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Example – coin tosses 
Ø  You toss a coin             times. You get: 

H  H  T  H  H  T  H  H  H  H 

Ø  Arbitrarily, call H a success (1) and T a failure (0): 

1  1  0  1  1  0  1  1  1  1 

Ø  The number of heads is: 

Ø  Questions:  
§  is the coin is fair?  
§  how confident are you in your answer?  
§  and what if you had 79 head out of 100 tosses?  

Ø  Key point:  
§  Estimating a single number is usually not enough information! 

  n = 10

  k = 8

Binomial distribution 

Ø  If we believe that: 
§  all tosses are independent of each other 
§  output can only be head or tail (and nothing else) 
§  head occurs with the same probability      each time 

Ø  Then the probability of getting      heads out of     trials, each with 
success probability      is: 

Ø  Key point: we are assuming a model (often without realising it) 

 p

 k  n
 p

   
P(k | n, p) = n

k
⎛

⎝⎜
⎞

⎠⎟
pk (1− p)n−k

binomial 
coefficient 
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Binomial distribution 

 

If               we would expect 8 heads out of 10 tosses only 5% of the time    p = 0.5

Likelihood function 

Ø  For parameters     and data    , the likelihood function is defined as: 

Ø  Numerically same as the probability, but different interpretation. 

Ø  In               ,  
§       is thought as fixed,      varies; and  
§                                 

Ø  In             , 
§       is thought as fixed,     varies; and  
§                      in general         

   LD (θ )

θ  D

   P(D |θ )
θ  D

   P(D |θ )
D∫ = 1

    LD (θ ) = P(D |θ )

 D θ

   
LD (θ )

θ∫ ≠ 1

Binomial likelihood 

INTRODUCTION 

The	main	example	–	coin	tossing	
Explaining	confusing	concepts	
Monte	Carlo	methods	
MCMC	

Classical VS Bayesian 

Ø  This is mostly a philosophical question, but in summary: 

Ø  Frequentist (classical) perspective: 
§  a parameter has a true exact value, which we don’t know 

Ø  Bayesian perspective: 
§  a parameter is a random variable, which we can describe using 

its distribution function 

Classical statistics 

Ø  The goal is to study the likelihood 

A very brief introduction to classical statistics
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Maximum likelihood estimator (MLE) 

Ø  Given there is only 1 true value of the parameter (classical stats), 
the interest is in finding the maximum likelihood (ML) estimate: 
§  the parameter value at which the likelihood is maximal 

§  This can be found analytically or using numerical methods that 
“climb” up the hill 

   for p = 0.8

Confidence interval 

Ø  How confident I am in my ML estimate? 

Ø  I can draw confidence intervals (CI) 
§  assuming asymptotic normality 

Ø  Note that: 
§  The parameter is fixed 
§  The MLE is a random variable 
§  The CI is an interval centred in the MLE 
§  a 95% CI is a random interval that covers 

the true value 95% of the times 

True value 

MLE 

MLE 

Bayesian statistics 

Ø  The likelihood is still key, but the goal now is to study the posterior 

A very brief introduction to Bayesian statistics
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Bayes’ theorem 

    
P(θ | D) = P(D |θ )P(θ )

P(D |θ )
θ∫ dθ

Bayes’ theorem 

    
P(θ | D) = P(D |θ )P(θ )

P(D |θ )
θ∫ dθ

Bayes’ theorem 

    
P(θ | D) = P(D |θ )P(θ )

P(D |θ )
θ∫ dθ

Prior 



4 

Bayes’ theorem 
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P(θ | D) = P(D |θ )P(θ )

P(D |θ )
θ∫ dθ

Prior 
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   Lk ( p)

Bayes’ theorem 

    
P(θ | D) = P(D |θ )P(θ )

P(D |θ )
θ∫ dθ

Prior 
Likelihood            (which contains the data) 

Posterior 

Normalising constant, 
difficult to compute 

   Lk ( p)
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Exploring the posterior 

Ø  I am now not interested only in the maximum, I want the full distribution 

Ø  Two options: 
§  Analytically, which can be done sometimes (e.g. conjugate priors) 
§  using Monte Carlo methods, i.e. “approximating it with a histogram” 

Monte Carlo methods 

Ø  Monte Carlo means “by generating random numbers” 

Ø  By generating lots of random numbers from a distribution I can 
§  explore it 
§  compute functions of the random variable with that distribution 
§  I might even explore a distribution that I can’t even write, as long 

it is the result of a simulation (often the case in biology) 

Ø  Monte Carlo methods are the only thing that works in high 
dimensions (often the case in practice) 

Ø  Biological applications (e.g. epidemiology, phylogenetics) 
always have high dimensions, because you need to impute a 
lot of unobserved events (infections, coalescence events) 
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Monte Carlo Rejection Sampling 

Ø  Ordinary Monte Carlo methods 
explore a function by generating lots 
of independent samples 

Ø  If I can draw directly from the 
distribution of interest (blue line), 
then I simply do it 

Ø  If I can’t I can use the rejection 
sampling method: 
§  Sampling from another distribution 

I can sample from (red line) which 
“cover” the other distribution  

§  accept/reject with some probability 

Likely to accept Likely to reject 

Problems with rejection sampling 

Ø  Hard to find a good distribution (red line) to 
sample from 

Ø  Hard to find how much I need to “inflate” it to 
“cover the other curve 

Ø  Can be very inefficient 
§  Sampling this is easy (few rejections) 
§  Sampling this is hard (lots of rejections) 

Ø  In general it is really hard to explore a 
distribution by independent samples in many 
dimensions (too many rejections – very 
inefficient) 

Ø  MCMC is a way to explore more efficiently 
distributions in many dimensions 
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Markov chains 

Ø  A Markov chain is a stochastic process, i.e. a system that evolves in 
time according to a probabilistic rule, where  
§  the time is discrete 
§  the probabilistic rule at each step depends only on the current step 

(and nothing before then) – Markov property  

Ø  It is described by a family of random variables 
with values in a state space      (discrete or continuous) 

Ø  where for each    ,        depends only on         and not on 

Ø  Example: snakes and ladders (it doesn’t matter how you arrived where 
you are; it only matter where you are and the result of rolling the die) 

Ø  Under some assumptions, the chain has a stationary distribution: if 
you let it run long enough, no matter where you started from, you end 
up bouncing around this distribution 

  X0 , X1, X 2 ,..., X n ,...

 n  X n

 S

  X n−1   X n−2, X n−3,...

Markov chain Monte Carlo 

Ø  Goal: we need to explore the posterior distribution 

Ø  It might be difficult to sample from it, but it is surprisingly easy to 
construct a Markov chain that has as stationary distribution the 
posterior distribution. So, 
§  run the Markov chain for long enough, until it has “converged” 
§  from that moment onwards I am sampling from the posterior 

Ø  Pros: I explore the posterior efficiently, even in high dimensions 
(because I stay in the regions of high probability, if already there) 

Ø  Cons: I am not drawing independent samples anymore: 
§  I need more samples to have the same “exploratory power” 
§  I don’t know many “more samples” are enough 

Ø  It’s a “dark art ”: I know that if it has converged it’s giving me the right 
answer, but there is no principled way of telling it has converged 

Summary: why MCMC 

Ø  In a Bayesian framework, we pull together prior and likelihood (i.e. 
data) to obtain the posterior 

Ø  We want to explore the posterior, but it’s difficult to do it analytically 

Ø  This is particularly the case for many applied problems 

Ø  Monte Carlo methods are ductile and can in principle work in high 
dimensions, but in practice are very inefficient  

Ø  MCMC methods improve the efficiency, at the price of having 
dependent samples (rather than “more powerful” independent ones) 

Ø  We need to make sure that this “dependency” is not ruining our job 
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MCMC structure 

3 main steps: 

�  Propose new values for the parameters 

�  Compute the likelihood at the new values 

�  Decide whether to: 
§  accept: move to the new values 
§  or reject: stay where you are and count again the current values 

 

and these three steps are repeated many times! 

 

The most expensive step is typically the computation of the likelihood 

MCMC 
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Where to start 

Ø  First, you need your data – this is given 

Ø  Second, you need to work out how to compute the likelihood – this 
comes from the model you have assumed 

Ø  Then you need to choose (once and for all): 
1.  a prior distribution for your parameters 
2.  a proposal distribution 
3.  a starting value for the parameters (it should have no influence 

on the final result) 

Ø  Finally you need to choose (and play around with): 
1.  the length of your chain 
2.  width of proposal distribution 
3.  thinning and burn-in 

MCMC for coin tosses 

Ø  Rules of the game:      coin tosses 

Ø  Data: 
§  number of heads 

Ø  Goal: explore the posterior distribution for the probability      of 
the coin giving heads, given the data you have seen. This includes 
information from: 
§  the prior distribution on      (my belief / expert opinion) 
§  the data 

 n

 k

 p

 p

    
P( p | k) = P(k | p)P( p)

P(k | p)
0

1

∫ dp

Prior 
Likelihood            (which contains the data) 

Posterior 

Good news:  
this you can ignore! 

   Lk ( p)

The likelihood 

Ø  Our model assumes that the number of heads is binomially 
distributed. Implicitly, that means: 
§  all tosses are independent of each other 
§  output can only be head or tail (and nothing else) 
§  head occurs with the same probability      each time 

Ø  I have tossed the coin     times and I have seen head     times: 

 p

 n  k

     

Lk ( p) = P(k heads | p)

= n
k

⎛

⎝⎜
⎞

⎠⎟
pk (1− p)n−k
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Prior distribution 

Ø  The prior reflects your knowledge (or expert opinion), e.g. 
§  if you believe the coin is likely to be fair (maybe because you 

have seen many fair coins and very few non-fair ones), you will 
choose a prior highly peaked around 

§  if you know nothing at all and don’t trust anybody, or if you want 
all the information to come from your data, choose a flat one 

Ø  The choice of the prior matters: 

Ø    

Ø  Simplest choice: flat 

  

  p = 0.5

The difference between your prior 
and your posterior tells you how 
much you learnt from the data 

Common prior distributions 

Ø  On          (e.g. for probabilities): 
§  uniform, i.e. flat (the pdf is constant = 1 in          and 0 outside) 
§  Beta distribution         

Ø  On             (e.g. variances, infection rate, recovery rate…): 
§  flat – this is an improper prior (the pdf is constant “= 0”) 
§  exponential distribution 
§  lognormal distribution 

Ø  On                         (e.g. mean of normal distribution) 
§  flat – again, improper (the pdf is constant “=0”) 
§  Normal 

Ø  The parameters describing your prior are called hyper-parameters 

 [0,1]

 [0,+∞)

 [0,1]

  ! = (−∞,+∞)

Proposal distribution 

Ø  In theory, it doesn’t matter which one you choose 

Ø  In practice, you want one that guarantees your chain “mixes well”, i.e. 
§  you move around (instead of staying for long on the same place) 
§  you explore your parameter space quickly 

Ø  Unless you know what you are doing (e.g. Gibbs sampling), choose a 
Normal distribution: 
§  with mean the previous value of your parameter 
§  with a standard deviation you will tune by trial and error 

Ø  The Normal is convenient because it’s symmetric (see below) 

Ø  In more than 1 dimension, use a multivariate Normal (you can play 
with the covariance matrix) 

Acceptance probability 

Ø  This is the clever bit that allows the miracle to work 

Ø  At each step you have: 
§  An old (current) parameter      and a new (proposed) one 
§  The likelihood      and the prior     computed in both       and 
§  The probability of your proposal distribution      making you jump: 

»  from      to     : 
»  and backwards: 

Ø  Then you compute: 

Ø  and you accept      with probability:    

 p  ′p

 p L  ′p

 Q
 ′p p   Q( p → ′p )

  Q( ′p → p)

     
!α = L( ′p ) Q( ′p → p) P( ′p )

L( p) Q( p → ′p ) P( p)
= L( ′p ) P( ′p )

Q( p → ′p )
L( p) P( p)
Q( ′p → p)

 ′p    α = min{1, !α}

 P
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 p  ′p

 p L  ′p

 Q
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L( p) Q( p → ′p ) P( p)
= L( ′p ) P( ′p )

Q( p → ′p )
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 ′p    α = min{1, !α}

Prior 

 P

Acceptance probability 

Ø  This is the clever bit that allows the miracle to work 

Ø  At each step you have: 
§  An old (current) parameter      and a new (proposed) one 
§  The likelihood      and the prior     computed in both       and 
§  The probability of your proposal distribution      making you jump: 

»  from      to     : 
»  and backwards: 

Ø  Then you compute: 

Ø  and you accept      with probability:    

 p  ′p

 p L  ′p

 Q
 ′p p   Q( p → ′p )

  Q( ′p → p)

     
!α = L( ′p ) Q( ′p → p) P( ′p )

L( p) Q( p → ′p ) P( p)
= L( ′p ) P( ′p )

Q( p → ′p )
L( p) P( p)
Q( ′p → p)

 ′p    α = min{1, !α}

Prior 

 P

Posterior 
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Simpler acceptance probability 

Ø  When computing 

Ø  If the prior is constant in the allowed range, it cancels out 

Ø  If you fall outside the allowed range of the prior                  , i.e.          
and you reject for sure 

Ø  If      is symmetric, the probability of jumping in one direction or 
backwards are identical, and      also cancels out 
§  This is why the Normal distribution is a good choice 

Ø  If the likelihood has some common factors independent of    , they 
cancel out (e.g. the binomial coefficient) 

     
!α = L( ′p ) Q( ′p → p) P( ′p )

L( p) Q( p → ′p ) P( p)

   P( ′p ) = 0   !α = 0

 Q
 Q

 p

Starting value for parameters 

Ø  When running MCMC, you have to wait until your chain has 
“converged”, i.e. has run long enough that: 
§  you have forgotten your initial conditions 
§  you are bouncing around the stationary distribution (which is 

exactly your posterior by construction!) 

Ø  Therefore, it doesn’t matter where you start from – choose what 
you prefer! 

Ø  Further, it might be useful to choose different starting values to 
ensure that each run still converges to the same stationary 
distribution (as it should) 

Length of chain 

Ø  You should run your chain long enough 

Ø  You want 1,000-10,000 (almost) independent samples (nice histogram) 

Ø  Rule of thumb: 
§  run your chain for 1,000 steps 
§  look at the autocorrelation plot 
§  check after how many steps the correlation becomes small (i.e. 

between the horizontal lines in the plot), say 50 
§  you want to run your chain 50 x how many (almost) independent 

samples 

Ø  If the chain is too big to save on your computer you can “thin” it by a 
factor    , i.e. save one output every τ τ

Burn-in 

Ø  You only want a sample from the stationary distribution (= the 
posterior) 

Ø  The burn-in is the initial part of the chain, that depends of where 
you started from, and that looks “different” from the rest of the 
chain, because you haven’t yet converged 

Ø  The burn-in should be identified by eye from the trace plot and 
discarded 

Width of the proposal 

Ø  If your proposal is very wide, you want to jump very far, usually out 
of the range of the prior or into regions of low posterior probability: 
§  high rejection rates  
§  chain visibly constant in bits 

  Choose a smaller standard deviation 

Ø  If your proposal is very narrow, your proposals are almost always 
accepted, but you move very slowly around the parameter space: 
§  high acceptance rates  
§  chain with visible broad oscillations 

  Choose a larger standard deviation 

Ø  Both the problems above lead to large autocorrelation (bad) 

Ø  In 1 dim, acceptance rates should be between 20 and 60% 

MCMC IN PRACTICE 

MCMC	for	coin	tossing	(1	dim)	
Diagnosing	your	MCMC	
Tricks	
MCMC	in	2	dim	
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Diagnostics (1 dim) 

Ø  Proposal too wide: reduce standard deviation 

Diagnostics (1 dim) 

Ø  Proposal too narrow: increase standard deviation 

Diagnostics (1 dim) 

Ø  Good mixing! 

Ø  To be sure, you should zoom into a section towards the beginning 
and a section towards the end and they should look similar! 

MCMC IN PRACTICE 

MCMC	for	coin	tossing	(1	dim)	
Diagnosing	your	MCMC	
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Trick 1: log-likelihood 

Instead of using the likelihood, use the log-likelihood 

Ø  This should always be done: 
§  it has no drawbacks 
§  reduce numerical error (likelihood can have really small values) 
§  cheaper computations (products become sums, exponentials 

become products) 

Ø  E.g. binomial likelihood 

§  Ignore constant factors independent of     (they cancel out in     ) 
§  Take the log 

Ø  At this point, it is convenient to work with            and to use the log 
for all its factors (proposal and prior) 

   
Lk ( p) = n

k
⎛

⎝⎜
⎞

⎠⎟
pk (1− p)n−k

 p

   logLk ( p) ∝ k log p + (n− k) log(1− p)

 !α

  log !α
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§  reduce numerical error (likelihood can have really small values) 
§  cheaper computations (products become sums, exponentials 

become products) 

Ø  E.g. binomial likelihood 

§  Ignore constant factors independent of     (they cancel out in     ) 
§  Take the log 

Ø  At this point, it is convenient to work with            and to use the log 
for all its factors (proposal and prior) 

   
Lk ( p) = n

k
⎛

⎝⎜
⎞

⎠⎟
pk (1− p)n−k

 p

   logLk ( p) ∝ k log p + (n− k) log(1− p)

 !α

  log !α
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Trick 2: avoid useless calculations 

Ø  Calculating the likelihood is usually very expensive 
§  If you propose a new parameter where the prior is 0 (e.g.      

outside         ), reject immediately, before calculating 

Ø  Cheaper to test an “if” statement than to generate random numbers: 
§  If           , accept without generating a random number to choose 

whether to accept or reject 

 p
 [0,1]  !α

  !α >1

Trick 3: Always plot the prior 

Ø  If your posterior is different, it tells you how much you have learnt 
from the data 

Ø  If your posterior is very similar, it means the data contains very little 
or no information about that parameters (unidentifiability issue) 

MCMC IN PRACTICE 

MCMC for coin tossing (1 dim) 
Diagnosing your MCMC 
Tricks 
MCMC in 2 dim 

Proposal in 2 dimension 

You can choose whether to: 

Ø  propose 1 at a time (e.g. from a simple 
Normal distribution in 1 dim), while keeping 
the other fixed: 
§  OK if parameters are relatively 

uncorrelated 
§  Bad if they are strongly correlated 
§  Very good if you can specify analytically 

the conditional posterior (Gibbs sampling) 

Ø  or propose both parameters in one go (e.g. 
from a multivariate normal) – this is called 
block update 
§  A good solution when the parameters are 

strongly correlated 

Plotmatrix 

Ø  Plotmatrix is a command (in Matlab) that creates a fancy plot that 
can reveal correlation between parameters 

Strongly correlated parameters 

Ø  Tricks to improve mixing: 
§  Block updates, possibly from a multivariate normal “elongated” in 

the direction of the correlation 
§  Re-parameterise your model with new parameters that are less 

correlated. 
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PLAY WITH MATLAB OR R 

Codes 

Ø  “MCMCBinomial” file: play with 
§  n_tosses 
§  n_heads 
§  n_iters 
§  thinning 
§  sd_proposal (try 0.01 or 5) 
§  burnin 

Ø  “MCMCEpidemicFinalSizeLargePop” file: play also with 
§  Updating in block or not 
§  Tuning the sd_proposal for either parameter 


