Eitulestdandscapes and rates of SARS-CoV-2

- Rapid evolution
(~30 changes per year)
Coronaviruses were traditionally thought of as rather stable.
- Stepwise dynamics:
- Slow within variants
- Rapid jumps in between
- Rapid jumps possible due to chronic infections; many hallmarks of adaptation

See also Duchene et al, Hill et al.

Determination of within-Clade evolutionary rates

- Use sequences that have all lineage defining mutations (removes problematic sequences)
- Linear regression on the number of additional synonymous or amino acid mutations (shared ancestry is a minor problem since most clades have approximately star like phylogenies)
\rightarrow Amino-acid and synonymous rate estimates for each clade

Amino acid rates within clades declined with time

Within vs Backbone rates:

- All clades compatible with a common backbone rate
- Within clade rates are systematically lower

Synonymous rate:

- All variants roughly 6 changes per year
- Very little variation
- Overall rates similar, around 7 changes/year

Amino acid rate:

- Early variants evolved faster
- Large variation
- The overall rate from clade to clade is much higher than the within clade rate

Site specific mutation rates and fitness landscapes

non-synonymous position

- Between 100 and 500 mutations per site! \rightarrow allows quantitative estimation of site specific properties
- UShER (UC Santa Cruz) provides phylogenetic trees of millions of SC2 genomes

Mutation rates and their clade dependence

Mutation rates and their background dependence

B sarbecovirus empirical frequencies at 4-fold degenerate sites

Bloom et al, 2023

A

Interactive plots:

jbloomlab.github.io/SARS2-mut-fitness/

Example: Fitness costs of mutations in the E protein

Limited selection on amino acid sequences in accessory proteins

- Stop codons in ORF6, ORF7a/b, ORF8, and ORF10 don't seem to matter
- Circulating variants have stop codons in these genes
- ORF3a has little selection on the amino acid sequence, but stop codons are deleterious up to position ~ 240

Estimates are consistent across geographies and clades


```
protein
non-spike
\(\square\) spike
```


\% protein divergence between clades

- Independent phylogenetic structures
- Gradual decorrelation due to epistastis
- Different wet lab protocols
- Different bioinformatic pipelines

Selection beyond the coding sequence

- Mutation counts at synonymous sites and non-coding regions
- Constraint is concentrated in a few specific regions
- Most of these regions are well characterized elements

Well known RNA elements are clearly visible

Ribosomal slippage site

Transcription regulatory sequences

Strong signal in E

Acknowledgements

- Nextstrain team (my lab and Trevor Bedford's lab)
- Ivan Aksamentov, Cornelius Roemer, Emma Hodcroft, Moira Zuber
- John Huddleston, Jover Lee, Tom Sibley, James Hadfield, Victor Lin
- Sequence data contributors around the world (shared via GISAID or INSDC)
- Jesse Bloom and his lab

Comparison with deep mutational scanning data

