Household, network and other models of heterogeneity

Tom Britton and Frank Ball

Stockholm University and University of Nottingham

NORDITA PROGRAM Unifying the epidemiological and evolutionary dynamics of pathogens, Stockholm, Sweden

22 June 2023

Households SIR epidemic model

 m_n households of size n $(n = 1, 2, \cdots, n_{\max})$ total no. of households $m = \sum_{n=1}^{n_{\max}} m_n$ total no. of individuals $N = \sum_{n=1}^{n_{\max}} nm_n < \infty$

- Infectious period $\sim I$, having an arbitrary but specified distribution
- **Infection rates (individual** \rightarrow individual)
 - (i) local (within-household) λ_L
 - (ii) global (between-household) λ_G/N
- Latent period/infectivity profiles

(Bartoszyński (1972), Becker and Dietz (1995), Ball, Mollison and Scalia-Tomba (1997))

Threshold parameter R_*

 $R_* =$ mean number of global contacts emanating from a typical single-household epidemic

$$R_* = \sum_{n=1}^{n_{\max}} \tilde{\alpha}_n \mu_n(\lambda_L) \lambda_G \mathbf{E}[I],$$

where

 $\tilde{\alpha}_n = \frac{nm_n}{N}$ = P(randomly chosen person lives in a household of size *n*)

 $\mu_n(\lambda_L)$ = mean size of single (size-n) household epidemic with 1 initial infective

P(global epidemic) > 0 \iff R_* > 1

(Ball, Mollison and Scalia-Tomba (1997), Becker and Dietz (1995))

Variola Minor, Sao Paulo, 1956

- Data comprise final numbers infected in each of 338 households. Household size varied from 1 to 12 (mean = 4.56)
- Each individual labelled vaccinated or unvaccinated

773 unvaccinated — 425 infected (58%)
809 vaccinated — 85 infected (11%)

• Fit households SIR model with non-random vaccine response, assuming infectious period $T_I \equiv 1$, using pseudolikelihood method of Ball and Lyne (2010) to obtain the estimates

 $\hat{\lambda}_L = 0.3821, \hat{\lambda}_G = 1.4159, \hat{a} = 0.1182, \hat{b} = 0.8712$

Comparison of vaccination strategies

Configuration model networks

- Population $\mathcal{N} = \{1, 2, \cdots, n\}$.
- \square D = degree of typical individual

 $p_k = P(D = k)$ $(k = 0, 1, \cdots)$ specified $\mu_D = E[D].$

 \square D_1, D_2, \cdots, D_n iid copies of D.

- Attach D_i stubs (half-edges) to individual i $(i = 1, 2, \dots, n)$.
- Pair up the stubs uniformly at random to form the Newman–Strogratz–Watts (NSW) network.

$$\mathbf{P}(\tilde{D}=k) = \frac{kp_k}{\mu_D} \quad (k=1,2,\cdots).$$

SIR Epidemic model

- Infectious periods iid according to a random variable I having an arbitrary but specified distribution.
- Whilst infectious, individuals contact each of their neighbours independently at rate β .

$$R_0 = \mathrm{E}[\tilde{D} - 1]p_I = (\mu_D + \mu_D^{-1}\sigma_D^2 - 1)p_I,$$

where $p_I = 1 - E[e^{-\beta I}]$ is the probability an infective infects a given neighbour.

(Diekmann et al. (1998), Andersson (1999), Newman (2002))

Network model with casual contacts

Final size of major outbreak with fixed $R_0 = 2$ (Davis (2017))

Some challenges

 Endemic models with household (or network) structure – incorporate waning immunity

- Extension to more complex social structures, while maintaining mathematical tractability
 - Households on a network
 - Overlapping-groups models (e.g. households-workplaces models)
 - More realistic network models
- Inferential methods for emerging diseases
- Computationally efficient calculation of thresholds and early exponential growth rates