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The S-matrix is perhaps the most natural observable of a gravitational
theory in an asymptotically flat space-time

o diffeomorphism invariant

@ for massless particles, initial &
final states specified on #+

@ ‘naturally holographic’
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In flat R13, we usually scatter momentum eigenstates ~ ek* = e/ (KIxIA]
These become localized on a generator as we approach .+

e let x = xo + rn(z) with n(z) = |A(2))[\(2)],
then

; lim ek(otm(2)) — gikxo |im eir(nA(z))[kf\(z)]
r—o0 r—o0
gt /

dominated by points of stationary phase

0 (kA(2))[X(2)] = 0
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In flat R13, we usually scatter momentum eigenstates ~ ek* = e/ (KIxIA]
These become localized on a generator as we approach .+

e let x = xo + rn(z) with n(z) = |A(2))[\(2)],
then

> lim ek(otm(2)) — gikxo |im eir(nA(z))[R;\(z)]
r—o0 r—o0
gt /

dominated by points of stationary phase

0 (kA(2))[X(2)] = 0

k= |r)[R]

e implies [\(z)) = |x) and |A(2)] = |&] (Lorentzian)
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celestial 52

RN

\

‘Carrollian’ ‘Celestial’

@ 3d Carrollian perspective more appropriate for dynamics on .# (eg
sequential bursts of gravitational radiation), but less well understood

@ 2d celestial perspective closer to CFT; requires decomposing fields
into modes along R direction (eg ‘conformally soft’ / Mellin modes)
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Scattering amplitudes become singular when the momenta of two massless
particles become collinear

An(kes ks oo kn) 225 Split x An_1(k, K3, - - kn)

The splitting functions in Yang-Mills theory and gravity are well known

f . [12]
(15> Spllt;}av = @

Splitiy =
at tree level
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On .#, taking the collinear limit corresponds to bringing the two points on
the celestial sphere close together

This is very suggestive of an OPE in the celestial CFT
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@ splitting functions give the space of on-shell linearised states the
structure of an algebra
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On .#, taking the collinear limit corresponds to bringing the two points on
the celestial sphere close together

This is very suggestive of an OPE in the celestial CFT

@ splitting functions give the space of on-shell linearised states the
structure of an algebra

@ assuming graviton modes <+ local conserved operators, we can read
off the symmetry stucture of any purported CCFT dual [Fan Fotopoulos, Taylor]
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Only a few UV finite 4d theories of quantum gravity are known:

@ compactification of a string theory on R1:3 x X
> 10500 examples, really higher dimensional
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Only a few UV finite 4d theories of quantum gravity are known:

@ compactification of a string theory on R1:3 x X
— > 10500 examples, really higher dimensional

o N = 4 conformal supergravity coupled to N' = 4 SYM with gauge
group U(2) or U(1)*
— believed to be UV finite, but non-unitary
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Only a few UV finite 4d theories of quantum gravity are known:

@ compactification of a string theory on R1:3 x X
— > 10500 examples, really higher dimensional

o N = 4 conformal supergravity coupled to N' = 4 SYM with gauge
group U(2) or U(1)*
— believed to be UV finite, but non-unitary

@ self-dual theories

— N = 2 String / RiCCi-ﬂat Kahler [Plebanski;Ooguri,Vafa; Chalmers,Siegel]
— Mabuchi graVity / Scalar-ﬂat Kahler [Mabuchi;Phong,Sturm;Costello,Paquette,Sharmal
— all require Riemannian or (2,2) signature for non-trivial solutions
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Only a few UV finite 4d theories of quantum gravity are known:
@ compactification of a string theory on R1:3 x X

— > 10500 examples, really higher dimensional

o N = 4 conformal supergravity coupled to N' = 4 SYM with gauge
group U(2) or U(1)*
— believed to be UV finite, but non-unitary

@ self-dual theories

— N = 2 String / RiCCi-ﬂat Kahler [Plebanski;Ooguri,Vafa; Chalmers,Siegel]
— Mabuchi graVity / Scalar-ﬂat Kahler [Mabuchi;Phong,Sturm;Costello,Paquette,Sharmal
— all require Riemannian or (2,2) signature for non-trivial solutions

In this talk, we'll concentrate on self-dual Einstein gravity

David Skinner DAMTP, Cambridge W algebras and ALE spaces Nordita, 4 Jul 23 7/35



Self-dual Einstein gravity may be described by the action (chaimers siegel

S[®, 0] = /ad% Dsa® + %cﬁ {0%, 0,0} d*x
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Self-dual Einstein gravity may be described by the action (chaimers siegel

S[®, 0] = /ad% Dsa® + %cﬁ {0%, 0,0} d*x

o & () represents the positive (negative) helicity graviton

® 05 = a®04q for a choice of spinor (|, and likewise {f, g} = 09fO.g
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Self-dual Einstein gravity may be described by the action (chaimers siegel

S[®, 0] = /ad% Dsa® + %cﬁ {0%, 0,0} d*x

o & () represents the positive (negative) helicity graviton

® 05 = a®04q for a choice of spinor (|, and likewise {f, g} = 09fO.g

The field equation §S/6® = 0 is the (second) Plebanski equation, which
ensures that the metric

ds® = dx®® ® dxga + (‘3@834) a0 dx®® dxP8

obeys the vacuum Einstein equations Ric =0
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Self-dual Einstein gravity may be described by the action (chaimers siegel

S[®, 0] = /ad% Dsa® + %cﬁ {0%, 0,0} d*x

o & () represents the positive (negative) helicity graviton

® 05 = a®04q for a choice of spinor (|, and likewise {f, g} = 09fO.g

The field equation §S/6® = 0 is the (second) Plebanski equation, which
ensures that the metric

ds® = dx®® ® dxga + (‘3@834) a0 dx®® dxP8

obeys the vacuum Einstein equations Ric =0

@ this would be a hyperkahler metric in Riemannian signature
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The (classical) splitting function is closely related to the 3-pt vertex

oo aen =g [ 0 () ()}

[12]2 ei(k1+k2)-x 4 [12] ei(kl-i‘kz)'y
 (a1)%(a2)? / B

an2(x—y)2 © 77 (12) (a1)2(a2)?
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The (classical) splitting function is closely related to the 3-pt vertex

e e e R )

B [12]2 el(k1+k2)X . [12] ei(k1+k2)'y
" (al)2(a2)? / ar?(x—y2 O 7T (12) (a1)2(a2)?

@ parametrize the holomorphic collinear limit by writing
1 - - 1
’FL,’> = ,/w,-\z,-> = J/w; <Z> and |I€,‘] = ‘/w,-\z,-] = /Wi (2), then
1 1

taking |z1) — |z) with w; = tw and wp = (1 — t)w
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The (classical) splitting function is closely related to the 3-pt vertex

e e e R )

B [12]2 el(k1+k2)x . [12] ei(k1+k2)'y
" (al)2(a2)? / ar?(x—y2 O 7T (12) (a1)2(a2)?

@ parametrize the holomorphic collinear limit by writing
1 - - 1
’FL,’> = ,/w,-\z,-> = J/w; <Z> and |I€,‘] = ‘/w,-\z,-] = /Wi <2_>, then
1 1

taking |z1) — |z) with w; = tw and wp = (1 — t)w

@ in this limit ky + ko = |2)[Z| + - - - where |2] = (2 +1t2 >
> 12

e to leading order in zj5, the state [12]/(12) e/(kitk2)X becomes

s . iw(zo|x|2] 2 (- i\n
@eiw<22|x|22]+tw<22\><1212 _ € (22lx|2] (th<22|X )

Z12 Z12 — n!
n=0

(212)n+1
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@ For each particle we define conformally soft modes w[p, q](z) via

oo —iw(z|x|Z] _3)2—k 512—k
Reon ( / do ae >:< 12 (z[x]2]
0

w w2({az)* (az)* (2 —k)!
w(p, q](z) 27
- q+;7§=:2k Pl

David Skinner DAMTP, Cambridge W algebras and ALE spaces Nordita, 4 Jul 23 10/35



@ For each particle we define conformally soft modes w[p, q](z) via

oo —iw(z|x|Z] _3)2—k 512—k
Reen ( [0 ) _ (P (i)
0

w w?(az)* (az)* (2 —k)!
wlp. ql(2) 29
- q+pz=:2k piq!

Comparing both sides leads to the algebra

Strominger;Guevara,Himwich,Pate;Adamo,Mason,Sharma]

ps — qr
p4

w(p, q](z) wlr, s](0) ~ — wlp+r—1,q+s-1](0)
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@ For each particle we define conformally soft modes w[p, q](z) via

oo —iw(z|x|Z] _3)2—k 512—k
R%Ak</‘ dw e 4) _ Gt (el
0

w w?{az) (az)* (2 —k)!
_ w(p, q](z) 27
N qﬂ;k plq!

Comparing both sides leads to the algebra

Strominger;Guevara,Himwich,Pate;Adamo,Mason,Sharma]

w[p+r—1,qg+s—1](0)

wlp. q)(2) wlr.s)(0) ~ ~=—F

e this is Lham(C?), the loop algebra of Poisson algebra of holomorphic
functions on C2 with Poisson bracket {f, g} = 0,f0,g — 0,fO.g
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The loop algebra of ham(C?) is closely related to twistor space fpenrose:

Adamo,Mason,Sharmal

@ twistor space of Euclidean R* is just PT = 52 x R*
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The loop algebra of ham(C?) is closely related to twistor space fpenrose:

Adamo,Mason,Sharmal

@ twistor space of Euclidean R* is just PT = 52 x R*

e introduce coordinates (x“%, [As]) on PT, where x** = oj“x* and A,
is considered up to scale
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The loop algebra of ham(C?) is closely related to twistor space fpenrose:

Adamo,Mason,Sharmal

@ twistor space of Euclidean R* is just PT = 52 x R*

e introduce coordinates (x%*, [A\,]) on PT, where x¢® = Uﬁ"x“ and A\,
is considered up to scale

@ PT has a natural C-str that combines the C-str on S? = CP! 5 [\,]
with u® = x®*)\, as holomorphic coords on C? = R*
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The loop algebra of ham(C?) is closely related to twistor space fpenrose:

Adamo,Mason,Sharmal

@ twistor space of Euclidean R* is just PT = 52 x R*

e introduce coordinates (x“%, [As]) on PT, where x** = oj“x* and A,
is considered up to scale

@ PT has a natural C-str that combines the C-str on S? = CP! 5 [\,]
with u® = x®*)\, as holomorphic coords on C? = R*

As a complex manifold, PT = O(1) @ O(1) — CP*
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The loop algebra of ham(C?) is closely related to twistor space fpenrose:

Adamo,Mason,Sharmal

@ twistor space of Euclidean R* is just PT = 52 x R*

e introduce coordinates (x“%, [As]) on PT, where x** = oj“x* and A,
is considered up to scale

@ PT has a natural C-str that combines the C-str on S? = CP! 5 [\,]
with u® = x®*)\, as holomorphic coords on C? = R*
As a complex manifold, PT = O(1) @ O(1) — CP*

e ecach fibre of PT — CP! has a weight 2 symplectic (2,0)-form
w=dp® A dpg
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The loop algebra of ham(C?) is closely related to twistor space fpenrose:

Adamo,Mason,Sharmal

@ twistor space of Euclidean R* is just PT = 52 x R*

e introduce coordinates (x%*, [A\,]) on PT, where x¢® = Uﬁ"x“ and A\,
is considered up to scale

@ PT has a natural C-str that combines the C-str on S? = CP! 5 [\,]
with u® = x®*)\, as holomorphic coords on C? = R*
As a complex manifold, PT = O(1) @ O(1) — CP*

e ecach fibre of PT — CP! has a weight 2 symplectic (2,0)-form
w=dp® A dpg

@ metric on R* comes from pulling this back using incidence relations

wlx = dx¥ A dx Aads = 9% A eap Aadg

ds? = e © ey = dXYY O dxga
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Classical sd gravity comes from deformations of the C-str of twistor space

00— 0+V for V € QOL(PT, Tpr) and the Weyl tensor on R* is
self-dual iff (0 + V)?> =0
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Classical sd gravity comes from deformations of the C-str of twistor space

00— 0+V for V € QOL(PT, Tpr) and the Weyl tensor on R* is
self-dual iff (0 + V)?> =0

@ we also get an Einstein metric if V = {h, - } where again
pa O 08

h e Q%Y(PT, O(2 and fogt=wl(df,dg) =¢ -2
( (2)) {f.g} (df,dg) O ol
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Classical sd gravity comes from deformations of the C-str of twistor space
@00+ V fczr V € Q%Y(PT, Tpr) and the Weyl tensor on R* is
self-dual iff (0 + V)?> =0
@ we also get an Einstein metric if V = {h, - } where again
4a Of Og

h e Q%Y(PT, O(2 and fogt =wl(df,dg) = £V~ =
( (2)) {f.g} (df,dg) O ol

The natural action on twistor space for self-dual gravity is thus (vasonwer)
Sih ] = - / QAR (3h+ 2k b}
2w Jpr 27

where Q = (Ad\) Aw

@ h (h) represents the positive (negative) helicity graviton
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Classical sd gravity comes from deformations of the C-str of twistor space
@00+ V fczr V € Q%Y(PT, Tpr) and the Weyl tensor on R* is
self-dual iff (0 + V)?> =0
@ we also get an Einstein metric if V = {h, - } where again
pa Of 08

h e Q%Y(PT, O(2 and fogt=wl(df,dg) =¢ -2
( (2)) {f.g} (df,dg) O ol

The natural action on twistor space for self-dual gravity is thus (vasonwer)
Sih ] = - / QAR (3h+ 2k b}
2w Jpr 27

where Q = (Ad\) Aw

@ h (h) represents the positive (negative) helicity graviton

@ after gauge fixing and imposing some components of the eom, this
reduces to Chalmers-Siegel action on R* [gittieston Sharma,ns]
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We can think of V = {h, } as a Hamiltonian vector field defined on the
overlap Up N Uy, telling us how to glue the two patches together

CP!
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We can think of V = {h, } as a Hamiltonian vector field defined on the
overlap Up N Uy, telling us how to glue the two patches together

@ in this picture h must be holomophic on
the fibres of PT — CP*, but can be
meromorphic on CP?! itself

CP!
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We can think of V = {h, } as a Hamiltonian vector field defined on the
overlap Up N Uy, telling us how to glue the two patches together

@ in this picture h must be holomophic on
the fibres of PT — CP*, but can be
meromorphic on CP?! itself

@ a basis of such functions is

o WOPwhT pgeNg
wip,qir] = ——— "2,
0 o0
CP! with z a local coordinate on CP!
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We can think of V = {h, } as a Hamiltonian vector field defined on the
overlap Up N Uy, telling us how to glue the two patches together

@ in this picture h must be holomophic on
the fibres of PT — CP!, but can be
meromorphic on CP?! itself

@ a basis of such functions is

o WOPwhT pgeNg
wip,qir] = ——— "2,
0 o0
CP! with z a local coordinate on CP!

Taking the twistor Poisson bracket of two such elements gives Lham(C?)

@ on R*, this amounts to considering all C-structures simultaneously
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It's important to note that ham(C?) is not wi ., nor its wedge
subalgebra wy

Wi+oo Z p+qg=0|2
WA has p,g € (Np p+qg=0]|2
ham(C?) No
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It's important to note that ham(C?) is not wi ., nor its wedge
subalgebra wy

Wi+oo Z p+qg=0|2
WA has p,g € (Np p+qg=0]|2
ham(C?) No

e w[2,0], w[l,1] & w[0,2] generate an sly subalgeba; the generators of
w,, all integer spin under this slp, while ham(C?) also includes
generators with half-integer spin
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It's important to note that ham(C?) is not wi ., nor its wedge
subalgebra wy

Wi+oo Z p+qg=0|2
WA has p,g € (Np p+qg=0]|2
ham(C?) No

e w[2,0], w[l,1] & w[0,2] generate an sly subalgeba; the generators of
w,, all integer spin under this slp, while ham(C?) also includes
generators with half-integer spin

e w, = ham(C?)%2 and corresponds to scattering only even states
~ cos(k - x)
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It's important to note that ham(C?) is not wi ., nor its wedge
subalgebra wy

Wi+oo Z p+qg=0|2
WA has p,g € (Np p+qg=0]|2
ham(C?) No

e w[2,0], w[l,1] & w[0,2] generate an sly subalgeba; the generators of
w,, all integer spin under this slp, while ham(C?) also includes
generators with half-integer spin

e w, = ham(C?)%2 and corresponds to scattering only even states
~ cos(k - x)

The distinctions are important when considering deformations
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wy, possesses a family of deformations, called W(u), with relations

[W[p7 q]) W[r7 5]] = Z qzeff(pa q, r,s)w[p—i—r _26_17 q+5_2€_1] )
£>0
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wy, possesses a family of deformations, called W(u), with relations

[W[p7 q]7 W[r,S]] = Z qzefl(pa q, r,s)w[p—i—r _26_17 q+5_2£_1] )
£>0

@ the structure constants involve a hypergeometric function

—1/2-20,3/2+20, ~/2,(1-1)/2

1(psq,r,s) (P, q,r.5)a 3{ 1/2—m,1/2—n,m+n+3/2—( '

with m=(p+q)/2, n=(r+s)/2 and o a parameter
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wy, possesses a family of deformations, called W(u), with relations

[W[p7 q]7 W[r,S]] = Z qzefl(pa q, r,s)w[p—i—r _26_17 q+5_2£_1] )
£>0

@ the structure constants involve a hypergeometric function

—1/2-20,3/2+20, ~/2,(1-1)/2

1(psq,r,s) (P, q,r.5)a 3{ 1/2—m,1/2—n,m+n+3/2—( '

with m=(p+q)/2, n=(r+s)/2 and o a parameter

@ 0 = —o — 1, so different algebras labelled by u = o(o + 1)
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wy, possesses a family of deformations, called W(u), with relations

[W[p7 q]7 W[r,S]] = Z qzefl(pa q, r,s)w[p—i—r _26_17 q+5_2£_1] )
£>0

@ the structure constants involve a hypergeometric function

—1/2—20,3/2420,-/2,(1—-¢)/2
f =R F- 1
E(pv q, f,S) Z(P,q, I’,S)4 3|: 1/2_m’ 1/2_n7m+n+3/2_€ ;
with m=(p+q)/2, n=(r+s)/2 and o a parameter
@ 0 = —o — 1, so different algebras labelled by u = o(o + 1)

@ algebras with different q # 0 but same p are isomorphic, and
limg—o W(u) = wy for any u

David Skinner DAMTP, Cambridge W algebras and ALE spaces Nordita, 4 Jul 23 15/35



wy, possesses a family of deformations, called W(u), with relations

[W[p7 q]7 W[r,S]] = Z qzefl(pa q, r,s)w[p—i—r _26_17 q+5_2£_1] )
£>0

@ the structure constants involve a hypergeometric function

—1/2—20,3/2420,-/2,(1—-¢)/2
f =R F- 1
ﬁ(pv q, r,s) Z(P,q, I’,S)4 3|: 1/2_m’ 1/2_n7m+n+3/2_€ ;
with m=(p+q)/2, n=(r+s)/2 and o a parameter
@ 0 = —o — 1, so different algebras labelled by u = o(o + 1)

@ algebras with different q # 0 but same p are isomorphic, and
limg—o W(u) = wy for any u

These are the only deformations of wa [Pope Romans Shen;Fairlie]

@ it's possible that Lw, may have further deformations [strominger]
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For example, in the theory of a free complex fermion fi/_@ib d?z, a copy of
EW]_J,_OO = EW(_1/4) IS reallsed by mOdeS Of the Currents [Pope,Romans,Shen]

J =4y,
Y )

= S0Py — Spoy

_Lo2gy— 20500 + Lo
Ws = 50"y — 2000y + =90%),

1z 9 H- 9, - 153
W4—203 ) 203 ¢a¢+203¢3¢ 20¢3¢
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For example, in the theory of a free complex fermion fi[)gd} d?z, a copy of
LWiioo = LW(—1/4) is realised by modes of the currents [pope Romans shen]

J=qp,
T=Yogy - Lo
= 500t — 9oy
iy 2oi00+ Lio
W3 = 68 Y 33¢3’¢)+ 6¢3 Y,
Ll g 9 oo 9 70, 153
W4—2031W 203¢5¢+205¢3¢ 20¢3¢

@ taking classical Poisson brackets of these currents gives wj
@ quantum OPEs deform this to Wi, = W(—1/4) where q ~ h
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For example, in the theory of a free complex fermion fi/?&/} d?z, a copy of
EW]_J,_OO = EW(_1/4) IS reallsed by mOdeS Of the Currents [Pope,Romans,Shen]

J =4y,
Y )

= S0Py — Spoy

_Lo2gy— 20500 + Lo
Ws = 50"y — 2000y + =90%),

1z 9 H- 9, - 153
W4—203 ) 203 ¢a¢+203¢3¢ 20¢3¢

@ taking classical Poisson brackets of these currents gives wj
@ quantum OPEs deform this to Wi, = W(—1/4) where q ~ h

Other 2d quantum theories (eg SU(o0) Toda) realise W/(u) algebras with
different values of
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However, ham(C?) is much more rigid

e if all p, g € Ny are allowed, the hypergeometric function becomes
singular unless = —3/16
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However, ham(C?) is much more rigid
o if all p,q € Ny are allowed, the hypergeometric function becomes
singular unless = —3/16

e W(—3/16) is known as the symplecton algebra. It is the unique
deformation Of ham(c2) as a Lle algebra [Pope,Romans,Shen;Etinghof;Kontsevich]
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However, ham(C?) is much more rigid
e if all p, g € Ny are allowed, the hypergeometric function becomes
singular unless = —3/16

e W(—3/16) is known as the symplecton algebra. It is the unique
deformation Of bam(c2) as a L|e algebra [Pope,Romans,Shen;Etinghof;Kontsevich]

In the bulk, the (loop algebra of) the symplecton algebra comes from
non-commutative self-dual gravity

i % Lyoa 4
Sq[®, @] = /cb <D<b—|— 5 {0 cb,ac-,cb}q) d*x
where { , }4 is the Moyal bracket defined via

{f.glg=a"(frg—gx*f) f*ngexp[q(e“ga%)]g
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However, ham(C?) is much more rigid
e if all p, g € Ny are allowed, the hypergeometric function becomes
singular unless = —3/16

e W(—3/16) is known as the symplecton algebra. It is the unique
deformation Of bam(c2) as a Lle algebra [Pope,Romans,Shen;Etinghof;Kontsevich]

In the bulk, the (loop algebra of) the symplecton algebra comes from
non-commutative self-dual gravity

Sql®, ] = / (D¢+ {aacbacb})

where { , }4 is the Moyal bracket defined via

{f.glg=a"(frg—gx*f) f*ngexp[q(edﬁga(ﬁ)]g

o deformed algebra comes from deformed splittting function
[ilg _ sinh(afij](ia) (o)
(if) q(ia)(ja)

David Skinner DAMTP, Cambridge W algebras and ALE spaces Nordita, 4 Jul 23 17 /35
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It's interesting to compare this to AdS/CFT

o in free CFT, there's an co-dimensional space of local operators whose
OPEs tell us they transform in reps of eg a hs algebra

@ at non-zero 't Hooft coupling A the OPE is deformed, and the
operators now transform eg in reps of a Yangian, with further
deformations at finite N
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It's interesting to compare this to AdS/CFT

@ in free CFT, there's an oco-dimensional space of local operators whose
OPEs tell us they transform in reps of eg a hs algebra

@ at non-zero 't Hooft coupling A the OPE is deformed, and the
operators now transform eg in reps of a Yangian, with further
deformations at finite N

@ in the dual string theory, these deformations are governed by o/
corrections and by the genus expansion

s 1 Y
o/ NI N
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It's interesting to compare this to AdS/CFT

o in free CFT, there's an co-dimensional space of local operators whose
OPEs tell us they transform in reps of eg a hs algebra

@ at non-zero 't Hooft coupling A the OPE is deformed, and the
operators now transform eg in reps of a Yangian, with further
deformations at finite N

@ in the dual string theory, these deformations are governed by o/
corrections and by the genus expansion

Lags _ 1

A
o T Vam &=

In flat space, there is no (fixed) scale to compare to o/

@ it may be fruitful to consider celestial holography in an asymptotically
flat space, even though it’s not yet understood in flat space itself
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We begin on the twistor space PT/Z, of R*/Z,, where

Ly : (/Ldv)‘a) = (_#dv"i_)‘a)
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We begin on the twistor space PT/Z, of R*/Z,, where

Ly : (/Ld7)‘a) = (_#dfi_)‘a)

e X = (MO)Z, Y =(p ) and Z = 1041 are invariant under Z, so

0(2) ® 0(2) ® O(2)
PT/Z, = {XY = Z?} C ¢
CP!
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We begin on the twistor space PT/Z, of R*/Z,, where

Ly : (/Ldv)‘a) = (_#dv"i_)‘a)

e X = (MO)Z, Y =(p ) and Z = 1041 are invariant under Z, so

0(2) ® 0(2) & 0(2)
PT/Z, = {XY = Z?} C ]
CP!

Inspired by twisted holography [coseiocaiore) & Burns holography
[Costello, Paquette Sharma], We wrap a defect around the orbifold singularity u® =0

@ Mabuchi gravity and Burns space arise from a sector of sd conformal
gravity; interesting to have a version for sd Einstein gravity
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We begin on the twistor space PT/Z, of R*/Z,, where

Ly : (/Ld7)‘a) = (_#dv"i_)‘a)

e X = (MO)Z, Y =(p ) and Z = 1041 are invariant under Z, so

0(2) ® 0(2) ® O(2)
PT/Z, = {XY = Z?} C ¢
CP!

Inspired by twisted holography [coseiocaiore) & Burns holography
[Costello, Paquette Sharma], We wrap a defect around the orbifold singularity u® =0

@ Mabuchi gravity and Burns space arise from a sector of sd conformal
gravity; interesting to have a version for sd Einstein gravity

@ no full string realization as yet, though closely related to N/ = 2 string
and B-model in presence of D3-branes sittieston Heuveline,DS wip]
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Our defect couples electrically to h, so action becomes

S[h, h] :/M/Z Q/\I~1<5h+%{h, h}>

@ coupling requires choice of weight +2 function c(\) = c(a\)(BA)

2

o
: /ﬂdzo(Ad)\)c (V) AF
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Our defect couples electrically to h, so action becomes
~ ~ [ = 1 7'('2 5 ~
S[h,h] = QAh{Oh+ ={h h} | — — (AdA) c“(A) A h
PT/Z» 2 2 Jua—o

@ coupling requires choice of weight 42 function c(\) = c{a\)(B\)
In the presence of the defect, the equation of motion for h becomes

3h+ L{h by = T ) P ()
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Our defect couples electrically to h, so action becomes

S[h, h] :/M/Z Q/\I~1<5h+%{h, h}>

@ coupling requires choice of weight +2 function c(\) = c(a\)(BA)

2

o
: /ﬂdzo(Ad)\)c (V) AF

In the presence of the defect, the equation of motion for h becomes

2

Bh + %{h, h =T P()

@ this is solved by

(N [dj] s

h = . where A% = (—pt, uo
2 (AP (=4 1%)

@ note that this solution respects the Z, action
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This background h means the J-operator is deformed to

V=0+{h}=0- 2@)[[‘;(1?]@‘*8#
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This background h means the J-operator is deformed to

V=0+{h}=0- 2(A)[[Zd§‘]aaa#

@ with this V-operator, the holomorphic coordinates are

Ao and X = x(@0) — a8 2 L
[ 1]

where the X% have weight 2 and obey XOI‘BXdﬁ- = —2c2()\)
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This background h means the J-operator is deformed to

V=0+{h}=0- 2@)[[‘;(1?]&‘*@#

@ with this V-operator, the holomorphic coordinates are

i’

Ao and X = X8) = hB 200 B
[ ]

where the X% have weight 2 and obey XOI‘BX(M- = —2c2()\)

Redefining (X, Y,Z) = (Xoo,Xii,XOi), the deformed twistor space is

0Q2) ® 0(2) @ O(2)
PT ={XY =(Z—-c(AN))(Z+c(N)} C 1
CP!
@ PT is the twistor space of Eguchi-Hanson space [eguchi,Hanson;Hitchin Tod Ward];
sending the defect coupling ¢ — 0 returns to PT/Z;
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Eguchi-Hanson space itself may be recovered from the incidence relations

. . . 4 2 2
X = o (Am - Aclodr ﬂaﬂﬂ)

@ these define holomorphic sections of PT — CP!; in particular the rhs
above obeys the constraint Xo‘[deB = —2c2()\)
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Eguchi-Hanson space itself may be recovered from the incidence relations
y: o B 4c?(aN)?
X = o (Am - Aclodr ﬂaﬂﬂ)

@ these define holomorphic sections of PT — CP!; in particular the rhs
above obeys the constraint Xo‘[deB = —2c2()\)

The fibres of PT — CP! have a weight 2 symplectic (2,0)-form
X dXsq X, 4x pdZ
8c2(N) 2X

1 .
w:Ed,uO‘/\d,ud:

@ evaluating w on the incidence relations leads to the space-time metric

. 16¢2

ds? = dx®* ® dxga + —g(ﬁlx dx|ar)®?
X

@ this is the Eguchi-Hanson metric in Kerr-Schild form

[Sparling, Tod;Burnett-Stuart;Berman,Chacén,Luna, White]
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The CCA comes from the ring of holomorphic functions on a fibre of
PT — CP!

Om, =C[X,Y,Z]/% where the ideal .# = span{XY — Z% + c*(\)}

@ this ring has a natural basis
V[2p,2q] = XPY9, V[2p+1,2g+ 1] = XPYIZ, p,q € Np

which reduces to the basis w[2p,2q], w[2p+1,2qg+1] of wy as the
defect coupling ¢ — 0
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The CCA comes from the ring of holomorphic functions on a fibre of
PT — CP!

Om, =C[X,Y,Z]/% where the ideal .# = span{XY — Z% + c*(\)}

@ this ring has a natural basis
V[2p,2q] = XPY9, V[2p+1,2g+ 1] = XPYIZ, p,q € Np

which reduces to the basis w[2p,2q], w[2p+1,2qg+1] of wy as the
defect coupling ¢ — 0

In terms of the new coordinates, the Poisson structure on P7 is defined by
{X,Z} =2X {Y,Z} = -2Y {X,Y}=4Z7

which are just the defining relations of sl
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The CCA comes from the ring of holomorphic functions on a fibre of
PT — CP!

Om, =C[X,Y,Z]/% where the ideal .# = span{XY — Z% + c*(\)}

@ this ring has a natural basis
V[2p,2q] = XPY9, V[2p+1,2g+ 1] = XPYIZ, p,q € Np

which reduces to the basis w[2p,2q], w[2p+1,2qg+1] of wy as the
defect coupling ¢ — 0

In terms of the new coordinates, the Poisson structure on P7 is defined by
{X,Z} =2X {Y,Z} = -2Y {X,Y}=4Z7

which are just the defining relations of sl

@ the ideal involves only the quadratic Casimir so {O, .} C .¥
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Taking Poisson brackets of our basis gives the algebra

[V[2p,2q], V[2r+1,2s+1]]
=2(p(2s +1) — q(2r + 1)) V[2(p+r),2(q+5)]
+4c2(\) (ps — qr) V[2(p+r—1),2(g+s5—1)]
[V[2p+1,2q+1], V[2r+1,25+1]]
= ((2p+1)(2s+1) — (2g+1)(2r+1)) V[2(p+r)+1,2(q+s)+1]
+4c?(\) (ps — qr) V[2(p+r)—1,2(q+5s)—1]

@ when ¢ = 0 this is wx; new terms at ¢ # 0 are non-trivial in Lie
algebra cohomology

@ again the twistor space pieces together these algebras over CP?,
giving us the corresponding loop algebra
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To relate this to CCAs, consider scattering the external states

b = 14cos<\/(k-x)2—w) k = |k)[R|

(ak) bs

in terms of Kerr-Schild coordinates x%* on the Eguchi-Hanson background

@ these obey the Plebanski equation linearized around EH background
and approach cos(k - x) as |x| = oo
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To relate this to CCAs, consider scattering the external states

b = 14cos<\/(k-x)2—w> k = |k)[R|

X

in terms of Kerr-Schild coordinates x%* on the Eguchi-Hanson background

@ these obey the Plebanski equation linearized around EH background
and approach cos(k - x) as |x| = oo

@ they may be obtained from Penrose transfom of twistor states
Sh(X, ) ~ 5((Ak)) cos(/TRIXTA)
using the incidence relations

. o 2 2
X = xaay P (/\a)\,@ e )((c:)\) 51156)
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Expanding cos(+/[%|X|R]) = > oA X|&]™/(2m)! we have

[7|X|7]™ (—)PHaRsPiy?

(2m)! “@rieq)
(—)prarig2eiiz2ett
0 1

(2p + 1)1(2q + 1)!

= > W2p,2q]

p+gq=m

+ Y W[2p+1,2q+1]
p+g=m—1

David Skinner DAMTP, Cambridge W algebras and ALE spaces Nordita, 4 Jul 23 26 /35



Expanding cos(+/[%|X|R]) = > oA X|&]™/(2m)! we have

[#|X|7]™ (—)PHaRsPiy?

emi 2, BRI Ga

(—)ptatt p2pt1z2q+1

+ W2p+1,29+1 0 ™M
P+q:Zm—1 | ](2P+1)!(2q—|—]_)!

@ the Ws are polys in (X, Y, Z) given in terms of the previous basis by

min(p,q)
W2p,2q] = > (2c(N)* Colp, g, ) V[2p—2L,29—2/]
=0
min(p,q)
W[2p+1,2q+1] = > (2c(\)* Gi(p. q.€) V[2p—20+1,2q—20+1]
(=0
with coefficients

_[plelqlelp + gl _[plelglelp +q+ 1]
1T P I R RS
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In terms of the scattering basis, the previous algebra takes the form
[Wlp, q], WIr, s]]

= Z(zc()\))Zf R2€+1(p7 q,r, 5) Q;[)2€—|—1

<p+q r+s
>0

Ty )W[p+r—2€—1,q+s—‘

where

[0+1/2],
420lm—1/2y[n—1/2y[m+n—1/2—1],

Warsr(m, n) = (=)
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In terms of the scattering basis, the previous algebra takes the form
[(Wip, q], WIr,s]]

+q r+s )
= Z(2C(>‘))2€ R2€+1(p7 q,r, 5) Q;[)254-1 (%7 T) W[p+r_2£_1v q+5—¢
£>0

where

[0+1/2],
4#260m —1/20¢[n —1/20¢e[m+n—1/2~ )

Warsr(m, n) = (=)

e we call this algebra W(oo) (not to be confused with W, = W(0)!)

@ it can be identified as the scaling limit

W(o0) = Ll_rg W(p), q/p fixed

pH—>00

of the W(u) algebras, where the fixed value q,// is determined by
the radius ¢ of the Eguchi-Hanson core
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To summarize the story so far:

@ gravitational scattering in flat space has a CCA Lham(C?) at the
classical level

@ instead scattering on the orbifold Z, (ie allowing only even parity
states) reduces this to Lw, = Lham(C?)?%2
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To summarize the story so far:

@ gravitational scattering in flat space has a CCA Lham(C?) at the
classical level

@ instead scattering on the orbifold Z, (ie allowing only even parity
states) reduces this to Lw, = Lham(C?)?%2

@ by introducing a defect in twistor space, the orbifold is deformed to
become Eguchi-Hanson space, and the CCA is deformed to LW (c0)
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To summarize the story so far:

@ gravitational scattering in flat space has a CCA Lham(C?) at the
classical level

@ instead scattering on the orbifold Z, (ie allowing only even parity
states) reduces this to Lw, = Lham(C?)?%2

@ by introducing a defect in twistor space, the orbifold is deformed to
become Eguchi-Hanson space, and the CCA is deformed to LW (c0)

@ in each case, the underlying algebra is just the Poisson ring of
functions on a fibre of twistor space over CP*; the loop algebras arise
from patching these together over the CP!

David Skinner DAMTP, Cambridge W algebras and ALE spaces Nordita, 4 Jul 23 28/35



To summarize the story so far:

@ gravitational scattering in flat space has a CCA Lham(C?) at the
classical level

@ instead scattering on the orbifold Z, (ie allowing only even parity
states) reduces this to Lw, = Lham(C?)%

@ by introducing a defect in twistor space, the orbifold is deformed to
become Eguchi-Hanson space, and the CCA is deformed to LW (o)

@ in each case, the underlying algebra is just the Poisson ring of
functions on a fibre of twistor space over CP*; the loop algebras arise
from patching these together over the CP!

We've checked that the above algebras, obtained via twistor space, agree
with an explicit calculation of the gravitational splittting function on
Eguchi-Hanson space. This space-time calculation seems much harder...
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Going beyond the scaling limit requires turning on non-commutativity

@ twistor action for non-commutative sd gravity is
~ ~ (= 1
Sqlh, h] = QAh <8h + —~[h, h]q>
PT 2
using the Moyal bracket defined with q(\) = q{a\)(6A) as

00 q2k()\) " s
[f7g]q22madl...ad2k+lfa .0 g
k=0 '
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Going beyond the scaling limit requires turning on non-commutativity

@ twistor action for non-commutative sd gravity is
~ ~ (= 1
Sqlh, h] = QAh <8h + —~[h, h]q>
PT 2
using the Moyal bracket defined with q(\) = q{a\)(6A) as

- q2k()\) &%} Gokr1

[f.ela=> ma‘“ e Oy [ O™ QY01 g
k=0

e including the CP! defect, the background h takes exactly the same

form as before 5 o
c*(A) [2da]

h= -
2 [ppP
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However, the background V operator now involves Moyal bracket
Vo=0+1[h I
[e.e]
- (k + 1)g2k(A -
=9 — \)[pda] Z + ()aal...mwad...a-

]2k+322k 1 Cokr1
k=

and so no longer obeys the usual Leibniz rule
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However, the background V operator now involves Moyal bracket
Vo=0+1[h I

[e.e]
- Z (k + 1)g?k(\) . rd
=9 eMiadil ]2k+322k T mkaagak B T 06y - Dy
k=

and so no longer obeys the usual Leibniz rule

@ while exactly the same coordinates

. L. '\o'w\B
X8 — qu,uﬂ - CQ()\ il iz,
[ 1)

(remarkably) remain holomorphic, the product XdBXd/? ¢ ker(Vgq)
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However, the background V operator now involves Moyal bracket
Vo=0+1[h I

[e.e]
- Z (k + 1)g?k(\) . rd
=9 eMiadil ]2k+322k T mkaagak B T 06y - Dy
k=

and so no longer obeys the usual Leibniz rule

@ while exactly the same coordinates
. o ')aﬁﬁ
Xaﬁ _ ,uu'uﬂ o CZ()\)/ E
[ A1)

(remarkably) remain holomorphic, the product XdBXdB ¢ ker(Vgq)

@ the non-commutative twistor space is instead defined by the ideal

39°(\)
4

3¢°(0Y) _ —2¢2(\) +

X g Xys = XX, 5+
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In terms of the algebra, non-commutative sl; is still defined by relations
X, Z]q =2X Y, Z]q=-2Y (X,Y]q=4Z
but the UEA uses the star product
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In terms of the algebra, non-commutative sl; is still defined by relations
X, Z]q =2X Y, Z]q=-2Y (X,Y]q=4Z
but the UEA uses the star product
@ in particular, the quadratic Casimir

€= X xg Xy = a0 0(o + 1) = (N
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In terms of the algebra, non-commutative sl; is still defined by relations
X, Z]q =2X Y, Z]q=-2Y (X,Y]q=4Z
but the UEA uses the star product
@ in particular, the quadratic Casimir

1 af
C = *éx 7 g Xap = a(A\)?o(0 +1) = q*(\) p

@ comparing to above, we identify = (4c? — 3q2)/16q>
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In terms of the algebra, non-commutative sl; is still defined by relations
X, Z]q =2X Y, Z]q=-2Y (X,Y]q=4Z
but the UEA uses the star product

@ in particular, the quadratic Casimir

1 af
C = *éx 7 g Xap = a(A\)?o(0 +1) = q*(\) p

@ comparing to above, we identify = (4c? — 3q2)/16q>

The CCA of non-commutative self-dual gravity on Eguchi-Hanson space is
thus LW (p)
@ to go from w, (or ham(C?)) to a W algebra requires turning on
non-commutativity q

@ to go away from the symplecton W(—3/14) into the full family of
W (u)-algebras requires turning on a finite Eguchi-Hanson scale
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In terms of the algebra, non-commutative sl; is still defined by relations
X, Z]q =2X Y, Z]q=-2Y (X,Y]q=4Z
but the UEA uses the star product
@ in particular, the quadratic Casimir

1 &
C = *éx 7 g Xap = a(A\)?o(0 +1) = q*(\) p

@ comparing to above, we identify = (4c? — 3q2)/16q>
The CCA of non-commutative self-dual gravity on Eguchi-Hanson space is
thus LW (p)

@ to go from w, (or ham(C?)) to a W algebra requires turning on

non-commutativity q

@ to go away from the symplecton W(—3/14) into the full family of
W (u)-algebras requires turning on a finite Eguchi-Hanson scale

@ eg at ¢ = 0 we obtain the symplecton W(—3/16); at c®> = —q°/4 we
obtain Wi at c® = 3q°/4 we obtain Wj,
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There's an exactly parallel story for sdYM / non-commutative sdYM

@ S-algebra is loop algebra of g ® O, , replacing the Poisson /Moyal
bracket by the Lie bracket and usual / nc coordinate ring
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There's an exactly parallel story for sdYM / non-commutative sdYM

@ S-algebra is loop algebra of g ® O, , replacing the Poisson /Moyal
bracket by the Lie bracket and usual / nc coordinate ring

The story generalizes straightforwardly to other ALE spaces (sittieston Heuveline, D]

@ choose a discrete subgroup I' C SL(2)
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There's an exactly parallel story for sdYM / non-commutative sdYM

@ S-algebra is loop algebra of g ® O, , replacing the Poisson /Moyal
bracket by the Lie bracket and usual / nc coordinate ring

The story generalizes straightforwardly to other ALE spaces (sittieston Heuveline, D]

@ choose a discrete subgroup I' C SL(2)

e the CCA of sd gavity on R*/I is Lham(C?)"
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There's an exactly parallel story for sdYM / non-commutative sdYM

@ S-algebra is loop algebra of g ® O, , replacing the Poisson /Moyal
bracket by the Lie bracket and usual / nc coordinate ring

The story generalizes straightforwardly to other ALE spaces (sittieston Heuveline, D]
@ choose a discrete subgroup I' C SL(2)
e the CCA of sd gavity on R*/I is Lham(C?)"

@ deforming the orbifold to the corresponding ALE space likewise
deforms the CCA to a scaling limit of LW(u) algebras as g — 0
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There's an exactly parallel story for sdYM / non-commutative sdYM
@ S-algebra is loop algebra of g ® O, , replacing the Poisson /Moyal
bracket by the Lie bracket and usual / nc coordinate ring
The story generalizes straightforwardly to other ALE spaces (sittieston Heuveline, DS]

@ choose a discrete subgroup I' C SL(2)
e the CCA of sd gavity on R*/I is Lham(C?)"

@ deforming the orbifold to the corresponding ALE space likewise
deforms the CCA to a scaling limit of LW(u) algebras as g — 0

@ we expect the generic Wr(1) to depend on rk(I") parameters
corresponding to the sizes of the CP! cores in the ALE space;
accessing the generic case requires turning on non-commutativity
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For example, the twistor space of the Gibbons-Hawking Ax_1 space is

K O(k) ® O(k) ® O(2)
PT = {XY =z - c;(A))} c !
i=1 CP!
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e basis for Opy, is wlkp+i, kq+i,i] = XPY9Z" with p,q € Ny and
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For example, the twistor space of the Gibbons-Hawking Ax_1 space is

K O(k) ® O(k) ® O(2)
PT = {XY =z - c;(A))} c !
i=1 CP!

e basis for Opy, is wlkp+i, kq+i,i] = XPY9Z" with p,q € Ny and
ie{l,...k—1}

@ taking Poisson brackets of these gives the algebra
(wlkp + i, kq + i], wlkr + j, ks + j]]

= 2k((p+i/k)(s+j/k)—(q+i/k)(r+j/k)) wlk(p+r)+i+j—1 k(g+s
k+itj—2

—2(ps—qr) Z Fi(i4j, m)wlk(p+r—1)4+m, k(g+s—1)+m],
m=0

where the Fi depend on the radii ¢; and are defined recursively
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In this talk, I've presented the CCAs of self-dual gravity on various ALE
spaces, and how they're related to the loop algebras of various W-algebras
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In this talk, I've presented the CCAs of self-dual gravity on various ALE
spaces, and how they’re related to the loop algebras of various W-algebras

@ these same algebras also naturally arise as the 2d chiral algebras of
tWiSted 4d N = 2 SCFTS [Beem, Peerlaers,Rastelli; Costello; Bullimore, Dimofte, Gaiotto]

@ the bulk Poisson structure / non-commutativity corresponds to
turning on a Fl parameter in the gauge theory [itteston Heuveline,DS wip]

@ on the string side, it involves including D3 branes

[Budzik,Gaiotto, Kulp, Williams,Wu, Xu]
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In this talk, I've presented the CCAs of self-dual gravity on various ALE
spaces, and how they’re related to the loop algebras of various W-algebras

@ these same algebras also naturally arise as the 2d chiral algebras of
tWiSted 4d N = 2 SCFTS [Beem,Peerlaers, Rastelli; Costello;Bullimore, Dimofte, Gaiotto]

@ the bulk Poisson structure / non-commutativity corresponds to
turning on a Fl parameter in the gauge theory [itteston Heuveline,DS wip]

@ on the string side, it involves including D3 branes

[Budzik,Gaiotto, Kulp, Williams,Wu, Xu]

We're hopeful that today’s story can be embedded in a full stringy
top-down realization, analogous to Burns holography (costelio Paguette Sharma)
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Thank You
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