy kit as described.21,22 Viral RNA levels will be assessed using 
established RT-PCR assays and primer-probe sets available from the CDC  Influenza  Virus  RT-
qPCR  Influenza  A  (H1/H3/H1pdm09)  Subtyping  Panel (Influenza  Reagent  Resource), as 

  
Figure 1. Interference with SARS-2 infection in ferrets. Chevrons indicate nasal washes 

Figure 11: Design of Ferret experiments with Influenza and SARS-CoV-2.

Methods447

Epidemiological Model448

This section describes the details of the within-host model to study infection dynamics of Influenza and SARS-449

CoV-2 interactions. The full model consists of equations that account for interactions among the two viruses and450

the host’s innate and adaptive immune system.451

The initial part of this chapter will include fitting a single pathogen model to study within-host infection452

dynamics and interactions with the host immune system for SARS-CoV-2 and Influenza independently. This453

analysis will allow for the quantification of baseline rates of (1) host cell production, (2) viral replication, (3)454

cytokine production, elements that are crucial in describing the within-host infection-immune biology for each455

virus.456

Subsequently, a second pathogen will be introduced and the following three mechanisms, relevant to the457

immune dynamics with multiple viruses will be contested against each other, with the view to quantify their458

relative contribution in explaining the observed experimental time-series of viral loads.459

• Target cell depletion. The two viruses compete for epithelial cells during the initial dynamics of the460

infection. For being the common resource, the two viruses are limited by competition for target cells.461

• Interactions with the Innate Immune system. A non-specific defense mechanism, the innate immune462

response includes the release of cytokines like interferons (F). Specifically, this leads to (1) the activation of463

natural killer cells (N) that neutralize the infected host cells, (2) conversion of the target cells to a transient464

refractory form. In this form, cells cannot be infected by the viral particles and (3) reduction in with the465

viral replication rate. Innate immune machinery gets activated in a short period after the infection and forms466

the host’s preliminary defense mechanism against an invading pathogen.467

• Interactions with the Adaptive Immune system. This form of the host’s immune response is used to468

generate an arsenal of antibodies specific to the invading pathogen. It is relatively a slower response but469

ensures long-term protection against future invasions. The main feature captured by these models is the470

production of B-Lymphocytes which neutralize the virus through the production of antibodies.471
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Use within-host models to 
characterize drivers of virus dynamics 
and (eventually) determinants of virus 

interactions

Deven Gokhale Miria Criado
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Immunological transcriptomics data

Fluidigm general workflow

Generate high 
quality RNA

cDNA Specific Target 
Amplification 

Final diluted ExoI 
treated, STA cDNA

Plate your primers 
with Assay buffer

Plate your samples and 
your assays on to the 

Fluidigm chip

Load your 
chip RT-qPCR and data collection

Data Analysis

9,216 data points

Courtesy of Paul Thomas



Yes, but ...
• What about

• Trade-offs in parameters?

• Length of time series?

• Under-reporting bias

• Aggregated data?

• Unknown initial conditions?

Stress-test the approach!


