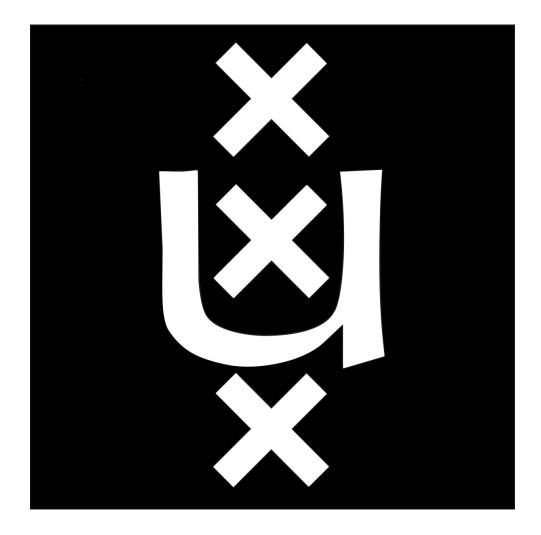
Non-perturbative Cosmological Bootstrap: Källén–Lehmann representation

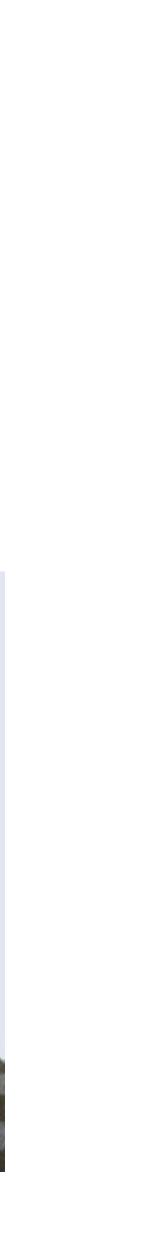
The Nordic Institute for Theoretical Physics

Kamran Salehi Vaziri University of Amsterdam

7 July 2023

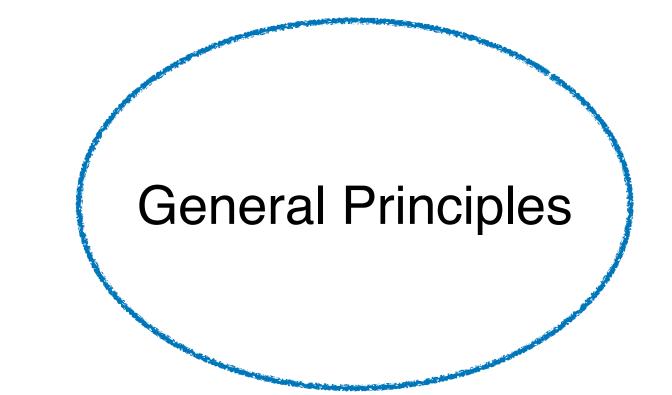


arXiv:2107.13871 Matthijs Hogervorst, João Penedones, KSV arXiv:2306.00090: Manuel Loparco, João Penedones, KSV, Zimo Sun



Motivation/Future direction:

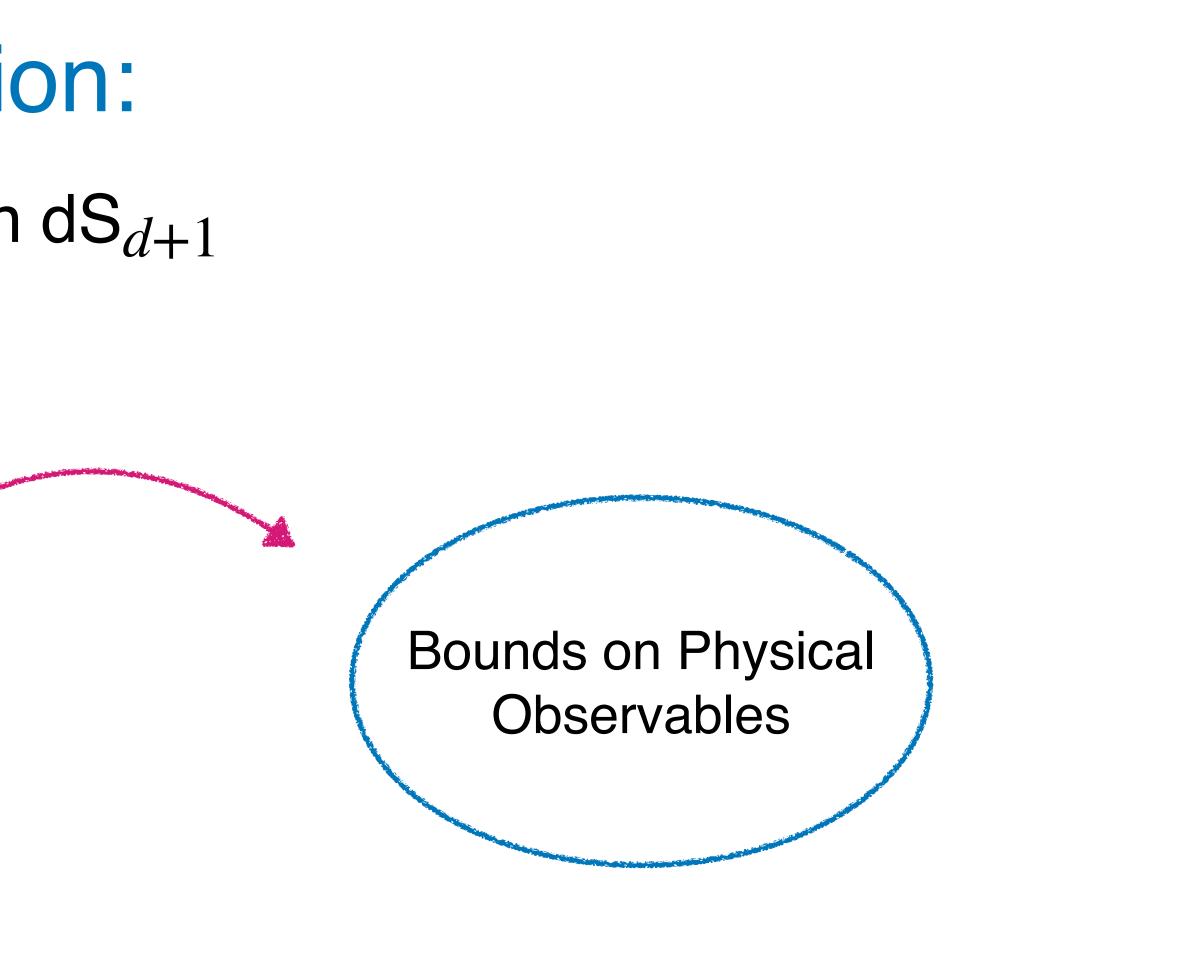
Non-perturbative study of QFT in dS_{d+1}



Cosmological bootstrap!

Non-perturbative

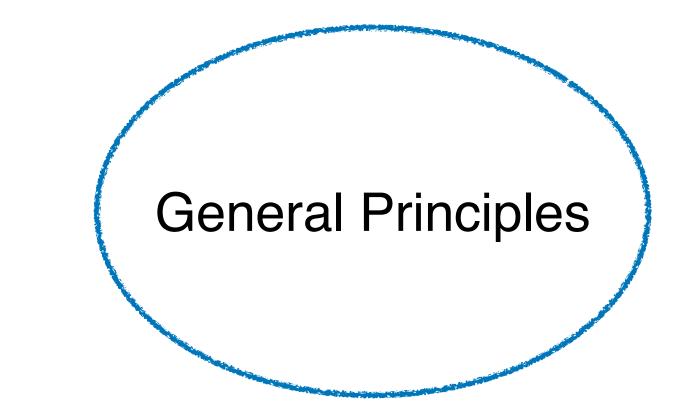
 \supset



Perturbative \supset Free

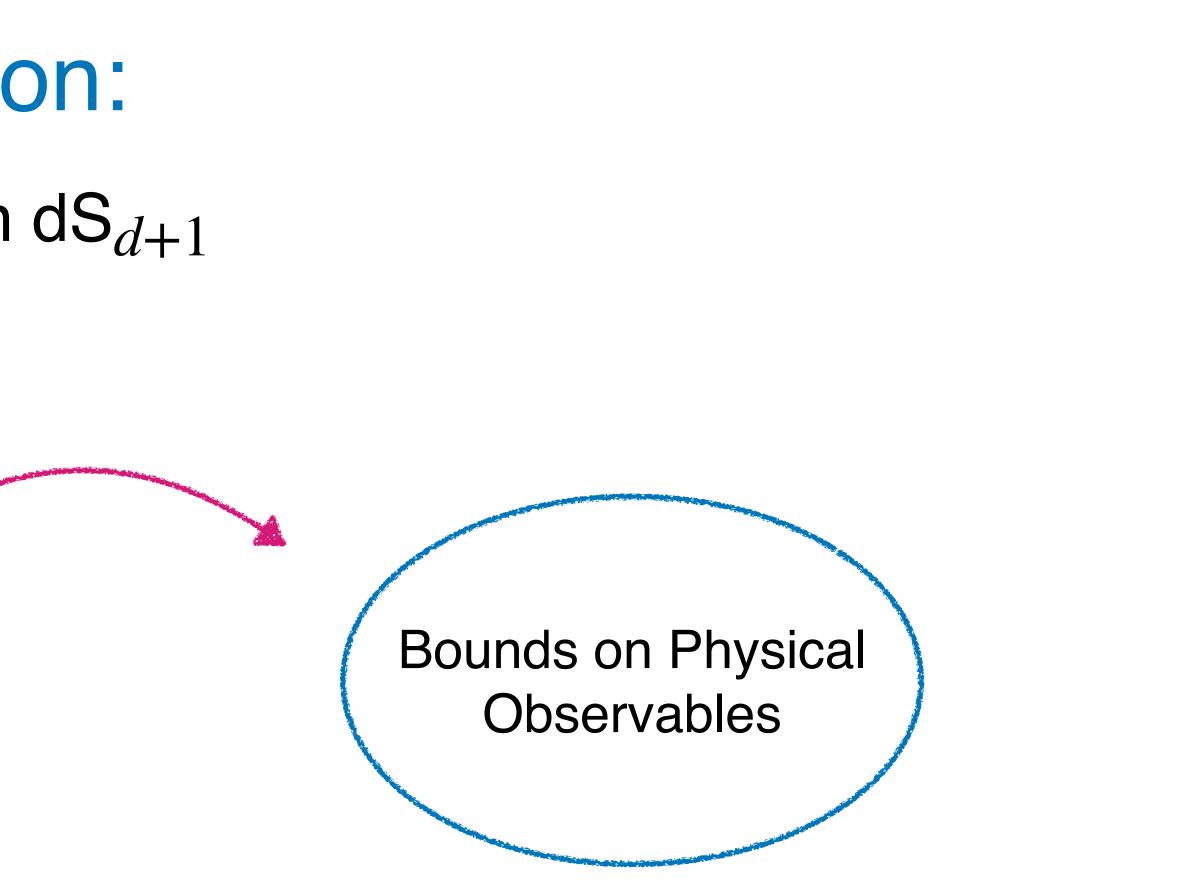
Motivation/Future direction:

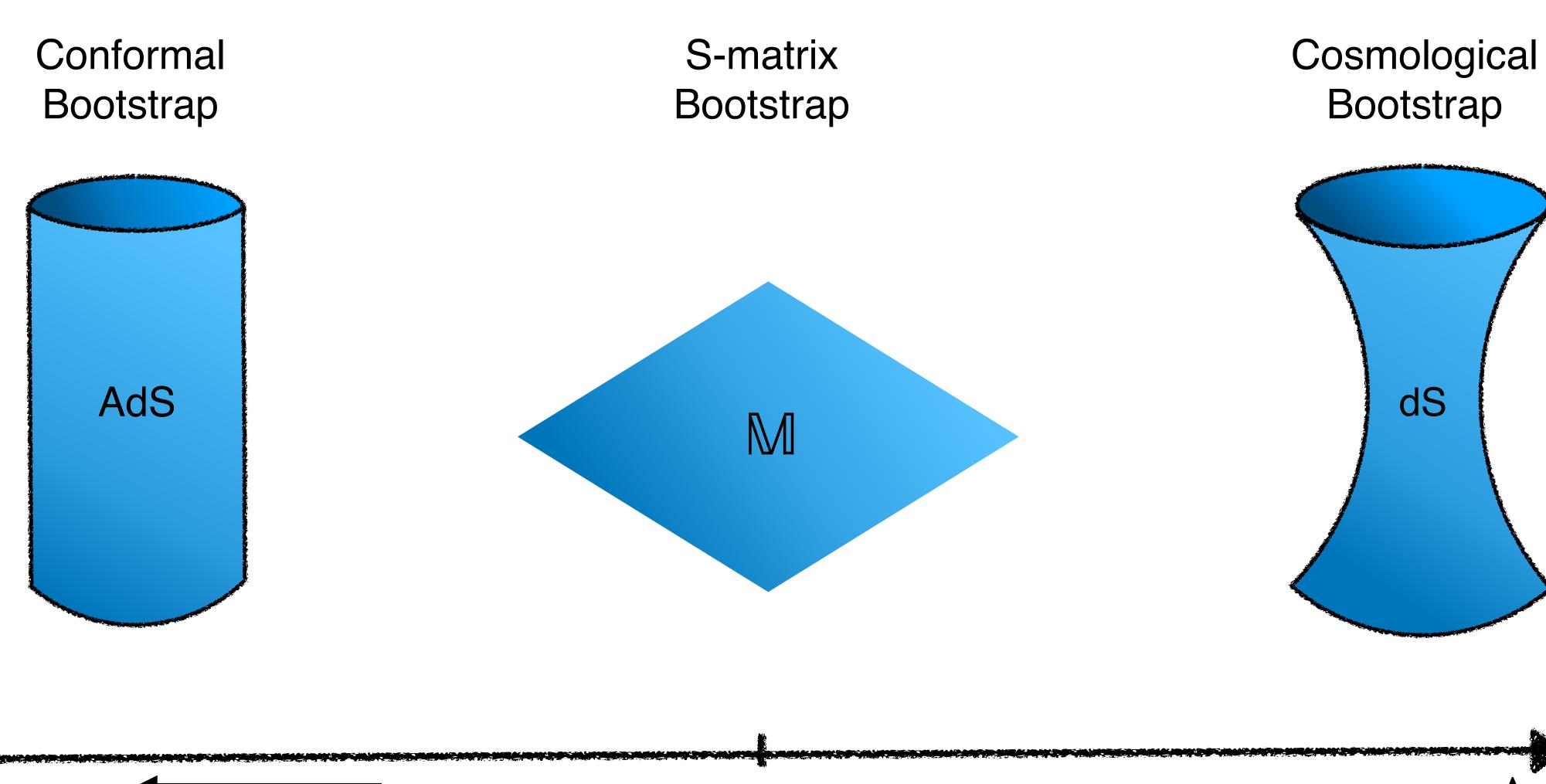
Non-perturbative study of QFT in dS_{d+1}



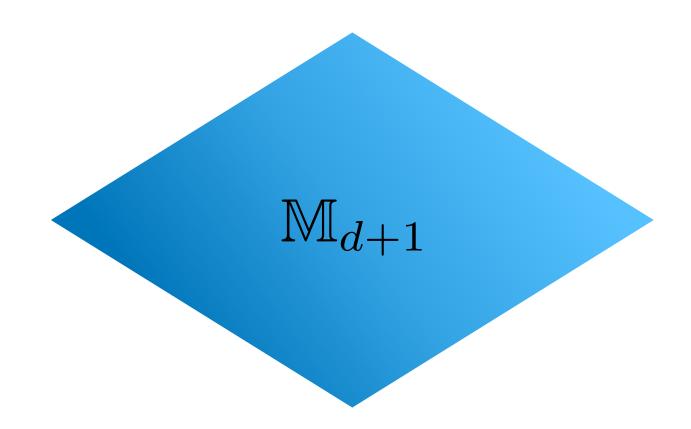
Cosmological bootstrap!

Sorry, not sorry! No Feynman diagrams in this talk





What is de Sitter?



Group symmetry

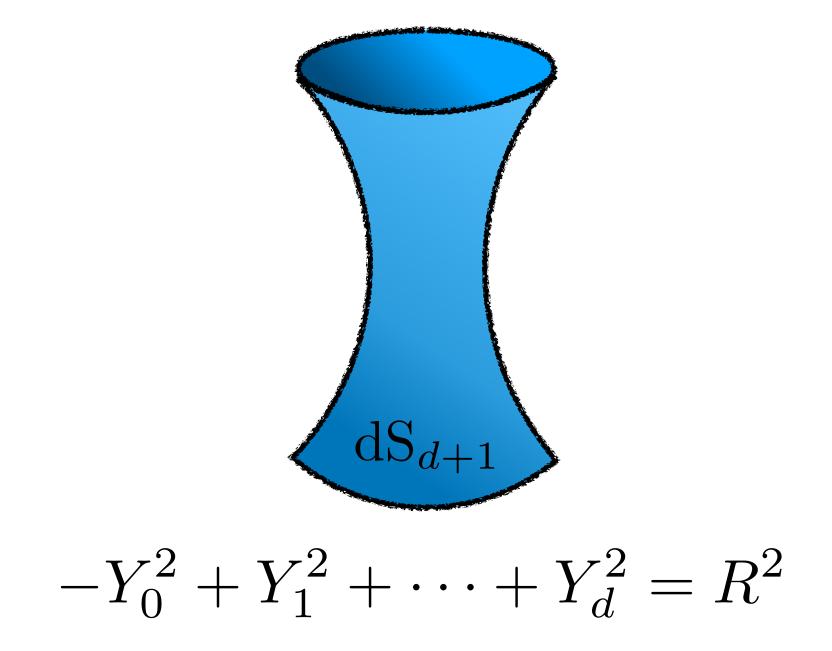
Poincare group

Isometries

H, P_i , B_i , M_{ij}

Coordinate system

 $ds^2 = -dt^2 + d\vec{x}^2$

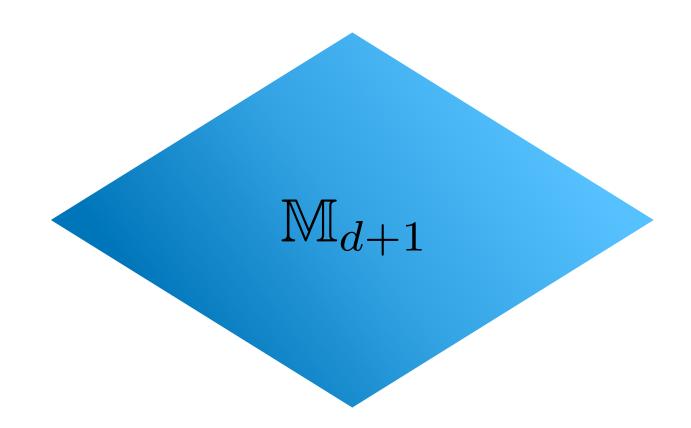


Conformal group

SO(1, d + 1)

D, P_i , K_i , M_{ij}

$$ds^{2} = \frac{-d\eta^{2} + d\vec{y}^{2}}{\eta^{2}}$$
$$\eta < 0 , \text{ boundary} : \eta \to 0$$



Group symmetry

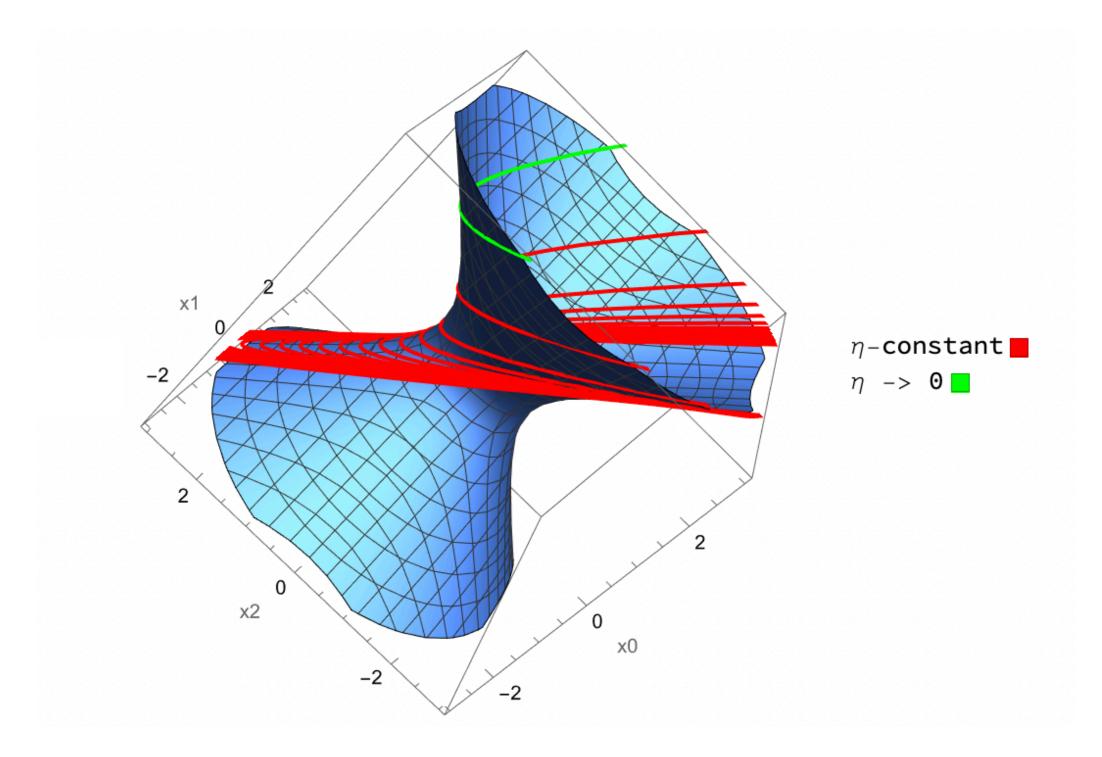
Poincare group

Isometries

H, P_i , B_i , M_{ij}

Coordinate system

 $ds^2 = -dt^2 + d\vec{x}^2$

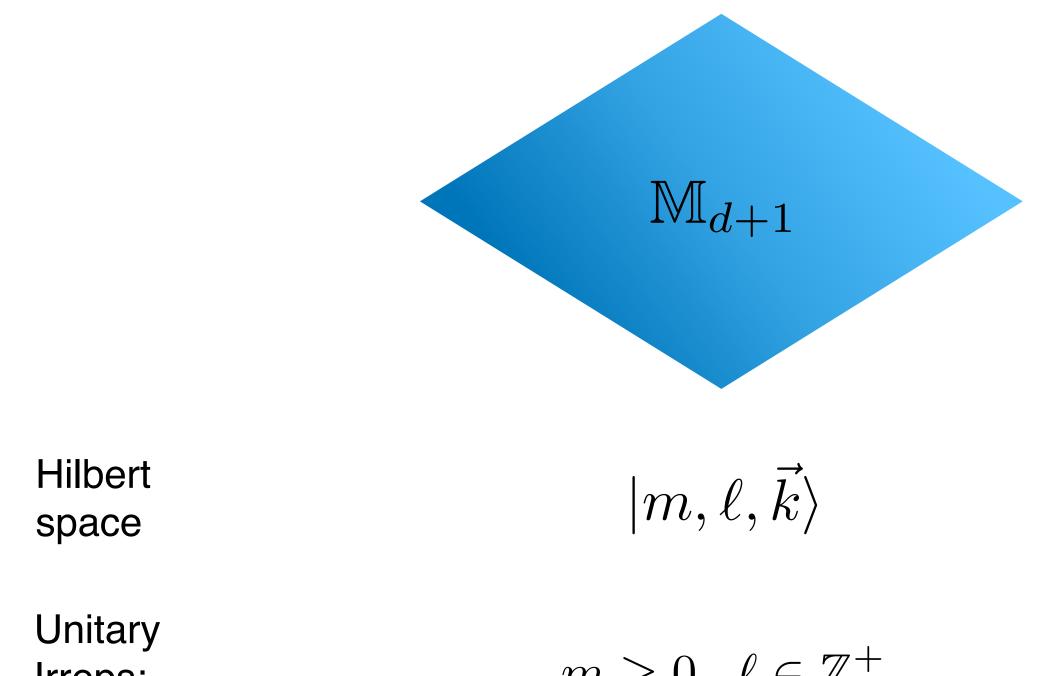


Conformal group SO(1, d+1)

D, P_i , K_i , M_{ij}

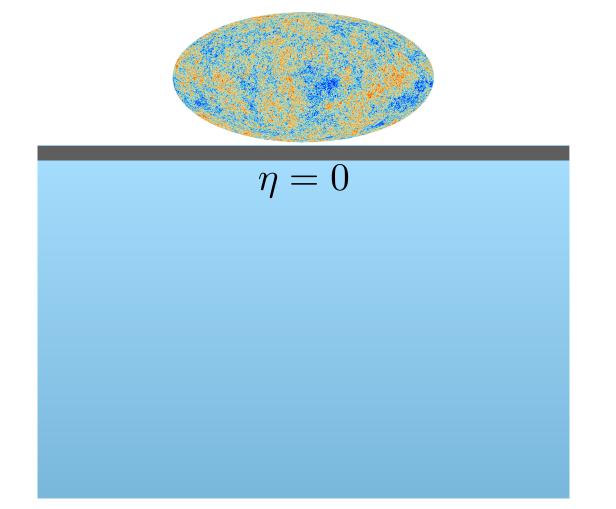
$$ds^2 = \frac{-d\eta^2 + d\vec{y}^2}{\eta^2}$$

$$\eta < 0 , \text{ boundary} : \eta \to 0$$



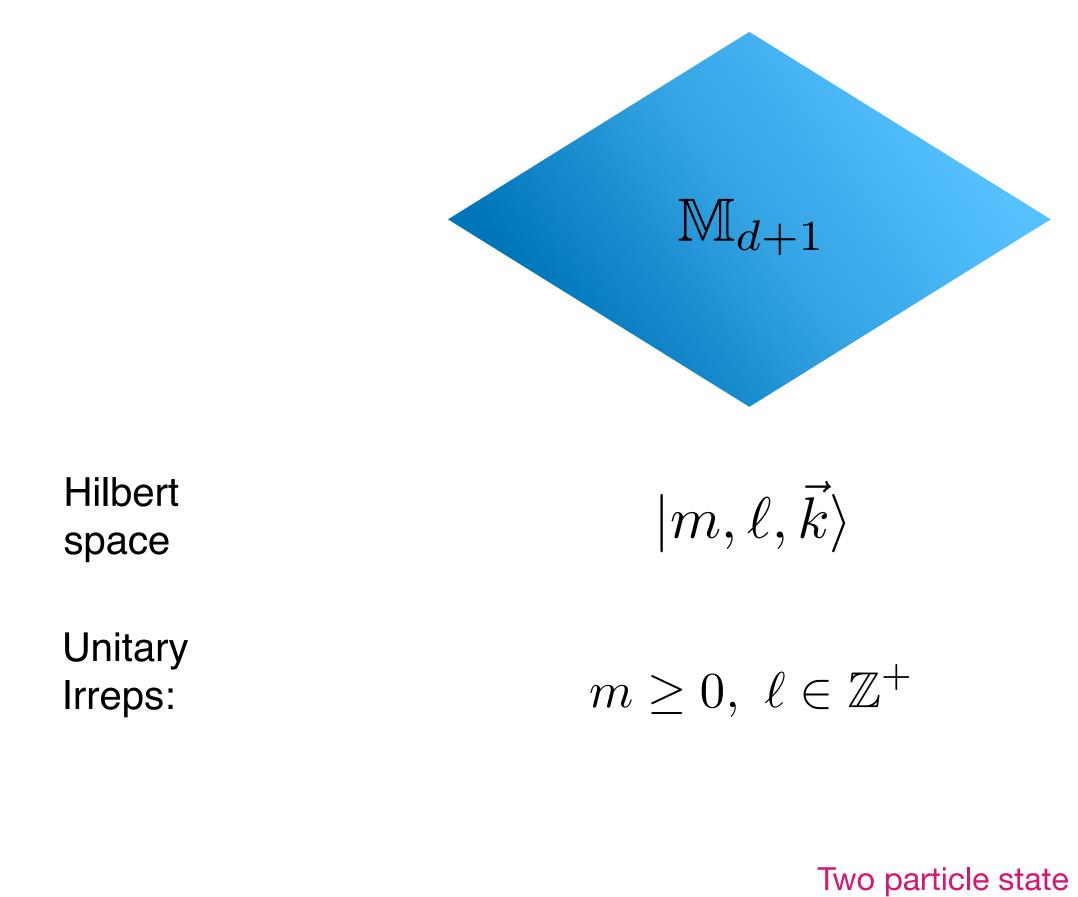
Irreps:

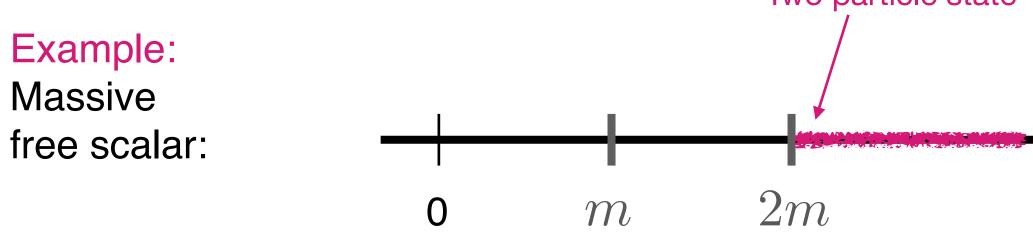
 $m \ge 0, \ \ell \in \mathbb{Z}^+$



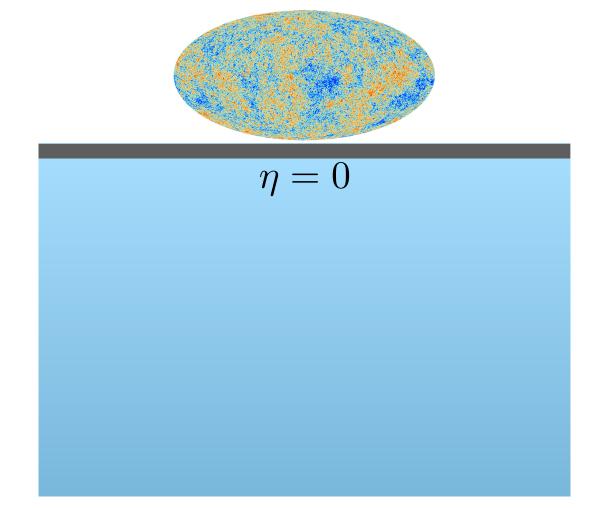
$$|\Delta,\ell,\vec{k}\rangle$$

$$\Delta = \frac{d}{2} + i\lambda, \ \ell \in \mathbb{Z}^+$$



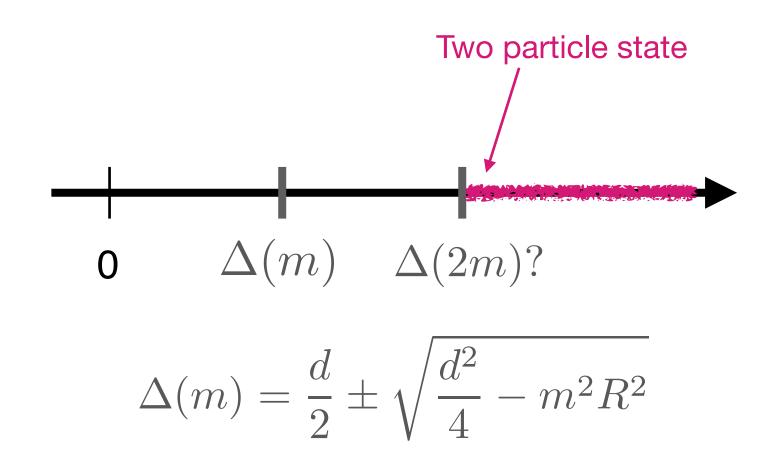


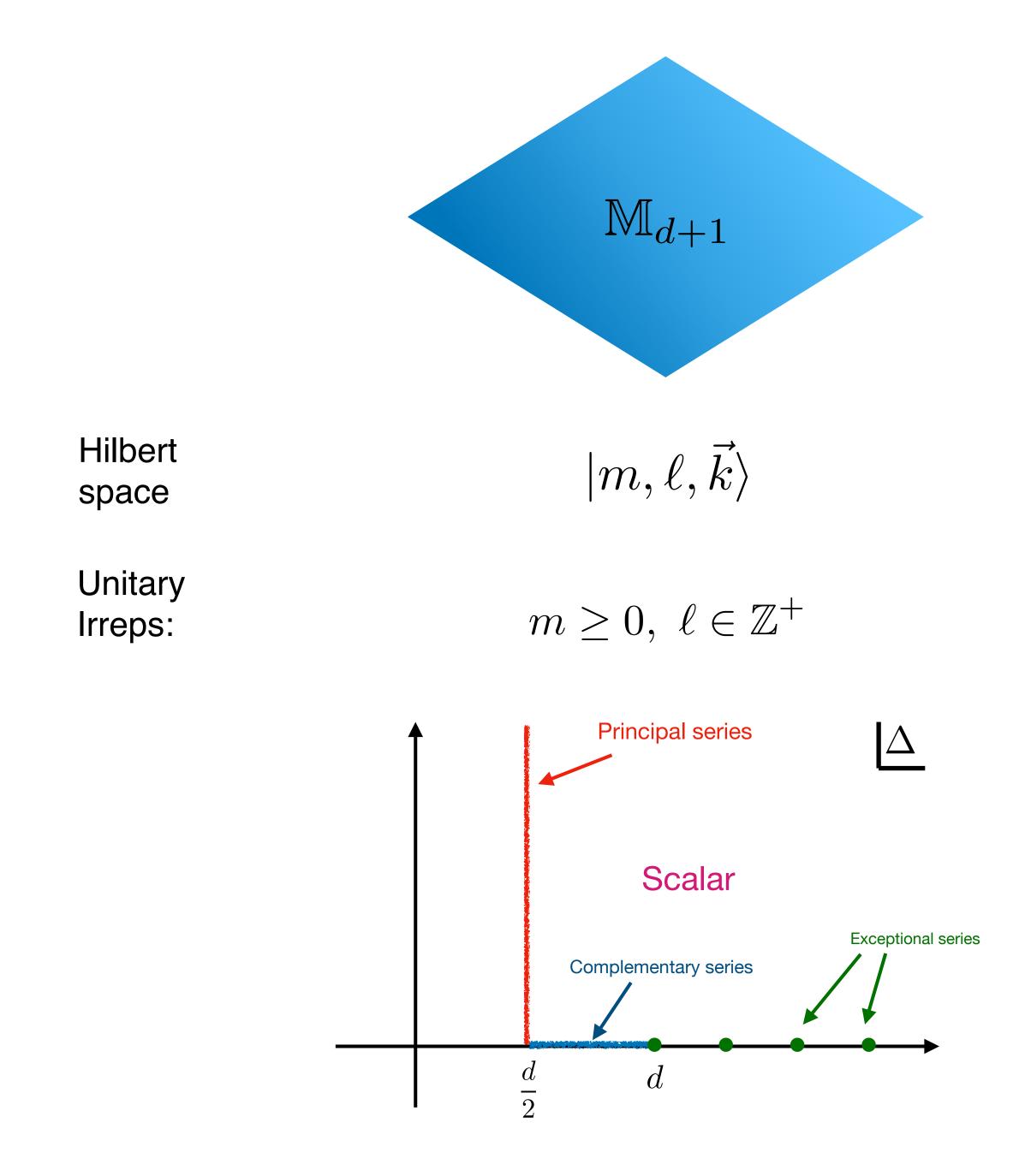
 $\Delta(d - \Delta) = m^2 R^2$: free massive scalar

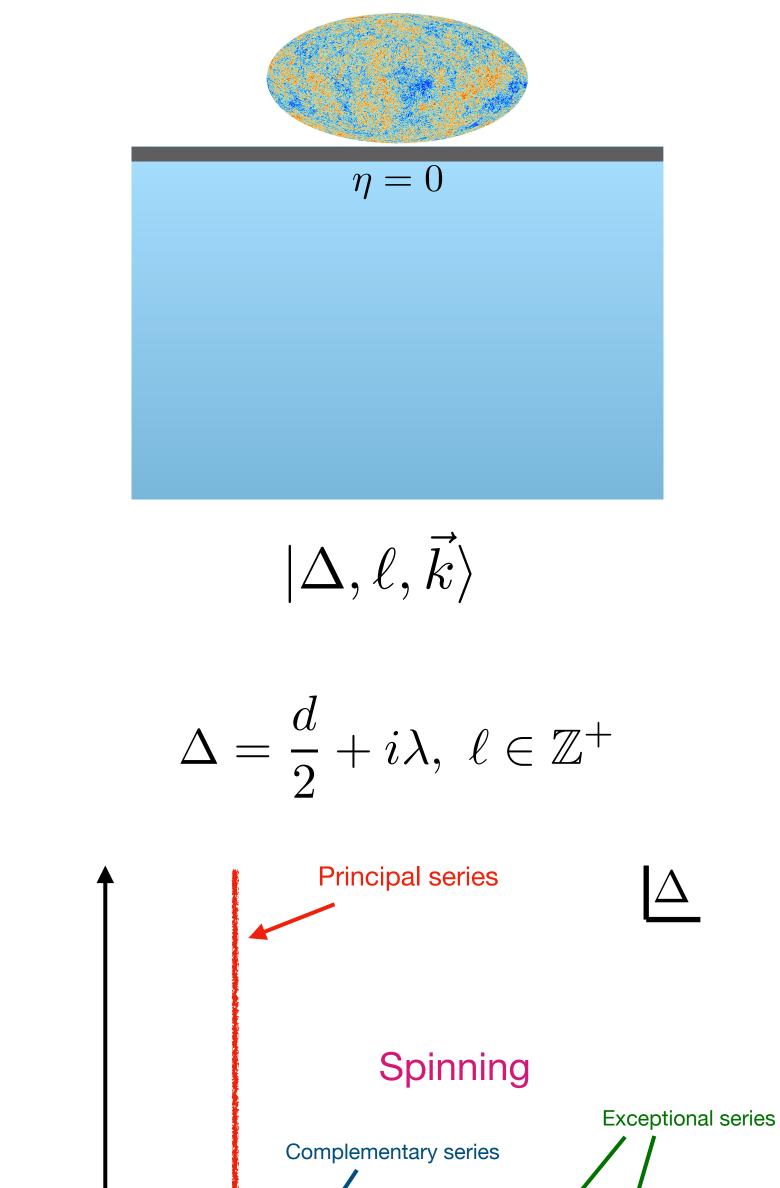


$$|\Delta,\ell,\vec{k}
angle$$

$$\Delta = \frac{d}{2} + i\lambda, \ \ell \in \mathbb{Z}^+$$







d-1

 $\frac{d}{2}$

How do we study QFT in dS Non-perturbatively?

2

One way: (not the main focus of this talk)

Conformal boundary

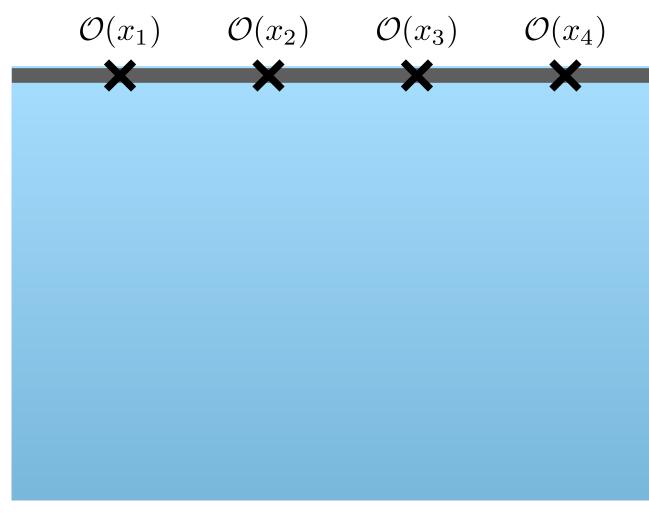
Conformal bootstrap

Conformal Bootstrap vs Cosmological Bootstrap

- Conformal invariance
- Unitarity Positivity
- Crossing symmetry

$$\langle \mathcal{O}(x_1) \dots \mathcal{O}(x_4) \rangle_{\mathrm{CFT}} = \sum_{\Delta,\ell} \lambda_{\Delta,\ell}^2$$





Conformal Bootstrap vs Cosmological Bootstrap

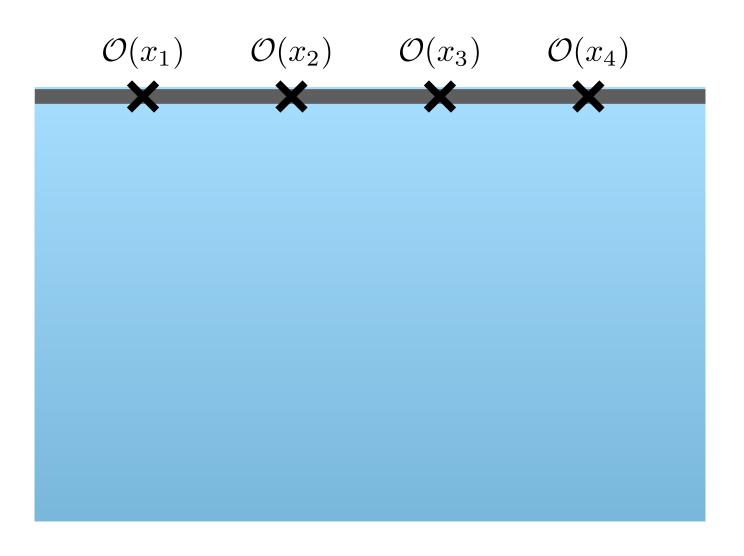
- Conformal invariance
- Unitarity Positivity
- Crossing symmetry

$$\langle \mathcal{O}(x_1) \dots \mathcal{O}(x_4) \rangle_{\mathrm{CFT}} = \sum_{\Delta,\ell} \lambda_{\Delta,\ell}^2$$

 $\langle \mathcal{O}(x_1) \dots \mathcal{O}(x_4) \rangle_{\mathrm{dS}} = \sum_{\ell} \int_{\Delta} I_{\Delta}$

 $g_{\Delta,\ell}(z,ar z)$

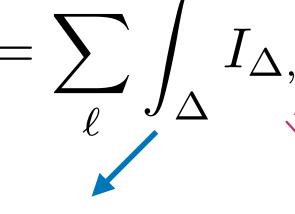
 $T_{\Delta,\ell} \ \Psi_{\Delta,\ell}(z,ar{z})$



Conformal Bootstrap vs Cosmological Bootstrap

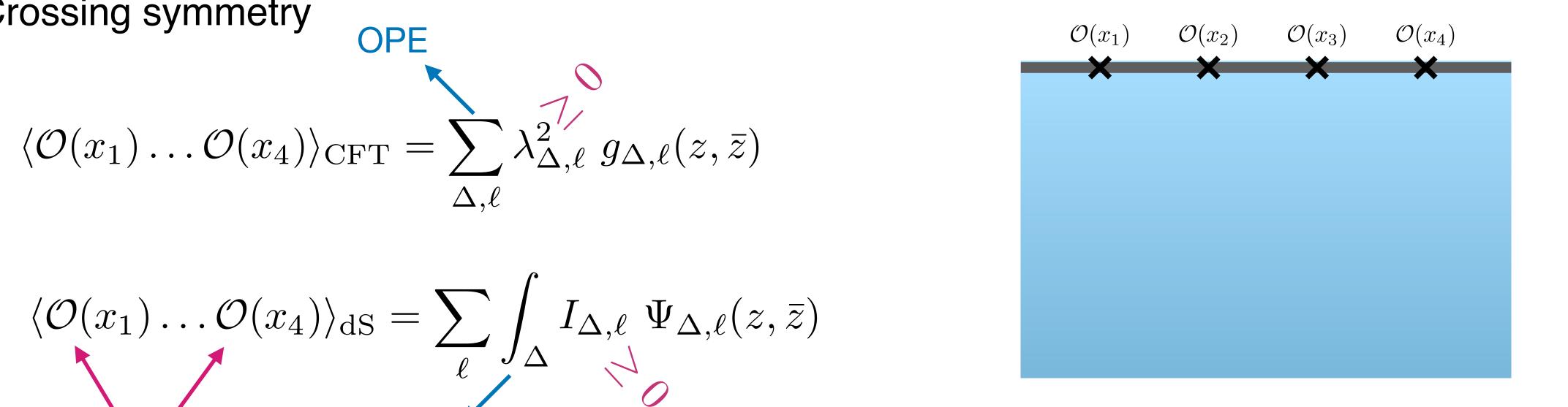
- Conformal invariance
- Unitarity Positivity
- Crossing symmetry OPE

 $\langle \mathcal{O}(x_1) \dots \mathcal{O}(x_4) \rangle_{\mathrm{dS}} = \sum_{\ell} \int_{\Delta} I_{\Delta,\ell} \Psi_{\Delta,\ell}(z,\bar{z})$



Boundary operators Irreps

positivity + crossing



bounds on $I_{\Delta,\ell}$: $0 < I_{\Delta,\ell} < \#$

2d de Sitter [2107.1387]

Outline:

- Källén–Lehmann(KL): Non-perturbative Bulk two-point functions:
 - 1. Do we have a KL decomposition for dS too?
 - 2. Does unitarity imply positivity for dS?
 - 3. Can we find **boundary** theory / boundary operators?
 - 4. Can we invert the KL decomposition and find explicit expression for spectral densities?
 - 5. Can we understand what controls the analytic properties of spectral densities?

Källén–Lehmann spectral decomposition

A spectral decomposition of the two-point function into a sum/integral over free propagators (kinematical functions)

 $\langle \phi(x_1)\phi(x_2)\rangle = \int d\mu^2 \rho(\mu^2) G_{\text{free}}(x_{12},\mu^2)$

A spectral decomposition of the two-point function into a sum/integral over free propagators (kinematical functions)

$$\left\langle \phi(x_1)\phi(x_2)\right\rangle = \int$$

- Non-perturbative!
- Symmetry fixes the x-dependence
- Unitarity Positive density

 $\int d\mu^2 \rho(\mu^2) G_{\rm free}(x_{12},\mu^2)$

A spectral decomposition of the two-point function into a sum/integral over free propagators (kinematical functions)

$$\left\langle \phi(x_1)\phi(x_2)\right\rangle = \int$$

- Non-perturbative!
- Symmetry fixes the x-dependence
- Unitarity Positive density lacksquare

Is it useful? Yes! Some examples:

- 1. No higher derivative terms in the UV complete Lagrangian
- 2. Bounds on EFT coefficients

 $\int d\mu^2 \rho(\mu^2) G_{\text{free}}(x_{12}, \mu^2)$

$$\mathbb{1} = \sum_{n} |\psi_n
angle \langle \psi_n| = \int_{p,\mu} |p| \langle \phi(x_1) \phi(x_2)
angle$$

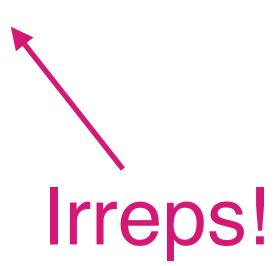
 $|p,\mu
angle\langle p,\mu|$ $|p,\mu
angle$ single-particle state with mass μ

$$\mathbb{1} = \sum_{n} |\psi_n\rangle \langle \psi_n| = \int_{p,\mu} |p|$$

$$\langle \phi(x_1)\phi(x_2) \rangle$$

 $p,\mu
angle\langle p,\mu|$

 $|p,\mu
angle$ single-particle state with mass μ



$$1 = \sum_{n} |\psi_{n}\rangle \langle \psi_{n}| = \int_{p,\mu} |p| \langle \phi(x_{1})\phi(x_{2})\rangle = \int_{p,\mu} \langle 0|\phi(x_{1})\phi(x_{2})\rangle = \int_{p,\mu} \langle 0|\phi(x_{1})\phi(x_{2})\rangle = \int_{p,\mu} \langle 0|\phi(x_{1})\phi(x_{2})\rangle = \int_{p,\mu} \langle 0|\phi(x_{1})\phi(x_{2})\rangle = \int_{p,\mu} \langle 0|\phi(x_{1})\phi(x_{2})\phi(x_{2})\rangle = \int_{p,\mu} \langle 0|\phi(x_{1})\phi(x_{2})\phi$$

 $|p,\mu\rangle\langle p,\mu|$ $|p,\mu
angle$ single-particle state with mass μ

 $|p,\mu\rangle\langle p,\mu|\phi(x_2)|0\rangle$

$$1 = \sum_{n} |\psi_{n}\rangle \langle \psi_{n}| = \int_{p,\mu} |p| \langle \phi(x_{1})\phi(x_{2})\rangle = \int_{p,\mu} \langle 0|\phi(x_{1})\phi(x_{2})\rangle \langle \psi_{n}| = \int_{p,\mu} |p| \langle 0|\phi(x_{1})\phi(x_{2})\rangle$$

 $\langle p,\mu
angle \langle p,\mu|$ $|p,\mu\rangle$ single-particle state with mass μ

 $|p,\mu\rangle\langle p,\mu|\phi(x_2)|0\rangle$ $\langle 0|\phi(x)|p,\mu\rangle = C_{\mu}e^{ip.x}$

Fixed by spacetime symmetry

$$\begin{aligned} \langle \phi(x_1)\phi(x_2) \rangle &= \int_{p,\mu} \langle 0|\phi(x_1)| \\ &= \int_{\mu} |C_{\mu}|^2 \int_{p} e^{i\theta} \\ &= \int_{0}^{\infty} d\mu^2 \rho(\mu^2) \end{aligned}$$

 $|p,\mu\rangle\langle p,\mu|\phi(x_2)|0\rangle$

 $e^{ip.(x_1-x_2)}$

 $(u^2) G_{\text{free}}(x_{12}, \mu)$

Integration over momentum

Minkowski vs dS

$$1 = \sum_{n} |\psi_{n}\rangle \langle \psi_{n}| = \int_{p,\mu} |p| \langle \phi(x_{1})\phi(x_{2})\rangle = \int_{p,\mu} \langle 0|\phi(x_{1})\phi(x_{2})\rangle = \int_{p,\mu} \langle 0|\phi(x_{1})\phi(x_{2})\rangle = \int_{p,\mu} \langle 0|\phi(x_{1})\phi(x_{2})\rangle = \int_{p,\mu} \langle 0|\phi(x_{1})\phi(x_{2})\rangle = \int_{p,\mu} \langle 0|\phi(x_{1})\phi(x_{2})\phi(x_{2})\rangle = \int_{p,\mu} \langle 0|\phi(x_{1})\phi(x_{2})\phi$$

$$1 = \sum_{n} |\psi_{n}\rangle \langle \psi_{n}| = \int_{P,\Delta} |P, \Delta|$$
$$\langle \phi(x_{1})\phi(x_{2})\rangle = \int_{P,\Delta} \langle 0|\phi(Y_{1})\rangle$$

 $|p,\mu
angle \ |p,\mu
angle \ ext{single-particle state with mass }\mu$

 $\Delta \rangle \langle P, \Delta |$ $|P, \Delta \rangle$ Fourier transform of $|\vec{k}, \Delta \rangle$

 $|P,\Delta\rangle\langle P,\Delta|\phi(Y_2)|0\rangle$

Minkowski vs dS

$$1 = \sum_{n} |\psi_{n}\rangle \langle \psi_{n}| = \int_{p,\mu} |p| \langle \phi(x_{1})\phi(x_{2})\rangle = \int_{p,\mu} \langle 0|\phi(x_{1})\phi(x_{2})\rangle \langle \psi_{n}| = \int_{p,\mu} |p| \langle 0|\phi(x_{1})\phi(x_{2})\rangle$$

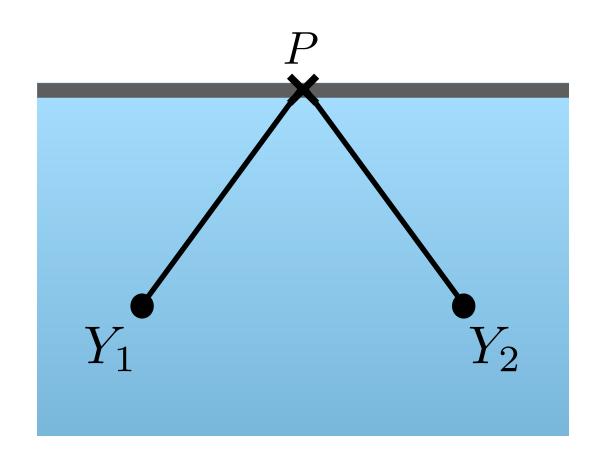
$$1 = \sum_{n} |\psi_{n}\rangle \langle \psi_{n}| = \int_{P,\Delta} |P, \Delta|$$
$$\langle \phi(x_{1})\phi(x_{2})\rangle = \int_{P,\Delta} \langle 0|\phi(Y_{1})\rangle$$

 $\langle p,\mu
angle \langle p,\mu|$ $|p,\mu\rangle$ single-particle state with mass μ

 $|p,\mu\rangle\langle p,\mu|\phi(x_2)|0\rangle$ $\langle 0|\phi(x)|p,\mu\rangle = C_{\mu}e^{ip.x}$

 $\Delta\rangle\langle P,\Delta|$

 $|P,\Delta\rangle\langle P,\Delta|\phi(Y_2)|0\rangle$ $\langle 0|\phi(Y)|P,\Delta\rangle = c_{\mathcal{O}}\mathcal{K}(Y,P)$



Minkowski vs dS

$$1 = \sum_{n} |\psi_{n}\rangle \langle \psi_{n}| = \int_{p,\mu} |p| \langle \phi(x_{1})\phi(x_{2})\rangle = \int_{p,\mu} \langle 0|\phi(x_{1})\phi(x_{2})\rangle \langle \psi_{n}| = \int_{p,\mu} |p| \langle 0|\phi(x_{1})\phi(x_{2})\rangle$$

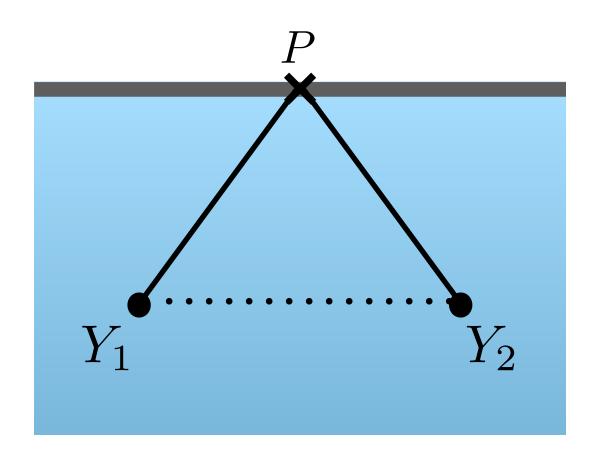
$$1 = \sum_{n} |\psi_{n}\rangle \langle \psi_{n}| = \int_{P,\Delta} |P, \Delta|$$
$$\langle \phi(x_{1})\phi(x_{2})\rangle = \int_{P,\Delta} \langle 0|\phi(Y_{1})\rangle$$

 $\langle p,\mu
angle \langle p,\mu|$ $|p,\mu\rangle$ single-particle state with mass μ

 $|p,\mu\rangle\langle p,\mu|\phi(x_2)|0\rangle$ $\langle 0|\phi(x)|p,\mu\rangle = C_{\mu}e^{ip.x}$

 $\Delta\rangle\langle P,\Delta|$

 $|P,\Delta\rangle\langle P,\Delta|\phi(Y_2)|0\rangle$ $\langle 0|\phi(Y)|P,\Delta\rangle = c_{\mathcal{O}}\mathcal{K}(Y,P)$



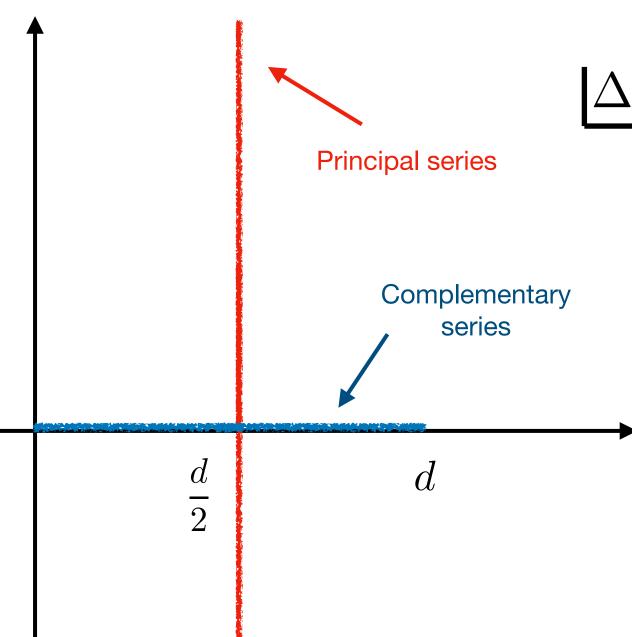
KL decomposition in Minkowski: $\int d\mu^2 \rho(\mu^2) G_{\text{free}}(x_{12}, \mu^2)$

$$\left\langle \phi(x_1)\phi(x_2)\right\rangle = \int$$

1. Do we have a KL decomposition for dS too? Yes 2. Does unitarity imply positivity for dS? Yes

KL decomposition in dS

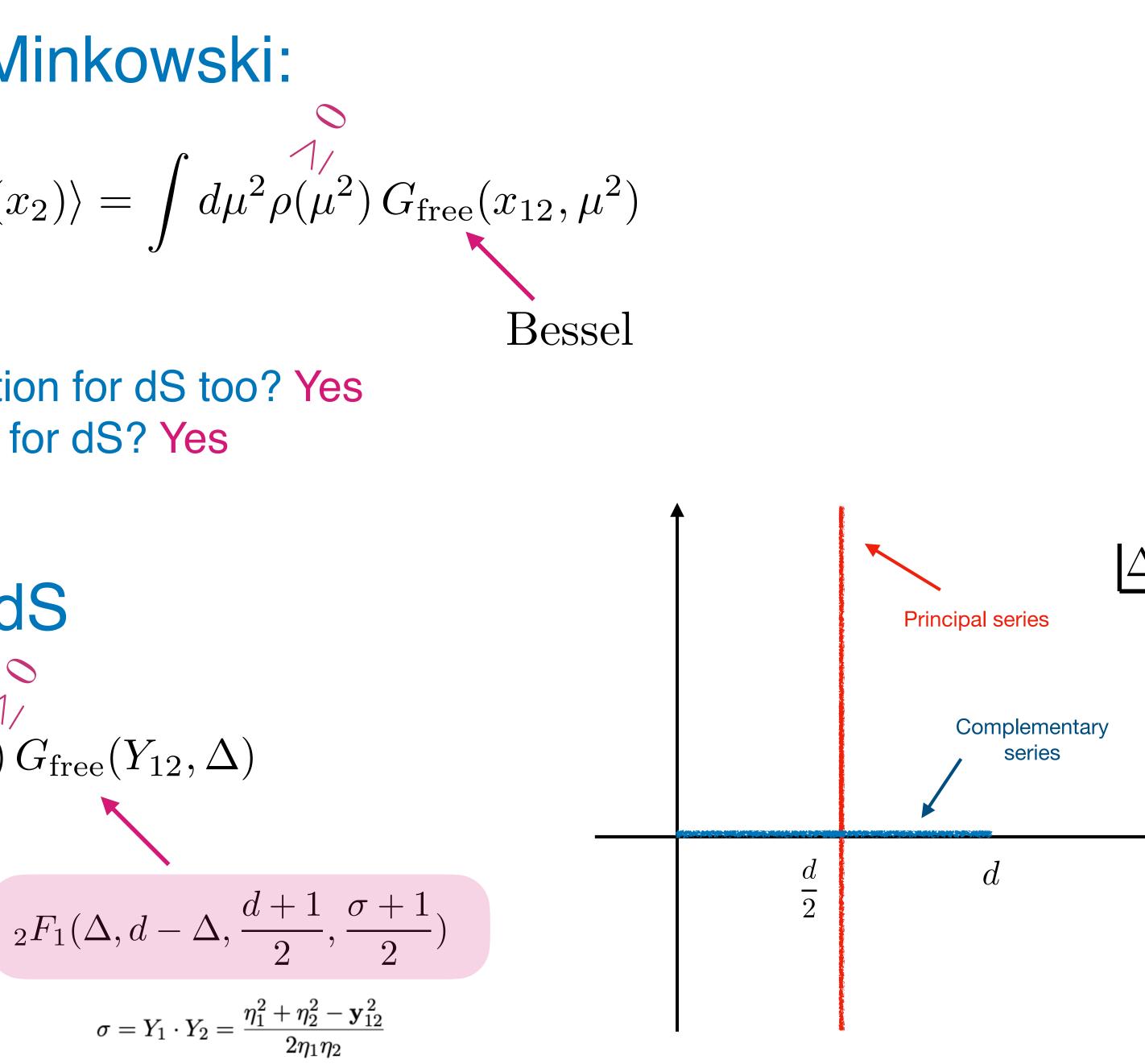
$$\langle \phi(Y_1)\phi(Y_2)\rangle = \int_{\text{reps}} \rho(\Delta) G_{\text{free}}(Y_{12}, \Delta)$$
$$\langle T^{(J)}(Y_1)T^{(J)}(Y_2)\rangle = \sum_{\ell=0}^{J} \int_{\text{reps}} \rho_{\ell}^{(J)}(\Delta) \nabla_1^{J-\ell} \nabla_2^{J-\ell} G_{\ell}(Y_{12}, \Delta)$$



$$\left\langle \phi(x_1)\phi(x_2)\right\rangle = \int$$

Do we have a KL decomposition for dS too? Yes 1. 2. Does unitarity imply positivity for dS? Yes

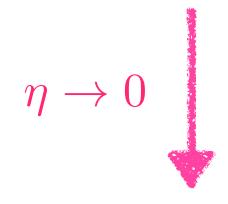
KL decomposition in dS $\langle \phi(Y_1)\phi(Y_2)\rangle = \int_{\text{reps}} \rho(\Delta) G_{\text{free}}(Y_{12},\Delta)$



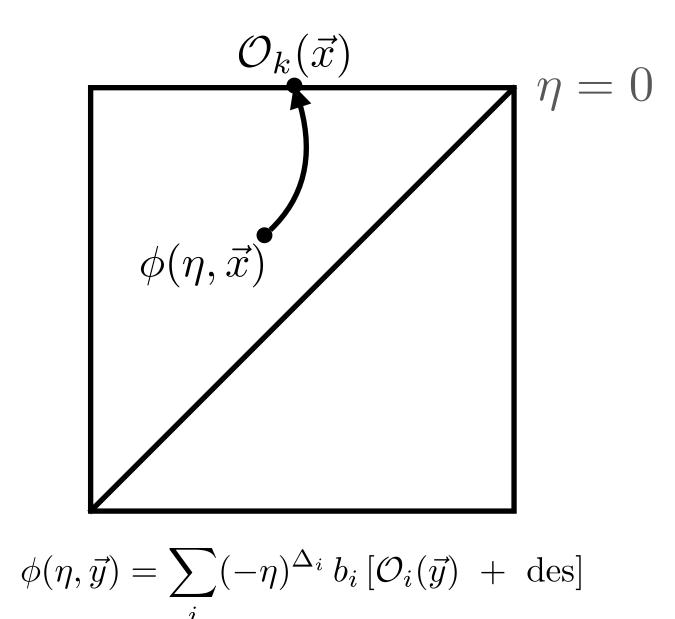
3. Can we find boundary theory operator content?

Spectral density and boundary operators:

$$\langle \phi(\eta, \vec{y_1}) \phi(\eta, \vec{y_2}) \rangle = \int_{\frac{d}{2} - i\infty}^{\frac{d}{2} + i\infty} d\Delta \rho(\Delta)$$

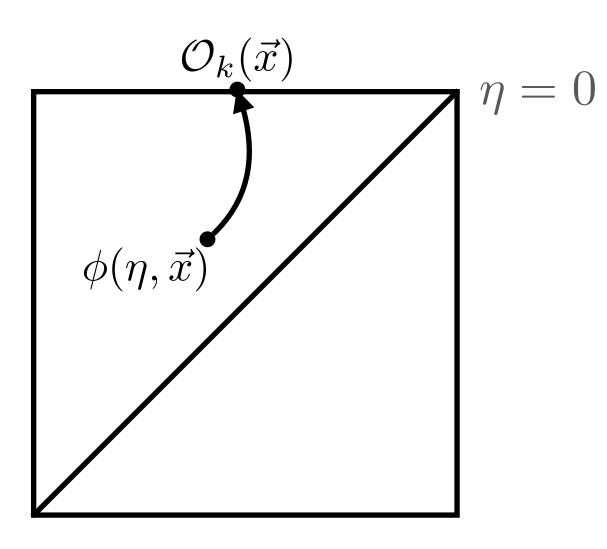


 $G_{\mathrm{free}}(\eta, \vec{y}_{12})$



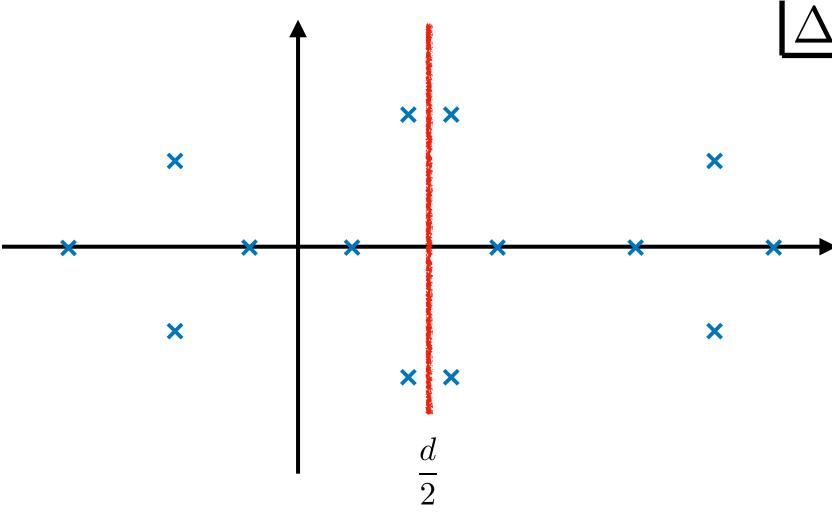
Spectral density and boundary operators:

 $G_{\rm free}(\eta, \vec{y}_{12})$

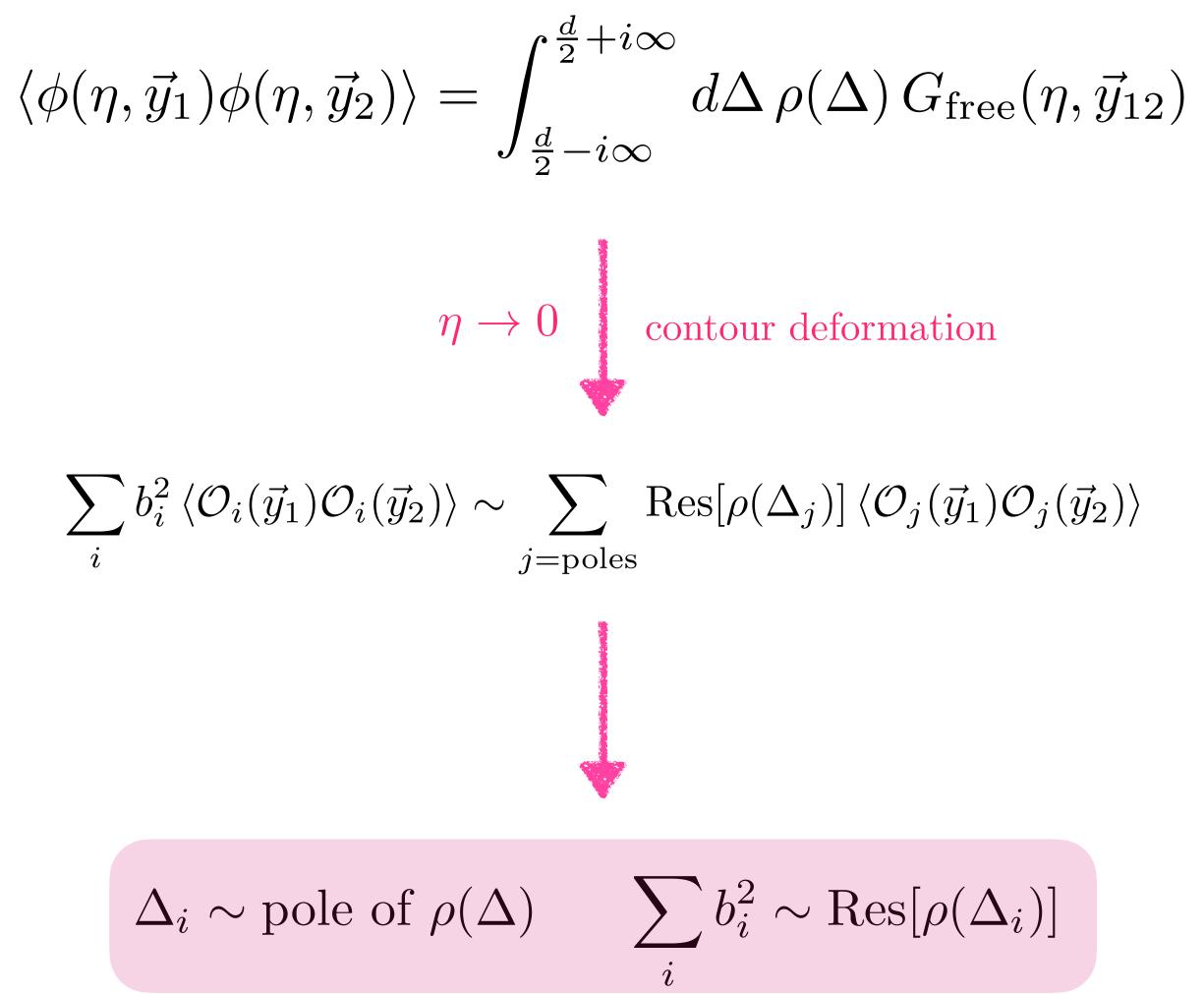


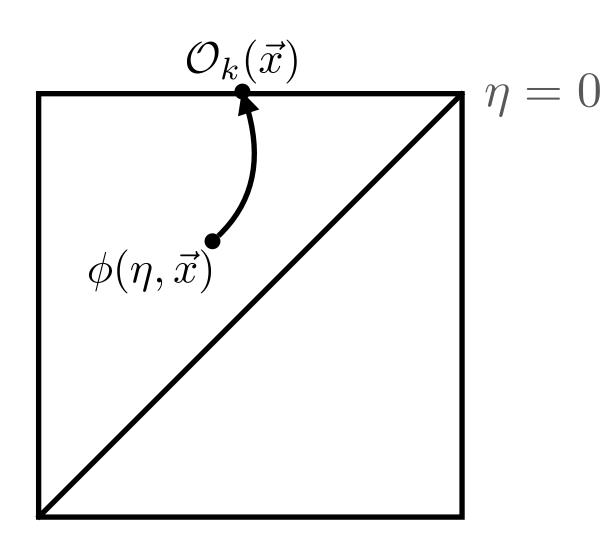
 $\phi(\eta, \vec{y}) = \sum_{i} (-\eta)^{\Delta_i} b_i \left[\mathcal{O}_i(\vec{y}) + \text{des} \right]$

 $\mathcal{O}_j(\vec{y}_1)\mathcal{O}_j(\vec{y}_2)\rangle$

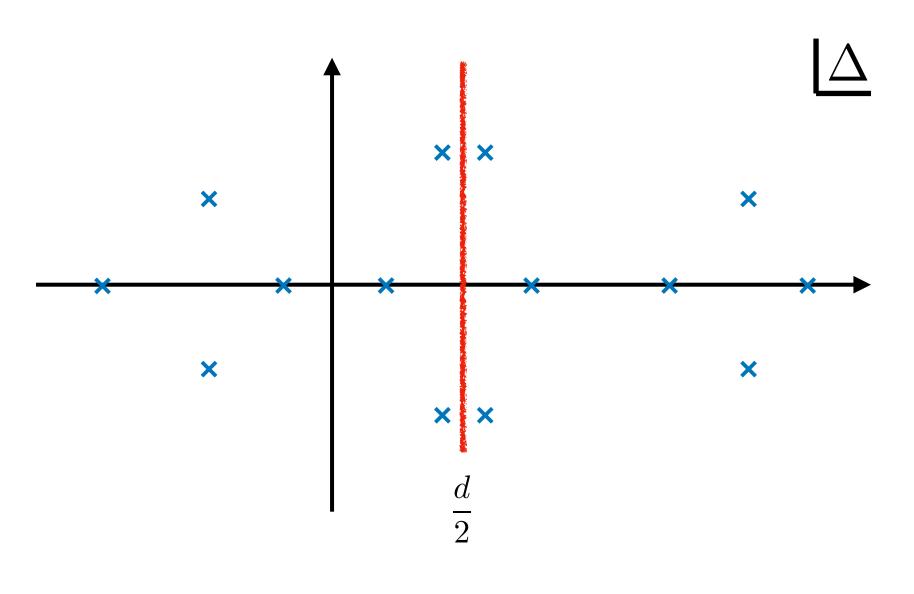


Spectral density and boundary operators:





 $\phi(\eta, \vec{y}) = \sum_{i} (-\eta)^{\Delta_i} b_i \left[\mathcal{O}_i(\vec{y}) + \text{des} \right]$

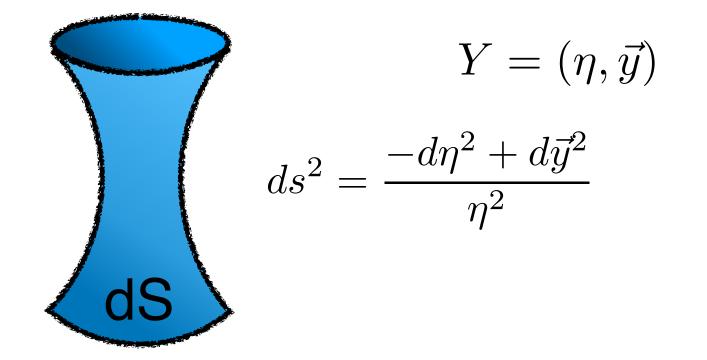


4. Can we invert the KL decomposition and find explicit expression for the spectral densities?

How to find spectral density? An inversion formula

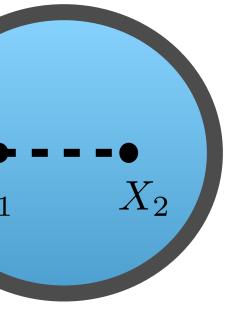
How to find spectral density? An inversion formula

Analytic continuation (Wick Rotation) to EAdS



The propagators in dS translate to Harmonic functions in EAdS

$$\longrightarrow \quad X = (\pm iz, \vec{x}) \\ ds^2 = \frac{dz^2 + d\vec{x}^2}{z^2}$$



Harmonic functions: Orthogonal

Ad

 $\int_{X} \Omega_{\Delta}(X_1, X) \Omega_{\Delta'}(X, X_2) = \delta(\Delta - \Delta') \Omega_{\Delta}(X_1, X_2)$

Power of analytic continuation to EAdS

$$\langle \phi(Y_1)\phi(Y_2)\rangle \sim \int_{\text{reps}} \rho(\Delta) \ G_{\text{free}}(Y_{12},\Delta) \longrightarrow \int_{\frac{d}{2}-i\infty}^{\frac{d}{2}+i\infty} d\Delta \ \rho_{\ell}(\Delta) \ \Omega_{\Delta}(X_1,X_2)$$

Completeness of principal series for square-integrable two-point functions

- Orthogonality of harmonic functions helps us to invert the KL. decomposition of any spin to a one variable integral over (space-like) chordal distance!
 - For example for spin 0:

$$\rho(\Delta) \sim \int_{-\infty}^{-1} d\sigma \left(\sigma^2 - 1\right) {}_2F_1(\Delta, d - \Delta, \frac{d+1}{2}, \frac{1+\sigma}{2}) \langle \phi \phi \rangle$$

Should Decay fast enough at large distances $|G|^2 < \infty$

Spinning KL:

$$\langle T^{(J)}(Y_1)T^{(J)}(Y_2)\rangle \sim \sum_{\ell=0}^{J} \int_{\frac{d}{2}-i\infty}^{\frac{d}{2}=i\infty} \rho_{\ell}(\Delta) \,\nabla_1^{J-\ell} \nabla_2^{J-\ell} \,G_{\ell}(Y_{12},\Delta)$$
$$\rho_{\ell}^{(J)}(\Delta) = \int_{X_1} \Omega_{\Delta,\ell}(X_1,X_2) \nabla_1^{(J-\ell)} \nabla_2^{(J-\ell)} \langle T^{(J)}(X_1)T^{(J)}(X_2)\rangle$$

Examples:

manifestly positive and match with the flat-space limit

- Free theory composite operators two-point functions:
 - 1. $\langle \phi_1 \phi_2(Y_1) \phi_1 \phi_2(Y_2) \rangle$
 - 2. $\langle V_{\mu}\phi(Y_1)V_{\nu}\phi(Y_2)\rangle =$
 - 3. $\langle \phi \nabla_{\mu} \phi(Y_1) \phi \nabla_{\nu} \phi(Y_2) \rangle$
- Bulk CFT spin 0, 1, 2 $\rho_{\rm CFT,\ell=2}^{(2)}(\Delta$

Explicit expressions for spectral densities: the expected boundary operator content,

$$\rangle = \langle \phi_1 \phi_1 \rangle \langle \phi_2 \phi_2 \rangle$$

$$\langle V_\mu V_\nu \rangle \langle \phi \phi \rangle$$

$$\rangle = \langle \nabla_\mu \phi \nabla_\nu \phi \rangle \langle \phi \phi \rangle$$

$$\Delta) \sim \frac{|\Gamma(\Delta_T - \Delta)|^2}{|\Gamma(\Delta - \frac{d}{2})|^2}$$

Spinning KL:

$$\langle T^{(J)}(Y_1)T^{(J)}(Y_2)\rangle \sim \sum_{\ell=0}^{J} \int_{\frac{d}{2}-i\infty}^{\frac{d}{2}=i\infty} \rho_{\ell}(\Delta) \,\nabla_1^{J-\ell} \nabla_2^{J-\ell} \,G_{\ell}(Y_{12},\Delta)$$
$$\rho_{\ell}^{(J)}(\Delta) = \int_{X_1} \Omega_{\Delta,\ell}(X_1,X_2) \nabla_1^{(J-\ell)} \nabla_2^{(J-\ell)} \langle T^{(J)}(X_1)T^{(J)}(X_2)\rangle$$

Examples:

Explicit expressions for spectral densities: the expected boundary operator content, manifestly positive and match with the flat-space limit

• Free theory composite operators two-point functions:

$$\rho_{V\phi}^{\mathcal{P},0}(\lambda) = \frac{2^{-1}\pi^{-3-\frac{d}{2}}\lambda\sinh(\pi\lambda)}{(\Delta_V - 1)(\bar{\Delta}_V - 1)(d^2 + 4\lambda^2)\Gamma(\frac{d}{2})\Gamma(\frac{d}{2} \pm i\lambda + 1)} \prod_{\pm,\pm,\pm} \Gamma\left(\frac{\frac{d}{2} + 1 \pm i\lambda \pm i\lambda_V \pm i\lambda_\phi}{2}\right)$$
$$\rho_{V\phi}^{\mathcal{P},1}(\lambda) = \frac{2^{-12}\pi^{-3-\frac{d}{2}}\lambda\sinh(\pi\lambda)f_{\lambda,\lambda_V,\lambda_\phi}}{\Gamma(\frac{d+2}{2})(\Delta_V - 1)(\bar{\Delta}_V - 1)\Gamma(\frac{d}{2} \pm i\lambda + 1)} \prod_{\pm,\pm,\pm} \Gamma\left(\frac{\frac{d}{2} \pm i\lambda \pm i\lambda_\phi \pm i\lambda_V}{2}\right)$$

Spinning KL:

$$\langle T^{(J)}(Y_1)T^{(J)}(Y_2)\rangle \sim \sum_{\ell=0}^{J} \int_{\frac{d}{2}-i\infty}^{\frac{d}{2}=i\infty} \rho_{\ell}(\Delta) \,\nabla_1^{J-\ell} \nabla_2^{J-\ell} \,G_{\ell}(Y_{12},\Delta)$$
$$\rho_{\ell}^{(J)}(\Delta) = \int_{X_1} \Omega_{\Delta,\ell}(X_1,X_2) \nabla_1^{(J-\ell)} \nabla_2^{(J-\ell)} \langle T^{(J)}(X_1)T^{(J)}(X_2)\rangle$$

Examples:

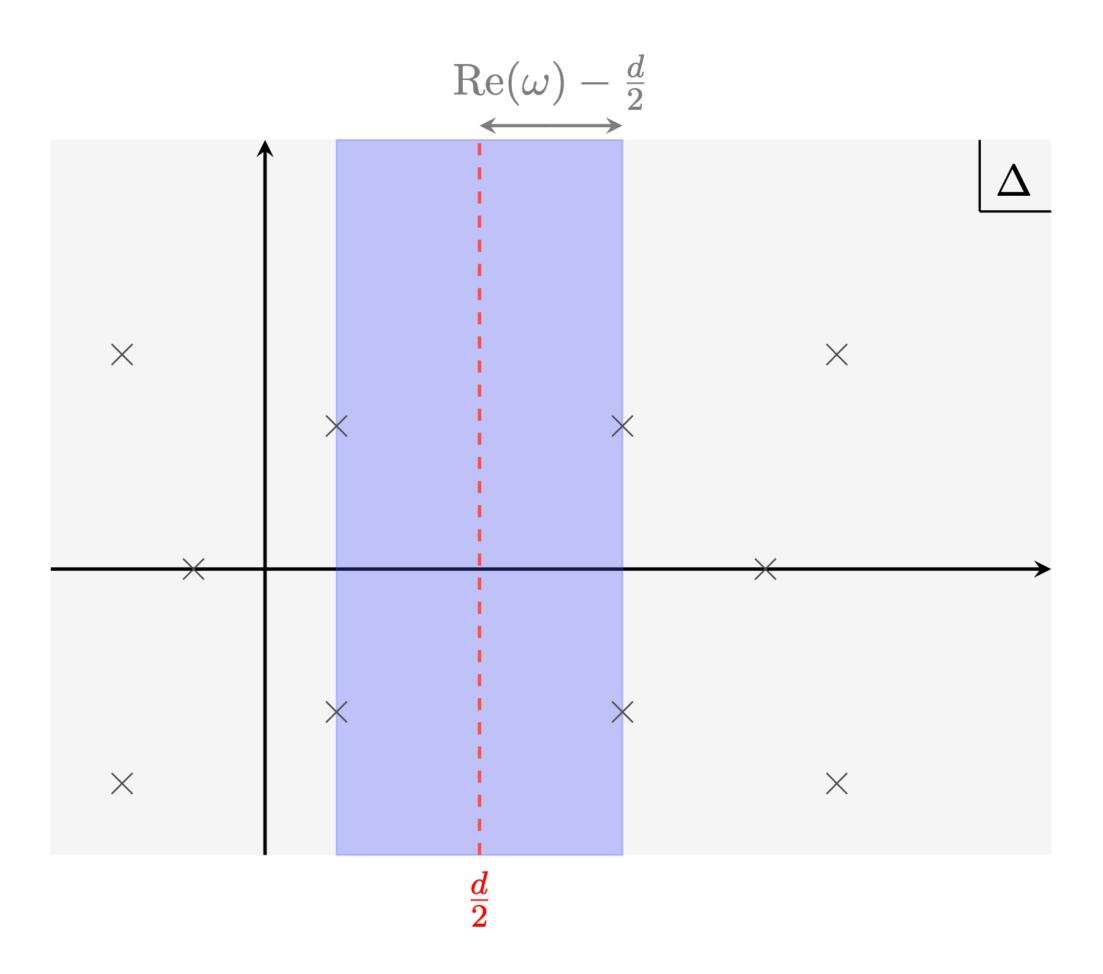
Explicit expressions for spectral densities: the expected boundary operator content, manifestly positive and match with the flat-space limit

• Bulk CFT spin 0, 1, 2

$$\begin{split} \rho_T^{\mathcal{P},0}(\lambda) &= c_T \frac{2^{5+d-2\Delta}(d+1)\pi^{\frac{d-1}{2}}(d-\Delta)(d+1-\Delta)\Gamma(-\frac{d}{2}+\Delta\pm i\lambda)}{d(d^2+4\lambda^2)((d+2)^2+4\lambda^2)\Gamma(\Delta+2)\Gamma(\frac{1-d}{2}+\Delta)}\lambda\sinh(\pi\lambda)\,,\\ \rho_T^{\mathcal{P},1}(\lambda) &= c_T \frac{2^{4+d-2\Delta}\pi^{\frac{d-1}{2}}(1-\Delta)(d+1-\Delta)\Gamma(-\frac{d}{2}+\Delta\pm i\lambda)}{((d+2)^2+4\lambda^2)\Gamma(\Delta+2)\Gamma(\frac{1-d}{2}+\Delta)}\lambda\sinh(\pi\lambda)\,,\\ \rho_T^{\mathcal{P},2}(\lambda) &= c_T \frac{2^{1+d-2\Delta}\pi^{\frac{d-1}{2}}(\Delta-1)\Delta\Gamma(-\frac{d}{2}+\Delta\pm i\lambda)}{\Gamma(\Delta+2)\Gamma(\frac{1-d}{2}+\Delta)}\lambda\sinh(\pi\lambda)\,. \end{split}$$

5. Can we understand what controls the analytic properties of the spectral densities?

Strip of analyticity



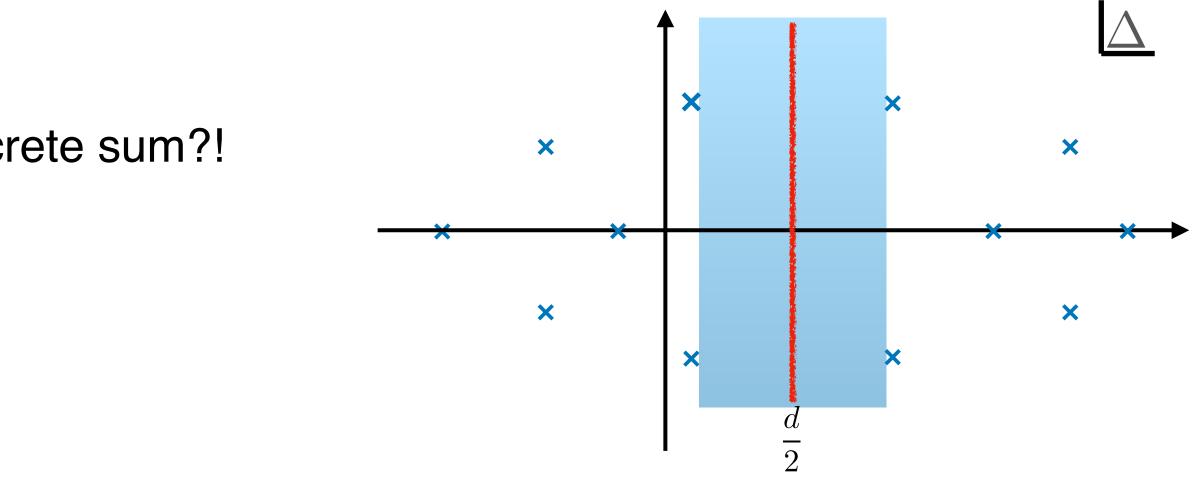
 $\langle \phi(Y_1)\phi(Y_2)\rangle \sim \sigma^{-\omega}$

Fun facts:

Anomalous dimensions of boundary operators from the spectral density •

Complementary series: \bullet pole crossing over principal series. A discrete sum?!

- Discrete series for d=1: \bullet Analysis for d=1 is Complete!
- Another way: analytic continuation from/to sphere. It is an integral of discontinuity of lacksquaretwo-point function over time-like separated points — equivalent to the EAdS one!



Summary and open questions:

Summary

- Do we have a KL decomposition for dS? For any spin and any spacetime dimensions
- Does unitarity imply positivity for dS? Positivity of the spectral density
- Can we find boundary theory / boundary operators? Poles of the spectral density
- Can we invert the KL decomposition and find explicit expression for spectral densities? The inversion formula
- Can we understand what controls the analytic properties of spectral densities? Large distance behaviour of two-point function

Future direction

- Bounds on EFT coefficient in dS. Role of the Hubble scale? ullet
- ulletoperators definition
- Flat-space limit?

Making sense of bulk-to-boundary expansion: What is the boundary

• **Bootstraping** four-point functions in higher dimensions! Where to look at?

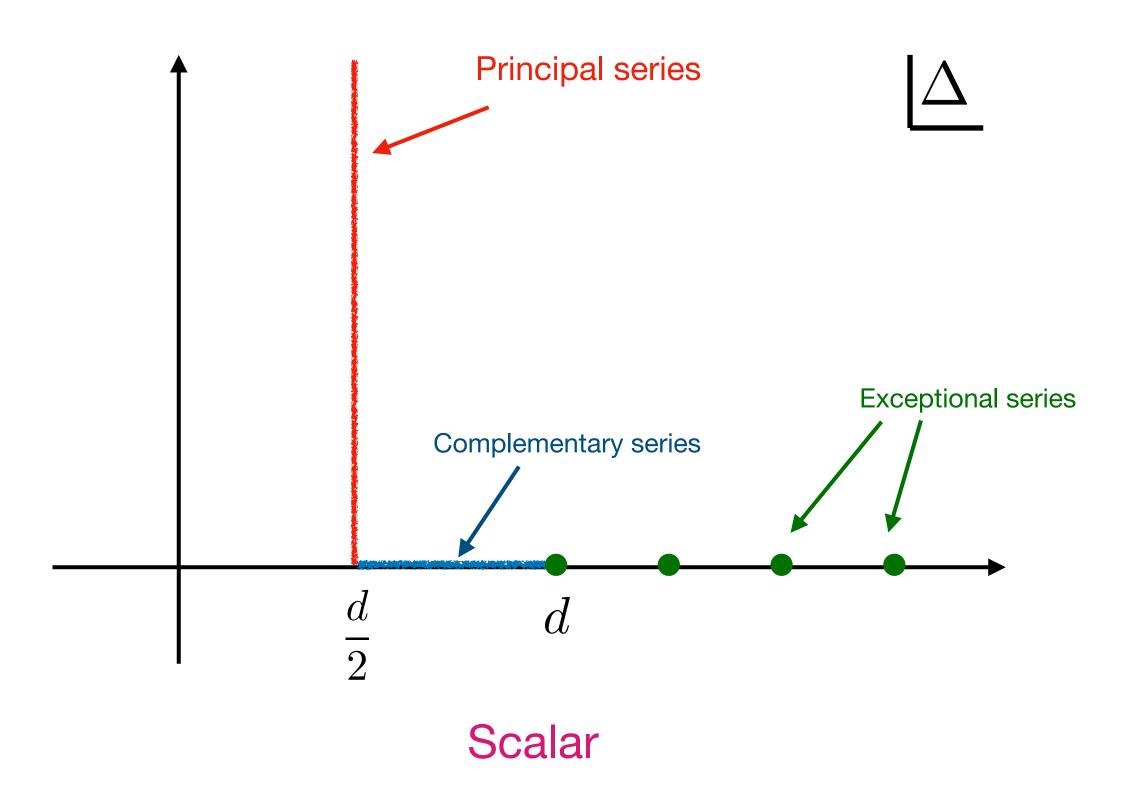
Thank You!

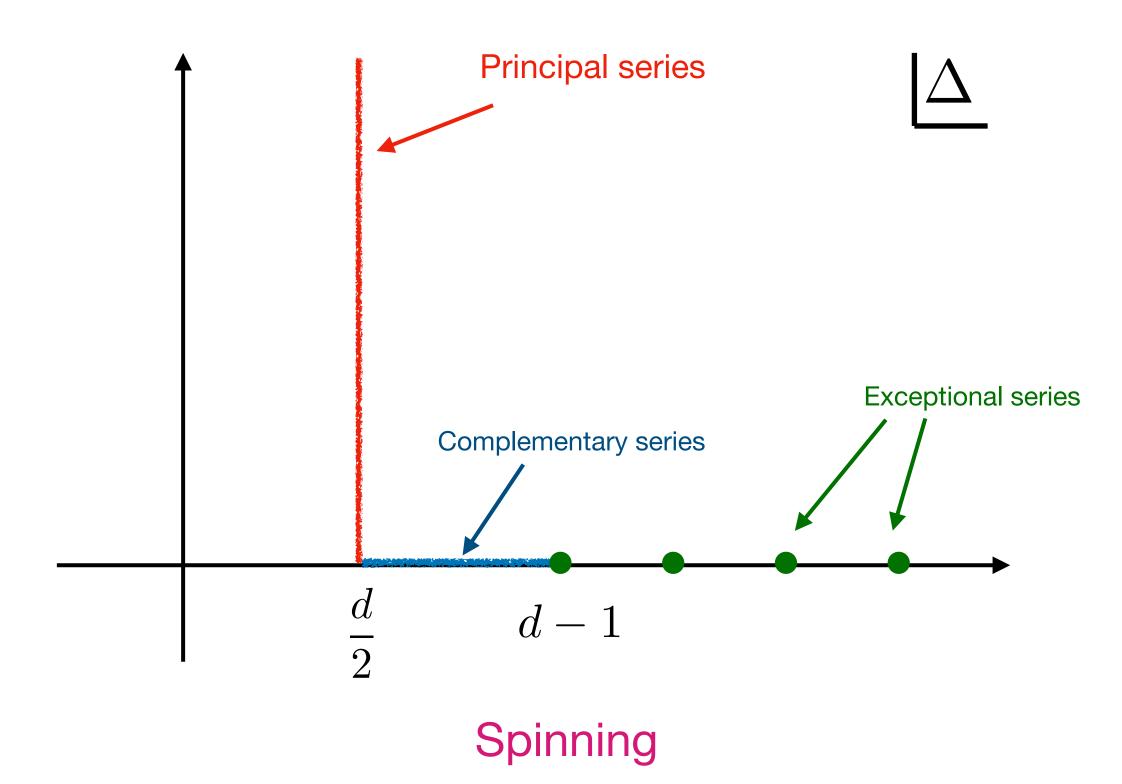
$\{\Delta, s\}$ Unitary irreducible representations SO(1,d+1)

Casimir: $\Delta(d - \Delta) - s(d + s - 2)$

- Principal series $\mathcal{P}_{\Delta,s}$: $\Delta \in \frac{d}{2} + i\mathbb{R}$ and $s \ge 0$. Heavy massive scalars fields
- Complementary series $C_{\Delta,s}$: $0 < \Delta < d$ when s = 0 and $1 < \Delta < d 1$ when $s \ge 1$. Light massive scalars fields
- Type I exceptional series $\mathcal{V}_{p,0}$: $\Delta = d + p 1$ and s = 0 for $p \ge 1$. Shift symmetric scalars in dS_{d+1}
- Type II exceptional series $\mathcal{U}_{s,t}$: $\Delta = d + t 1$ and $s \ge 1$ with $t = 0, 1, 2 \cdots, s 1$. Partially massless field of spin s and depth t in dS_{d+1}

Unitary irreducible representations SO(1,d+1) $\{\Delta, s\}$





KL decomposition in Minkowski:

(kinematical functions)

$$\langle \phi(x_1)\phi(x_2)\rangle = \int d\mu^2 \rho(\mu^2) G_{\text{free}}(x_{12},\mu^2)$$

Is it useful? Yes! Some examples:

1. No higher derivative terms in the Lagrangian

This yields our spectral representation:⁹

$$\Delta'(p) = \int_0^\infty \rho(\mu^2) \, \frac{d\mu^2}{p^2 + \mu^2 - i\epsilon} \,. \tag{10.7.16}$$

One immediate consequence of this result and the positivity of $\rho(\mu^2)$ is that $\Delta'(p)$ cannot vanish for $|p^2| \to \infty$ faster^{**} than the bare propagator $1/(p^2 + m^2 - i\epsilon)$. From time to time the suggestion is made to include higher derivative terms in the unperturbed Lagrangian, which would make the propagator vanish faster than $1/p^2$ for $|p^2| \rightarrow \infty$, but the spectral representation shows that this would necessarily entail a departure from the positivity postulates of quantum mechanics.

A spectral decomposition of the two-point function into a sum/integral over free propagators

KL decomposition in Minkowski:

A spectral decomposition of the two-point function into a sum/integral over free propagators (kinematical functions)

$$\langle \phi(x_1)\phi(x_2)\rangle = \int d\mu^2 \rho(\mu^2) G_{\text{free}}(x_{12},\mu^2)$$

Is it useful? Yes! Some examples:

- 1. No higher derivative terms in the Lagrangian
- 2. Bounds on EFT coefficients

$$\mathcal{L}_{\rm EFT} = \frac{1}{2} \phi \left[\Box + \lambda_1 \frac{\Box^2}{\Lambda^2} + \lambda_2 \frac{\Box^4}{\Lambda^4} + \cdots \right] \phi$$

$$\lambda_{1} = \Lambda^{2} \int_{\Lambda}^{\infty} dm^{2} \frac{\rho_{\Lambda}(m^{2})}{m^{2}} \ge 0$$
$$\lambda_{1}^{2} - \lambda_{2} = \Lambda^{4} \int_{\Lambda}^{\infty} dm^{2} \frac{\rho_{\Lambda}(m^{2})}{m^{4}} \ge 0$$
$$\lambda_{1}^{3} - 2\lambda_{2}\lambda_{1} + \lambda_{3} = \Lambda^{6} \int_{\Lambda}^{\infty} dm^{2} \frac{\rho_{\Lambda}(m^{2})}{m^{6}} \ge 0$$

d=1

