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• Celestial Holography: S-matrix in 4D asymptotically flat spacetime is described by a putative 
celestial CFT living on the celestial sphere
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4D Lorentz symmetry 
SO(3,1) 2D conformal symmetry  
on the celestial sphere


SL(2,C)

• Bottom-up approach: From 4D scattering amplitudes to celestial amplitudes (CCFT correlators)

- Operator product expansions (OPE)

- Symmetries: translation symmetries, BMS,  algebra

- Conformal blocks

- Differential equations

w1+∞

What properties does the CCFT have?

Motivation

Fan, Fotopoulos,  Taylor (2019)
Pate, Raclariu, Strominger,  Yuan (2019) 

Stieberger,  Taylor (2018)
Adamo, Mason, Sharma (2019)

 Guevara, Himwich, Pate, Strominger (2021) 
Strominger (2021) 

Banerjee, Ghosh (2020) 
Hu, Ren, Srikant, Volovich (2021)  

Atanasov, Melton, Raclariu, Strominger (2021)
Fan, Fotopoulos, Stieberger,Taylor, Zhu (2021) 

We will focus on amplitudes of massless particles at tree-level

⟨
N

∏
n=1

Oan
Δn,Jn

(zn, z̄n)⟩ =
N

∏
n=1

∫
∞

0
dωnω

Δn−1
n ℳ(ωn, zn, z̄n, Jn, an), Pasterski, Shao,  Strominger (2017) 
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Consider (1,3) signature:  celestial sphere z ∈ ℂ
⟨ϕΔ1,− ϕΔ2,− ϕΔ3,+⟩ = 0 , ⟨ϕΔ1,− ϕΔ2,− ϕΔ3,+ϕΔ4,+⟩ ∼ δ(x − x̄)

Conformal invariant cross ratio: 
x =
z12z34

z13z24

In (2,2) signature,  function singularities still appear in low-point celestial amplitudes
δ
• Similar constraints persist in n-point celestial amplitudes
 Mizera, Pasterski (2022) 

• Celestial amplitudes are overconstrained by translation invariance in 4D

• Several attempts to resolve this issue:

- Perform integral transforms on celestial amplitudes: Shadow transform or light transform

- Consider scatterings on backgrounds
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• Resultant celestial amplitudes take the standard forms of low-point correlators in CFT

⟨O1 O2 O3⟩ =
C123

zh1+h2−h3
12 zh2+h3−h1

23 zh3+h1−h2
13 z̄h̄1+h̄2−h̄3

12 z̄h̄2+h̄3−h̄1
23 z̄h̄3+h̄1−h̄2

13

determined by conformal 
symmetry , up to a constant
SL(2,ℂ)

 No  function singularity appears
δ

• Basic idea: Break translation invariance in controllable ways by introducing backgrounds

Couple the YM system to dilaton backgrounds
Fan, Fotopolous, Stieberger, Taylor, Zhu (2022) 

Casali, Melton, Strominger (2022) 

Consider celestial scatterings in non-trivial backgrounds de Gioia, Raclariu (2022) 

Gonzo, McLoughlin, Puhm (2022) 

Banerjee, Mandal, Manu, Paul (2023)
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• Is it possible to relate the celestial amplitudes on non-trivial backgrounds to ordinary CFTs?

• What happens to the celestial chiral algebras in backgrounds?

Basic questions
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Outline

• Celestial MHV gluon amplitudes in a dilaton background

• Liouville CFT: semiclassical limit, light operators 

• From Liouville correlation functions to celestial MHV amplitudes in the presence of a spherical 
dilaton shockwave

• Celestial supersymmetry

Part I

Part II
• MHV amplitudes on self-dual radiative backgrounds

• Celestial chiral algebras



Gluon scattering amplitudes in a dilaton background 

ℒ = ∂μΦ∂μΦ* −
1
2

trFμνFμν −
1
2

Φ trF−μνFμν
− −

1
2

Φ*trF+μνF
μν
+ + J*Φ + JΦ*

Consider the four-dimensional Dilaton-Yang-Mills (DYM) theory 


M(1−,2−,3+, ⋯, N+)Φ(Q) =
⟨12⟩4

⟨12⟩⟨23⟩⋯⟨N1⟩

Tree-level maximally helicity violating (MHV) amplitudes with a dilaton


Dixon, Glover, Khoze (2004) ∑ pin − ∑ pout = Q

7

The source  is connected to gluons via the propagator 
JΦ
1

Q2

Same as the Parke-Taylor formula for MHV amplitudes without the dilaton


   couples to the MHV sector and projects out the  sector
Φ MHV
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Celestial MHV amplitudes in the dilaton background

We will identify the background dilaton source  that yields  in exactly the same 
form as the Liouville correlator in the semiclassical limit 


JΦ(X) 𝒮(zi, z̄i)

These amplitudes are then converted into two-dimensional correlators of primary fields with 
dimensions  by performing Mellin transforms with respect to the light-cone energies
Δi

Fan, Fotopolous, Stieberger, Taylor, Zhu (2022) ℳN(z1, z̄1, …, zN, z̄N |Δ1, …, ΔN) = 𝒥N(zi) 𝒮(zi, z̄i) ,

where

𝒥N(zi) = ∑
π∈SN−2

f a1aπ(2)x1 f x1aπ(3)x2⋯f xN−3aπ(N−1)aN
z4
12

z1π(2)zπ(2)π(3)⋯zN1

is the holomorphic soft factor, with  labeling the gluon group indices. (a1, a2, …aN)

Parke-Taylor formula

𝒮N(zi, z̄i) = ∫ d4X∫ωi≥0
JΦ(X)

eiX⋅Q

Q2
dω1 ωΔ1

1 dω2 ωΔ2
2

N

∏
k≥3

dωk ωΔk−2
k ,

The Mellin transforms are contained in the scalar part 
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Liouville CFT

String theory
AGT correspondence

It is a 2D CFT that appeared in many places including

The three-point correlation functions of Liouville primary operators are described by the DOZZ 
formula  

Many aspects of Liouville CFT have been studied. It is one of the well-known CFTs besides 
minimal models and Wess-Zumino-Witten (WZW) models

Polyakov (1981) 

Alday, Gaiotto, Tachikawa (2009) 

Dorn, Otto (1994) Zamolodchikov, Zamolodchikov (1995) 

Zamolodchikov, Zamolodchikov (1995) 

For Liouville CFT, the Lagrangian density is given by 

ℒ =
1
π

∂ϕ
∂z

∂ϕ
∂z̄

+ μe2bϕ ,

where  is the dimensionless Liouville coupling constant and the scale parameter  is 
usually called the cosmological constant. 


b μ

• Basics of Liouville CFT
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Central Charge, Primary fields and correlation functions in Liouville CFT

The primary fields of LFT are the exponential operators 

Vα(z, z̄) = e2αϕ(z,z̄) ,

which are scalar fields with conformal weights

h(α) = h̄(α) = α(Q − α)

We focus on the correlation functions of exponential operators 


In general, Liouville correlation functions are hard to compute by using path integral method

There is, however, one notable exception, for a special configuration of the exponents,when 


In this case, the Liouville correlation function can be computed by Dotsenko and Fateev 
Coulomb gas integral


∑
i

αi = Q −
m
b

− nb

The background charge at infinity  : |z | → ∞ Q = b +
1
b

is related to the central charge by 
 c = 1 + 6Q2
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We are interested in the case of single integrals that appear when  and .n = 0 m = 1

αi = σib , ∑
i

σi = 1
With the exponents parametrized as 

the correlation functions are 


⟨∏
i

Vσib(zi, z̄i)⟩ ∼ ∏
i<j

|zi − zj |
−4σiσjb2

∫ d2z∏
i

|zi − z |−4σi

Note that the dimensions of the Liouville primary fields are

di = h(σib) + h̄(σib) = 2σi + 2b2σi(1 − σi)

To make contact with the primary fields in CCFT
Δi = ni + iλi

We will take the limit , which corresponds to the semiclassical limit of Liouville CFTb → 0
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Semiclassical limit of Liouville CFT and Light operators

The semiclassical limit of Liouville CFT corresponds to , the central charge b → 0 c → ∞

The operators with the exponents scaling as  when  are called the “light” operators σib b → 0

One can show that the correlation functions of light operators are determined by the solutions 
of the Liouville equation which describe metrics on the sphere 

Zamolodchikov, Zamolodchikov (1995) 

The correlation functions of light operators that we are interested in are 

⟨∏
i

Vσib(zi, z̄i)⟩ ∼ ∫ d2z∏
i

|zi − z |−4σi ,

∑
i

σi = 1with constraint 

Denoted as Liouville integrals 

c = 1 + 6Q2 = 1 + 6(b +
1
b )

2
Recall that the central charge 
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From Liouville integral to Celestial MHV amplitudes

we are interested in MHV amplitudes in the helicity configurations (− − + + . . . ). It is natural to 
fulfill the condition by 

Our goal is to rewrite the Liouville integrals as Mellin transforms. 

σ1 =
1 + iλ1

2
, σ2 =

1 + iλ2

2
, σk =

iλk

2
(k ≥ 3)

with
N

∑
i

λi = 0

IN(z1, z̄1, …, zN, z̄N) = ∫ d2z |z1 − z |−2(1+iλ1) |z2 − z |−2(1+iλ2) |z3 − z |−2iλ3 …

The Liouville integrals become

By using the embedding space formalism, one can express the two-dimensional 
conformal integrals as the integrals on a “Poincaré section” of a four-dimensional 
embedding space 
ℝ3,1 Simmons-Duffin (2012) 
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• Embedding coordinates
X = (X+, X−, X1, X2)

and the Lorentzian inner product is

X ⋅ Y =
1
2

(X+Y− + X−Y+) − X1Y1 − X2Y2

On the null-cone ,X ⋅ X = 0

X = (X+,
|z |2

X+
,

z + z̄
2

,
z − z̄

2i ) , z ∈ ℂ

The Poincaré section is constructed by quotienting the null-cone by the rescaling  X ∼ ρX

One can impose the gauge fixing condition X+ = 1

The action of  on  is inherited as  transformations of the complex 
coordinates . Note that on the Poincaré section,

SO(3,1) ℝ3,1 SL(2,ℂ)
z

|z1 − z2 |2 = 2X1 ⋅ X2
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By using the embedding coordinates, one can rewrite the Liouville integrals as

IN = CN ∫ d4Xδ(X ⋅ X) δ(X+ − 1) θ(X+ + X−)∫ωi≥0
eiX⋅(∑N

i=1 ωiXi) dω1 ω iλ1
1 dω2 ω iλ2

2

N

∏
k≥3

dωk ω iλk−1
k

CN = −
1

2 Γ(1 + iλ1)Γ(1 + iλ2)∏N
k≥3 Γ(iλk)

where

Recall that we need to impose the constraint  
N

∑
i

λi = 0

Note that ωjXj = ωj(1, |zj |
2 ,

zj + z̄j

2
,

zj − z̄j

2i ) = Pj

Q = ∑
i

ωiXi = ∑
i

Pi

Same expression as the momenta of 
outgoing massless particles 

Total momentum 

We find δ(∑
i

λi)IN ∼ ∫ωi≥0
( 2π

Q2 ) dω1 ω iλ1
1 dω2 ω iλ2

2

N

∏
k≥3

dωk ω iλk−1
k
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Recall that the celestial MHV amplitudes in a dilaton background:
ℳN(z1, z̄1, …, zN, z̄N |Δ1, …, ΔN) = 𝒥N(zn) 𝒮(zn, z̄n) ,

𝒮N(zi, z̄i) = ∫ d4X∫ωi≥0
JΦ(X)

eiX⋅Q

Q2
dω1 ωΔ1

1 dω2 ωΔ2
2

N

∏
k≥3

dωk ωΔk−2
k .

where the scalar part 

We can match Eq.( ) with  by choosing 𝒮N(zi, z̄i)
Δ1 = iλ1, Δ2 = iλ2, Δk = 1 + iλk (k ≥ 3) ,

provided that we identify the dilaton source as 
𝒥Φ(X) = 2πδ(4)(X)

The solution of the equation : □ Φ0(X) = 2πδ(4)(X)

Φ0(X) = Φ0(r, t) = −
1
2r

δ(r − t) θ(t)
Representing a spherical shockwave, retarded, singular at the light cone 

As a consistency check, we computed Liouville integrals for  and  by 
using our method. They agree with the results reported previously in the literature. 

N = 3 N = 4
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• Recall the holomorphic soft factor

⟨ ̂J a1(z1) ̂J a2(z2)Ja3(z3)⋯JaN(zN)⟩ = ∑
π∈SN−2

f a1aπ(2)x1 f x1aπ(3)x2⋯f xN−3aπ(N−1)aN
z4
12

z1π(2)zπ(2)π(3)⋯zN1
= 𝒥N(zi)

The negative helicity  gluons can be associated with the holomorphic operators  in 
the adjoint representation of the gauge group, with chiral weights , 

−1 ̂Ja(z)
(h = − 1, h̄ = 0)

while the positive helicity +1 gluons to dimension +1 holomorphic  WZW 
currents . 

(h = 1, h̄ = 0)
Ja(z)

Starting from ⟨ ̂J a1(z1) ̂J a2(z2)⟩ = δa1a2z2
12 ,

one obtains

Costello, Paquette (2022) 

Parke-Taylor formula
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Vertex operators of tree-level Celestial MHV amplitudes

ℳN(z1, z̄1, …, zN, z̄N |Δ1, …, ΔN) = 𝒥N(zn) 𝒮(zn, z̄n)

We have shown that celestial MHV amplitudes in a spherical dilaton shockwave background


We are in a position to connect the tree-level celestial MHV amplitudes to the semiclassical limit of  
Liouville theory. We introduce the following operators:


𝒪−a
λ (z, z̄) = Γ(1 + iλ) ̂J a(z) e(1+iλ)bϕ(z,z̄) ,

and consider the limit of .b → 0

In this limit, the dimension of  becomes  while the dimension of  is 𝒪−a
λ Δ− = iλ 𝒪+a

λ Δ+ = 1 + iλ

4πδ(
N

∑
i=1

λi) ⟨𝒪−a1
λ1

(z1, z̄1) 𝒪−a2
λ2

(z2, z̄2) 𝒪+a3
λ3

(z3, z̄3)⋯𝒪+aN
λN

(zN, z̄N)⟩ = ℳN(z1, z̄1, …, zN, z̄N | iλ1, iλ2,1 + iλ3, …,1 + iλN)

• These celestial MHV amplitudes satisfy Banerjee-Ghosh (BG) equations for  and  N = 3 N = 4

𝒪+a
λ (z, z̄) = Γ(iλ) Ja(z) eiλbϕ(z,z̄)

Banerjee, Ghosh (2020) Hu, Ren, Srikant, Volovich (2021)  

ℳ3(z1, z̄1; z2, z̄2; z3, z̄3 | iλ1, iλ2,1 + iλ3) = 2πδ(
3

∑
i1

λi) f a1a2a3
z3
12

z13z23
Γ(−iλ1)Γ(−iλ2)Γ(1 − iλ3)(z12z̄12)iλ3−1(z23z̄23)iλ1(z13z̄13)iλ2
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Celestial OPE and chiral algebra

• The OPEs of the CCFT operators can be computed by using the OPEs of current operators and 
the known OPEs of (light) Liouville operators 

ja(z1)jb(z2) ∼
f abc

z12
jc(z2) .

Γ(Δ1 − 1)e(Δ1−1)bϕ(z1,z̄1)Γ(Δ2 − 1)e(Δ2−1)bϕ(z2,z̄2) = B(Δ1 − 1,Δ2 − 1)Γ(Δ1 + Δ2 − 2)e(Δ1+Δ2−2)bϕ(z2,z̄2) .

Oa
Δ1,+1(z1, z̄1)Ob

Δ2,+1(z2, z̄2) ∼ B(Δ1 − 1,Δ2 − 1)
f abc

z12
Oc

Δ1+Δ2−1,+1(z2, z̄2) ,

• In the large central charge limit, all  descendants are included in the conformal block. 
This leads to the same celestial chiral algebra (s-algebra) found in the flat background.

L̄−1

[ Sp,a
m , Sq,a

n ] = − i f abc Sp+q−1,c
m+n
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Celestial Supersymmetry

• Supersymmetry has not played much role in celestial holography

• SuperBMS in four dimensions does not imply supersymmetry in two dimensions
Fotopoulos, Stieberger, Taylor, Zhu (2020) 

Spacetime supersymmetry algebra includes supertranslations, which are genuinely 
nonholomorphic on a celestial sphere, while the two-dimensional superconformal 
algebras have factorized holomorphic and antiholomorphic parts. 


• The current sector exhibits (1,0) supersymmetry, implementing spacetime supersymmetry in CCFT 

• Consider supersymmetric Yang-Mills theory coupled to dilatons. Taylor, Zhu (2023) 

• We show that in the presence of point-like dilaton sources, the CCFT operators associated with 
the gauge supermultiplet acquire a simple, factorized form. They factorize into the holomorphic 
(super)current part and the exponential “light” operators of Liouville CFT
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MHV amplitudes on self-dual radiative backgrounds

• Explicit amplitude formulae are known

Adamo, Mason, Sharma (2020) MHV gluon amplitudes on SD radiative backgrounds


MHV graviton amplitudes on SD radiative backgrounds
 Adamo, Mason, Sharma (2022) 

• They are obtained by using the twistor sigma model

• Turning on these SD radiative backgrounds corresponds to certain deformations of the 
complex structure on twistor space
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MHV gluon amplitudes on SD radiative backgrounds

In the case where the SD radiative background is Cartan-valued

Mn =
⟨12⟩4

⟨12⟩⟨23⟩…⟨n − 1n⟩⟨n1⟩ ∫ d4x exp [
n

∑
i=1

(iki ⋅ x + ei g(x, κi))]
• Simplest example of the SD background: self-dual plane wave (SDPW), where

g(x, λ) = − i
⟨oλ⟩
⟨ιλ⟩

ℱ(x−) ,

 specifies the direction of the plane wave and  is related to the wave profilenα ·α = ιαι̃ ·α ℱ(x−)

lim
i→j

Mn(1−,2−, …i+, j+ , …n+) =
ωP

ωiωj

1
zij

Mn−1(1−,2−, …P+ , …n+)

• Collinear limits:

Holomorphic singularities are the same as the ones in the flat space.
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MHV graviton amplitudes on SD radiative backgrounds

• 3-point MHV amplitude in SDPW background

ℳ3 = δ3
+,⊥

3

∑
j=1

kj ∫ dx−eiF3
⟨12⟩6

⟨13⟩2⟨23⟩2
= ∫ d4x g exp i

3

∑
j=1

F ·α(x, κj) κ̃j ·α
⟨12⟩6

⟨13⟩2⟨23⟩2

• The square spinor gets dressed, while the angle spinor is unchanged

• In the SD radiative backgrounds, translation symmetries are (partially) broken

• Some properties:
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MHV graviton amplitudes on SD radiative backgrounds
• 4-point MHV amplitude in SDPW background

ℳ4 = δ3
+,⊥

4

∑
j=1

kj ∫ dx−eiF4
⟨12⟩7[[34]]

⟨12⟩⟨13⟩⟨14⟩⟨23⟩⟨24⟩⟨34⟩
= ∫ d4x g exp i

4

∑
j=1

F ·α(x, κj) κ̃j ·α
⟨12⟩7[[34]]

⟨12⟩⟨13⟩⟨14⟩⟨23⟩⟨24⟩⟨34⟩

In the SDPW background, the square spinor gets dressed

K̃ ·α = κ̃ ·α −
⟨oκ⟩[ι̃κ] f(x−)

⟨ικ⟩
ι̃ ·α

lim
4→3

[[34]] = [34] ,

In the collinear limit  :4 → 3
lim
4→3 (F ·α(x, κ3) κ̃3 ·α + F ·α(x, κ4) κ̃4 ·α) = F ·α(x, κP)κ̃P ·α

lim
4→3

ℳ4(1−−,2−−,3++,4++) =
ω2

P

ω3ω4

z̄34

z34
ℳ3(1−−,2−−, P++)

Holomorphic singularities are the same as the ones in the flat space. This is also true for higher-
point amplitudes

Then
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Celestial chiral algebras on SD radiative backgrounds
In the collinear limit, if we focus on the lead terms in , all the  expansions take the same form 
as the formulae in flat space

zij z̄ij

• Celestial soft gluon algebra and   algebra are undeformed w1+∞

[ Sp,a
m , Sq,a

n ] = − i f abc Sp+q−1,c
m+n

[wp
m, wq

n] = [m(q − 1) − n(p − 1)] wp+q−2
m+n

• By using vertex operators in twistor sigma model, one can reach the same conclusions

• It would be interesting to see if we can construct a twistor string theory for these 
amplitudes, compared to the flat space case where the twistor string theory for the 
amplitudes in  supergravity is known𝒩 = 8 Skinner (2013) 
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Summary

• Celestial MHV gluon amplitudes in a dilaton background

• Connect Liouville correlation functions to celestial MHV gluon amplitudes in the presence of a 
spherical dilaton shockwave

• Celestial supersymmetry appears in the current sector

Part I

Part II
• MHV amplitudes on self-dual radiative backgrounds

• Celestial chiral algebras are undeformed

Outlook
• CCFT stress tensor in the context of part I
• Is there a celestial Liouville theory for graviton amplitudes?
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Thank you!


