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m Worldline path integrals in quantum field theory.

m The field-theory limit of string theory and the worldline formalism.
m Gluon amplitudes, on-shell and off-shell.

m Berends-Giele currents in Yang-Mills theory and gravity.

m Graviton amplitudes.



The string-based formalism

1988-1992 Bern and Kosower: QCD amplitudes from strings

Polyakov path integral for string N-point functions

(Vi) ~ >0 /Dh/Dx(a, IV - Wy e SEl

top
S[x,h] = worldsheet action
Z = sum over worldsheet topologies
top
/Dh = integral over worldsheet metrics
/’Dx = integral over worldsheet embeddings
Vi = vertex operator representing particle i

This is a first-quantized path integral describing a single string propagating and emitting/absorbing N particles.



E. g., for the closed string case

1
4o/

S[x, h] = — / dodTVhh*P1,,d,x 95x"

(52 is the string tension)

Sum over topologies (corresponds to loop expansion)

O@+ED

Infinite string tension limit o/ — 0:
String theory amplitudes — field theory amplitudes



Bern-Kosower program:

Calculate the Polyakov path integral using worldsheet Green's
functions,

(x*(o1,11)x" (02, 72)) = G(o1,71; 02, T2 )"
Infinite string tension limit — New parameter integral
representations for the one-loop N - gluon amplitudes.

Rules for the direct construction of those integrals
(Bern-Kosower rules) Z. Bern and D. A. Kosower, PRD 38,
1888 (1988); PRL 66, 1669 (1991); NPB 379, 451 (1992).

Similar rules for one-loop N - graviton amplitudes (from the closed
string) Z. Bern, D. Dunbar, T. Shimada, PLB 312, 277 (1993)



The non-abelian master formula

Master formula for N - gluon amplitudes (Z. Bern and D. Kosower 1991)

PLCAN kg e kyen] = (—ig) V(T aN)/ T(4nT)~P/2e=mT

></ dTl/ dry- - / N= 2L‘/‘r,\,,l

xexp{Z[ Gijk; k—IGU&‘, ki + - G/_,s,qu:I}
ij=1

lin(eq...en)

As it stands, this is a parameter integral representation for the (color-ordered) N - gluon vertex, with momenta k;
and polarizations ¢}, induced by a scalar loop, in D dimensions.
Here m and T are the loop mass and proper-time, 7; the location of the ith gluon, and

(ri =) . . (r1—72) =
Gj = |1 — 7j| — — G(71,m2) = sign(m — 72) — Zf , G(71, m2) = 28(T1 — T2) —

~I~
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Bern-Kosower rules

Bern and Kosower found purely algebraic rules that

m change the loop scalar into a fermion or gluon (loop
replacement rules).

m provide an easy way to include the missing one-particle
irreducible diagrams (pinch rules).

The formalism was then used for the first calculation of the QCD
one-loop five - gluon amplitudes (Z. Bern, L. Dixon, D.A. Kosower,
PRL 70 (1993) 2677).



The string-inspired worldline path integral approach

M. J. Strassler, NPB 385 (1992) 145:

m  Rederived the master formula and the loop replacement rules using worldline path integral representations
of the gluonic effective actions. E.g. for the scalar loop

T 132 05 Alx
MA] = tr/oog eisz/Dx(T) Pe Jo dT(ZX gk A (T)>)
0

where A;, = AZ T2 and P denotes path ordering.
m  This also shows that the master formula and the loop replacement rules hold off-shell.
M. J. Strassler, SLAC-PUB-5978 (unpubl.): noted that the IBP generates automatically

m abelian field strength tensors /" = k!e¥ — e!"k!” in the bulk and

m color commutators [T? , T%] as boundary terms.

m  Those fit together to produce full nonabelian field strength tensors

. . b +b
Fuv = Fp,, T° = (0pA;, — 00A] )T + ig[A], T7, A, T

pv

in the low-energy effective action.

Thus we see the emergence of gauge invariant tensor structures at the integrand level.



Integration-by-parts algorithms

Removing all G,j by IBP can be done in many ways!
m M.J. Strassler 1992: started to investigate this ambiguity at the four-point level.

m C.S.1998: found an algorithm that preserves the full permutation (Bose) symmetry. It leads to an
unambiguous result that is called the Q representation.

1
N PR 15 Gokk:
EXP{} | multi—linear = (=) Pn(Gy, Gy) e2 2 Gijkikj

part.int.
—

(- Qn(Gy) o2 X Gikiky




Advantages of the Q-representation

After the IBP, the integrand for the spinor loop can be obtained by the scalar loop one through the
Bern-Kosower replacement rule: | .
Replace every closed cycle G,-l,'2 G,-2,-3 cee G,-k,-1 in Qu by
Gi i, Gi -G

iviy Giniz * * * Giyiy — GFiyip GFiyig * = * GFigiy

(and multiply by a global factor of —2).

Each such “r-cycle” comes together with a “Lorentz-cycle” Zp(i1ip . . . in) defined as (Strassler)
. 1
Z(i)) = Etr(f,-ﬂ-) =i - kigj - ki —gj - gjkj - kj
n
Zp(iip .. ip) = tr(l_[l f'l) (n>3)
=

This motivates the definition of a “bicycle” as the product of the two:

Ginia -+ - in) = Giyiy Giyig - - - Gipiy Zn(iria - - - in)



Example: N=4

Qs
Q;
@
&
Q?

Q+ @+ Q+Q2

G(1234) + G(1243) + G(1324)

G(123)T(4) + G(234)T(1) + G(341) T(2) + G(412)T(3)

G(12)T(34) + G(13)T(24) + G(14)T(23) + G(23)T(14) + G(24)T(13) + G(34)T(12)
G(12)G(34) + G(13)G(24) + G(14)G(23) 1)

Apart from the bicycles, there are also “tails” T(a), T(ab),

> Gaiea - ki
i#a
) ) 1, ) )
Gaica - kiGujep - kj + 5 Gapea - sb[ ST Gaika ki = S Gy - kj]
ia,jb ia,b j#ba
(i-7)7b,2)



The QCD N-gluon vertices

kn,en,ay
k1,21,

ky ey nay o

ki Ea, a4

One-loop off-shell 1Pl N-gluon functions ( “vertices”) I'?;ffb’x/ ki, ..., kyl
s=0, %, 1 for scalar, spinor, gluon loop.
= Building blocks for higher-loop amplitudes.
m Input for the Dyson-Schwinger equations.
m Important for the RG group.

m IR properties of QCD.



Ball-Chiu decomposition of the three-gluon vertex

J.S. Ball and T. W. Chiu 1980

b 2,2 2 2,2 2
F‘L1H2u3(k1,k2,k3) = f C{A(kl‘k2;k3)gu1“2(k1 - k2)p3 + B(kl-k21k3)gu1u2(kl Jr“2)#3
2,2 .2
—C(ki, ki k3)(k1k2)gry g — kipg kopy 10kt — k2)pug
12,2 2
+§5(k11 Ky s k3)(kipg kopg K3y + Kipp kopg kapy)
2,2 2
HF(k s ki k) (ki k2)guy g — Kipy kopy lkipug (koks) — koyus (kiks)]
2,2 ,2 1
+H(k1 ) kz ’ k3)(7gu1u2 [kl,u3(k2k3) - kZp3(k1k3)] + g(k1u3 kZ;Ll k3p2 - kluz k2u3 k3;41 ))

+ [cyclic permutations of (ki, u1), (kz, p2), (k3, ua)]}

m  Universal tensor decomposition, valid for scalar, spinor and gluon loop, and also for higher loop corrections.
Only the coefficient functions A, B, C, F, H, S change.

m From an analysis of the Ward identities.
m A, B, C: two-point kinematics, not transversal.
m F, H: three-point kinematics, transversal.

m At tree-level, A = 1, the other functions vanish. S = 0 even at one-loop.



Ball-Chiu from the master formula

N. Ahmadiniaz, C. Schubert, NPB 869 (2013) 417
For N = 3, the master formula yields

oo 2
ToL2% kg eri ko, e0i ks e3] = (—ig) tr(TT1 T2 T33)/ dT(4nT)~P/2e=mT
Jo

.
% / dry /71 dry (—i)3 P e C12k1 Ko+ Cizky -ka+Gozhy-k3)
0 0

where
P3 = Gyjer - kiGyjen - kjGages - ke — Groer - e2G3pes - kg
—Gi3ey - €3Gojen - kj — Gozen - €3Gyjey - ki,
(repeated indices i, j, k, . . .are to be summed). To remove the term involving G1»Ga1, add the total derivative

15} 5 5

Groky -kp+Gi3ky -kg+Gpzky -k

_87(51251 < eGares - kyelC12k kot Gizkt k3 +Gagho 3)).
T2

In the abelian case this total derivative term would integrate to zero, but here due to the color ordering it produces
(one half of) the term

tr (T[T, TB])e3 - £y - £2Gra Gy P12 U2 HhS)

This term involves only a two-point integral, with “pinched” momenta ky + k3,



The three-gluon vertex in the Q-representation

At this stage have

3
f = g (T[T, a3y (rhul 4 rhound)
(4m) 2
oo dT _,27 [T - 3.1
ot = = [T e [Tan [T @+ w3 Sk k)
o T3 0 0 =12
oo dT 2 T .
r(}))ound _ 7/ a o m T/ dr1GraGor [53 Ao eCr2k1 (kths) cycl.]
0 T2 0
5 L
Q; = GuGuGatr(fihfs)
1. . .
QG = 5612621“({1‘(2)63/'53 - ki + 2 perm.

This is not yet Ball-Chiu: Qg corresponds to the form factor H, but Q§ not to F; it is not even transversal.



Second integration-by-parts

To make Q% transversal, add another total derivative:

3 - €3

1 Iel ..
Ztr(f ) — (G Gorel)) .
ka2 (12)87—3(12 21 )

Here r3 is a reference momentum such that r3 - k3 # 0. This transforms Q32 into

2 f3

o1 . r3-f3- kg o1 . n-fhk
S5 = GGy otr(Ah)Gy———— + G13G31 ~tr(fif3) Gy
2 r3 - k3 2

r - ky

o1 .- fi ki
+Gp3Gp —tr(hRf)G ———— .
2 r - kg

which is transversal. With the cyclic choice of reference vectors

n =k — k3, ro=ks — ki, r3 =k — ko

532 becomes the Ball-Chiu form factor F. The boundary terms match with the form factors A, B, C.



Loop replacement rules for the three-gluon vertex

Scalar to Spinor Loop:
GiGi = GyGji — GrjGri
61263631 = G12Go3Ga1 — GrioGro3Gray
where Gg;; = sign(r; — 7;).
Scalar to Gluon Loop:
GjG; — GG — 4Gp; Gy
G12Go3Ga1  —  Gi2Gp3Ga1 — 4Gr12Gro3 Gray

The generated integrand for the gluon loop corresponds to the background field method with quantum Feynman

gauge.
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The four-gluon vertex

N = 4 is much more challenging - at four points, a priori one can
construct 138 tensors!

N. Ahmadiniaz, C. Schubert, Int. J. Mod. Phys. E 25 (2016)
1642004: Decomposition of the four-gluon vertex in terms of 19
tensors, of which only 14 have the full four-point kinematics.




On-shell N-gluon matrix elements

When computing the on-shell N-gluon matrix elements, we have to use the full connected amplitude, not just the
irreducible one. Following Bern and Kosower 1991, the additional one-particle-reducible terms can be obtained
from Qp by the following procedure:

(i) Draw all possible ¢3 1-loop diagrams D; with N legs, labelled 1, ..., N (following the ordering of the color
trace). Diagrams where the loop is a tadpole or isolated on an external leg can be omitted. E.g. at the four-point
level there are single and double ‘nim‘h“ anhy .\

~ ~

A

3

(ii) A diagram will contribute if each vertex e;cept the ones attached directly to the loop corresponds to a possible
pinch. A vertex with labels i < j can be pinched if Qp is linear in Gj;. The pinching replaces this G;; by a factor of
2/(ki + kj)z, removes the vertex and transfers the label i to the ingoing leg.

-+ -loop

The 7; - integration is omitted and the index j replaced by i in all Gy, Ck,. The pinching can thus be represented
by a pinch operator Dijj,

) o .

Dif(G) = — F(G)| ;
if(©) aG; ( )‘_Gr‘j:‘]_
ijaG,ﬂk

(N. Ahmadiniaz, F.M. Balli, C. Lopez-Arcos, A. Quintero Velez and C. S., PRD 104 (2021) L941702)).
The trees are to be “pruned” recursively starting with the outermost vertices.



Berends-Giele Currents

Returning to the Bern-Kosower formalism, without the pinch rules we would have to construct the reducible
contributions attaching off-shell currents to the loop:

Such currents were recognized as central objects in Yang-Mills theory since the eighties:

m  They are naturally written in terms of multi-particle polarizations (F.A. Berends and W.T. Giele, NPB 306
(1988) 759) and then are called Berends-Giele currents.

m  They are instrumental in the perturbiner approach where tree-level amplitudes are constructed directly
from the field equations (A.A. Rosly and K.G. Selivanov, PLB 399 (1997) 135, S. Mizera and B. Skrzypek,
JHEP 10 (2018) 018).

m They are important building blocks for amplitudes obeying color-kinematics duality (Z. Bern, J.J.M.
Carrasco and H. Johansson, PRD 78, 085011 (2008)). This requires a specific gauge, BCJ gauge.




Multiparticle polarizations and field strength tensors

Multi-particle polarization tensors:

ely = lez-hach — e, " — (1 2)]
E’:L[L23 = %[(k?’ . 612)5? — (k12 . 63) €f2 + 612Vf;/u

1
_531/'(11;”] - kfz3151 ~epe3 - (ko — k1)
etc.

Multi-particle field-strength tensors:

fly = e-kff" —(AR)" —(1+2)
fl% = kf235523 — k12 - kaepes

—ki - ka(elens +elsen) — (1 < v)
etc.



BCJ gauge and generalized Jacobi identities

The multi-particle polarizations are subject to generalized gauge
transformations. To construct currents in BCJ gauge, they must
obey the generalized Jacobi identities

H M _ M i 17 o
€03 T €513 =0, €yt 63, +e53, =0, etc.

(C.R. Mafra and O. Schlotterer, JHEP 03, 090 (2016)).



Multi-particle polarizations from pinching

Clearly the Bern-Kosower pinching procedure must hold the information on the Berends-Giele currents. It turns out
that to obtain the currents, it is sufficient to look at the maximal pinch of the N-gluon amplitude, defined by the
consecutive pinching of N — 2 adjacent legs. It corresponds to the Bern-Kosower diagram

(which in the original Bern-Kosower rules was actually discarded, since it is absorbed by the gluon wave-function

renormalization).

Only single-cycle terms contribute to it, thus in its calculation we can replace Qp by ON = Q,z\, + ngv + ... Q,\’\,’.

It turns out that the (N — 1) - field-strength tensor G/;«U»-(N—l) can be harvested through

A ~2
Dy PsP2Qu = 357 (v fwwnGin
and (less obviously) the (N — 2) - polarization tensor £15...(y_ ) directly from the (N — 2) - tail:

Dyn—z) - P3P12T(1,2,...,N=2) = e vz kn-1Gin—1) +c12...(v—2) - kn G

(N. Ahmadiniaz, F.M. Balli, C. Lopez-Arcos, A. Quintero Velez and C. S., PRD 104 (2021) L941702)



BCJ gauge comes for free

It turns out that these polarization and field strength tensors automatically fulfill the generalized Jacobi identities.
This can be shown using the natural mapping between the Bern-Kosower pinch diagrams and the Lie-bracketing
algebra for N ordered legs,

[[1,2],3] [1,[2,3]]

etc.

The proof does not involve any specific properties of the integrand, i.e. it would work with any symmetric
polynomial in the Gj;.



Constructing the tree-level N-gluon amplitude (1)

N. Ahmadiniaz, F.M. Balli, O. Corradini, C. Lopez-Arcos, A. Quintero Velez and C. S., NPB 975 (2022) 115690

To compute the N-gluon tree-level amplitude:

I8 Use the above to calculate the generalized polarization tensor £y _1 in BCJ gauge.
N—1
(in the above paper we calculate them up to multiplicity five).

Sum over all pinch diagrams to this order to construct the color-stripped Berends-Giele currents

Mmoo
Al =

w .
A12---(N—1)'
w
AT
n
A2
-
Alazy =

I

El y
7
“lL,21
)
512
© ©
1,213, ClLR3)
S125123 5235123
7 1 I e I
€ € € € €
1,2],3],4] 1,[2,3]],4 1,2],[3,4] 1,[[2,3],4 1,[2,[3,4]
1035 (P 15 P I 8 5 O X 1
$12512351234 512351234523 51251234534 512345235234 512345234534

The denominators can be read off from the pinch diagram.



Constructing the tree-level N-gluon amplitude (2)

From this we can get the colour-ordered partial amplitude of N gluons through the Berends-Giele formula

tree _ m
AL, 2, N) = st (v )ALy (1) AN

The factor S12...(N—1) is inserted to cancel the final off-shell propagator, and the factor ANM = ey Puts
the final gluon on-shell.

n The color-dressed Berends-Giele currents A/;Q-u(N—l)
A}1L2~-~(N—1) by summing over all inequivalent orderings ((2N — 5)!! terms in total), and supplying color
factors that (by color-kinematics duality) have the same Lie bracketing structure in color space. E. g.

are obtained from the color-stripped ones

s T a3
2 be
Cﬁ1.2],3] = falaz fba3 :




Constructing the tree-level N-gluon amplitude (3)

E.g. For N = 5:
) EM 2 E“ ) 5#
o [[[1 2],3),4]° [[[1 21,3, 4] “{l12.21,41,31%[([1,2],4],3] i MM[1,31,41,2]7[[1,3].4].2] n [[12,3],41, 117 [([2,3].4].1]
1234 S12512351234 512512451234 S13513451234 523523451234
cff ek cff ek
M[2.3],2],4] 3,24 [[[1 41,21,31 %] [[1 4,23, [[2,41,3],2] 43,2 [[[2 31,114 [[2 3],1.4]

513512351234 514512451234 514513451234 523512351234

fean3eans | Geasiieany | Teanapans | faeea
524512451234 524523451234 534513451234 534523451234
21, 3,41 (11.,2]13,4] . e aiea | Gaeaaes
51253451234 51352451234 51452351234 ’

From this we get the total tree-level N - gluon amplitude,

tree __ 1%
A = s12 (V=) A (v 1) AN



Pinch terms from multi-particle polarizations (1)

Turning the logic around, it seems plausible that the multiparticle polarizations obtained in this way hold the full
information on the pinch contributions. This leads us to conjecture that the complete effect of the pinching
procedure in the Bern-Kosower formalism may be taken into account simply by adding, to the un-pinched integrand,
all possible terms where some cycles and/or tails are replaced by generalized ones, defined in the following way:

m  Generalized Lorentz cycle:

k
Ze(h, .. ) = (%)Skzn-(nf,i)
i=1

which now uses the full Berends-Giele currents Fy-

m  Generalized tail:

Tilho o) = Tk, Ak Ag)

with the Berends-Giele polarizations A’i'



Pinch terms from multi-particle polarizations (2)

For example, the three-gluon amplitude, whose un-pinched integrand is Q33 + Q32,

Qg = GoGsGaitr (Ahfs)

1. . .
Qg = 3 GipGoytr (fifp)Gsjes - ki + 2 perm.

should have the pinch contribution
G(1,23) 4+ G(2,31) + G6(3,12)
where, e.g.,

o1
G(1,23) = G12Go1 Etr (AF23)

and this is indeed what the Bern-Kosower pinch rules produce.
Similarly, at the four-point level the prediction for the single-pinch terms would be

G(1,2,34) + G(1,23)T(4) + G(1,2)T(34) + perm.
and for the double pinches,
(’;(17 234) + C(12, 34) + perm. (2)

which we have again found to be in agreement with the application of the pinch:rules.



The Bern-Dunbar-Shimada formalism(1)

Z. Bern, D. Dunbar, T. Shimada, PLB 312, 277 (1993)
Master formula for the irreducible one-loop N-graviton amplitudes with a massless scalar loop:

Ko, oo dT T
Ml b kbl = —(=2)" [ Canm)” / ar-o [,
U o s 1.
X expq > [Ecﬁk, - ki — i(Gjei + Gj&;) - kj + Ec,je,- ‘g
ij=1
1=

£1..-€p€1-..€n

1
EG §j+§HU(s;-§j+sj-§,-):|}

Here we have used that on-shell the graviton polarisations can be chosen so as to factorize, h;J = 5”5” In the
absence of the terms with Hij this would, after the expansion of the exponent, lead to a prefactor polynomlal that
simply factorizes into two copies of the one of the gluonic case,

ex,,{.}

At the string level, this comes from the factorisation of the closed string modes into left-movers and right-movers.
The additional terms involving Hj; stem from the fact that the left- and right-movers are coupled through the zero
mode of the string.

Gjik;-k;

Lswn
= Pa(Gy, Gy)PalGy, Gy)e? Zhimt 87

€1..-€n&1-..En



The Bern-Dunbar-Shimada formalism(2)

The integration-by-parts can be done independently for the left- and right-movers, except for derivatives hitting the
universal exponent where the following identities have to be used,

(6kiHij — Sy Hjj)

(6kiHij — SiiHjj)

ar
<
Il
NIR N =

o
=t
Il
IS)

o7k

1]
G — 0
o7k
The Hj; are to be treated as constants in the integration-by-parts.

After the removal of the Gj;, GU' the inclusion of the reducible contributions can be achieved by a pinching

procedure that is a doubling-up of the one for the gluon case above,

After the recursive removal of all trees attached to the loop one has at hand a parameter integral representation for
the full on-shell N-graviton matrix element with a scalar loop. Representations for other spins in the loop (Weyl
fermion, vector, gravitino, graviton) can again be obtained from this by certain loop replacement rules that are
essentially independent applications of the QCD rules to the left- and right-mover parts.



Constructing the tree-level N-graviton amplitude (1)

N. Ahmadiniaz, F.M. Balli, O. Corradini, C. Lopez-Arcos, A. Quintero Velez and C. S., NPB 975 (2022) 115690

We define a “double pinch operator”

_ _ - . o _ - a L
By DyRAE)F(G) = <—;f(c)\ 5 o )(%“G)‘ 650
) GGy

and the “maximal pinch” as in the Yang-Mills case. It turns out that terms involving the left-right correlator H; do
not survive the maximal pinching, so that a maximal pinch always factorizes. As in the Yang-Mills case, the
gravitational Berends-Giele currents of multiplicity N can be obtained from the (N — 2) - tail:

Di(n—1)P1(n—1)P1(n—2)P1(n—2) - - - P13P13D12P12T(1,2, ..., n = 2)T(1,2,...,n = 2)

o (n-2)%12---(n-2) k=D K(n—1)1 -

They are just simply squares of the Yang-Mills multi-particle polarisation tensors derived above:



Constructing the tree-level N-graviton amplitude (2)

Upto N =5:
g1 =etet,
oo _ 02502
G0 = —_ >
S12
u y u y » v
gl — ®[12,21,31°111,21,3] N ©[1.31,21°112,3],2) N ©[12,31,11 °112,3),1]
123 —
5125123 5135123 5235123
=K v =H =M =H
guv _ Cna3ainaae | fuaaafivaas | fnaaatlicags | fesaucieey
1234 —
512512351234 512512451234 513513451234 523523451234
= v =M v =1 v =K v
N &lii.31.21.4°10.,31,2),41 N ©lI0L,41,21,31 °1112.,41,2].3] N ©li11,41,31,21 °1l[1,41,31,2] N ©[112,3].1],4] °[1[2,3],11,4]
513512351234 $14512451234 514513451234 523512351234
gH el gH el ek eff gH el
+ [[2,4],1],3] "[[[2,4],1].3] + [(12,4],3],1] ~[[[2,4],3].1] + 113,4],1],2] ~[[[3,4],1],2] + [13,4],2],1] ~[[[3,4],2].1]

524512451234 524523451234 534513451234 534523451234
=k v =k v =K v
©[12,21, 13,41 °[12,2],[3,4]] N 11,3, [2,4) €111,31, [2,4]] N S[12,4], 12,30 °[1L,41,12,3]]

51253451234 51352451234 51452351234




Constructing the tree-level N-graviton amplitude (3)

Following Berends-Giele, the tree-level N - graviton amplitude now reads
tree nv
My~ = s12.(v-1) 15, (v—1) INmw -

Not surprisingly, the previous expression takes the well-known double-copy form of the tree-level gravity amplitudes,

tree arnp
M =>" ———
T HeEI’ Se

which is equivalent to the KLT formula (Z. Bern, J.J.M. Carrasco, M. Chiodaroli, H. Johansson, R. Roiban,
arXiv:1909.01358).
We have also checked our result up to degree N = 5 for particular polarisations.
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Worldline approach to gravity

In gravity, the differences between the string-based and
string-inspired approaches become much more pronounced than in
gauge theory:

m On-shell vs. Off-shell.
m Worldline Lagrangians in gravity involve various ghost fields.

m No left-right structure — proliferation of Wick contractions.



Path integrals in curved space

To include background gravity, naively,

L7 LT v
So = 7/ drx — 7/ drs g (x(T))%
4 Jo 4 Jo

guv = Opv + Khuy

— Graviton vertex operator €, fOT dr xHxV elkx

But this leads to ill-defined expressions involving §(0), 52(7'[ — Tj)v -

This was to be expected already from the nonrelativistic QM case!
If you like excitement, conflict and controversy. .. then you will love the history of quantization on curved spaces. ..

L. Schulman, Techniques and Application of Path Integration, Wiley, 1981



Non-relativistic particle in curved space

Si] = AT dt(%g‘w(x)k“ku n V(x))

Hamiltonian 1

H= 8" (pupy + V()

Ordering ambiguity = one parameter family of quantum hamiltonians,

. 1
A= —§V2+ V(x) + €R

£ cannot be determined from first principles (it is, in fact, a free parameter of the Standard Model through the
coupling of the Higgs to gravity).



The work of DeWitt

B.S. DeWitt, RMP 29, 377 (1957):
Calculating the transition amplitude (xf, t¢|x;, t;) both using the Schrédinger equation and the path integral

) A
— F(tg—t;)H
O | e UM g

/X(ff):’(f Dx o—S
x(tj)=x;

DeWitt found that an additional term was needed in the worldline Lagrangian,

(xfote | Xi, i)

(xfste | xi, i)

H— H+ ER
&= —% (later corrected to £ = —%)

Longstanding controversy:
m |s this term really needed, or are we just not constructing the path integral properly?

m What is its coefficient?
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The worldline formalism in curved space

1993-2006 F. Bastianelli, P. van Nieuwenhuizen and collaborators:
Systematic study of the curved space path integral from the point of view
of 1D quantum field theory (o-model).

F. Bastianelli & P. van Nieuwenhuizen, NPB 389 (1993) 53

F. Bastianelli, K. Schalm and P. van Nieuwenhuizen, PRD 58: 044022
(1998)

K. Schalm and P. van Nieuwenhuizen, PLB 446, 247 (1999)

F. Bastianelli and O. Corradini, PRD 60: 044014 (1999)

F. Bastianelli, O. Corradini, & P. van Nieuwenhuizen PLB 490 (2000)
154; PLB 494, 161 (2000)

F. Bastianelli, O. Corradini, and A. Zirotti, JHEP 0401:023, 2004

Summarized in
F. Bastianelli and P. van Nieuwenhuizen, Path integrals and anomalies in
curved space, Cambridge University Press 2006.



Two basic problems of the worldline path integral in curved

space

Nontrivial path integral measure
T.D. Lee and C.N. Yang, Phys. Rev. 128 (1962) 885

Dx — Dx = Dx H det g (x(7))

0<r<T

Spurious UV divergences of the path integral



The measure

Exponentiate the nontrivial path integral measure,

Dx H y/det g (x(7))

0<r<T

Dx

Dx/ DaDbDe o~ Sghla:b:cl
PBC

with Faddeev-Popov type ghost action

T 1
Sg;,[x7 a, b, c] = / dr ZguV(X)(a“a" T bHeY)
0

(a bosonic, b, ¢ fermionic )

det g0 (x(7))
det gy (x(7)) = ———r
* det g (<(7))
/ Dae Joor F8uw ()ata” _ __
PBC Vdet g (x(7))

g _ (T 1 v
/pBC DbDe e~ Jo 9T 48 OB _ gt o (x(r))
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Correlators

(a"(r1)a" (m2)) 25(71 — m)6""
(b (r1)c"(m2)) = —48(m1 — m2)s"Y

guv = Opv + Khuy

leads to the new graviton vertex operator

T .
V:Cal[ky el = 5#"/ dr {k“’)}" +ata¥ + b“c"] efkex
0

After regularization, the ghost field contributions will cancel all divergent terms.
For example, Wick contracting the vertex operator itself

<**"(T)i”(f) + 2t (r)a¥ (1) + b“(T)cy(T)> = 61 (Gg(r, T) + 26(0) — 45(0))
But Gg(7, 7) = 25(0) — %, so the 6(0)'s cancel!

L . 2 3
Similarly, get cancellations of §°(7; — 7;), 67 (7 — 7j), .. ..
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Renormalization

These cancellations leave integrals with finite ambiguities, e.g.,

T T
/ / dridm 0(m1 — 1)0(11 — 12)0(172 — 11)
o Jo

= need finite worldline counterterms to get the correct transition
amplitude.

The curved space o model behaves effectively like a UV divergent but
renormalizable 1D QFT. Moreover, it turns out to be
super-renormalizable = only a small number of counterterms needed.
Those are regularization dependent and in general noncovariant:

.
AS,es = / d7 Vieg
0
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Counterterms

Time slicing:

Mode regularization:

1D dimensional regularization:

Only known covariant regularization

H. Kleinert & A. Chervyakov, PLB 464 (1999) 257

Once a regularization scheme has been fixed and the counterterms have been determined, there are no further
ambiguities.
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Spinors coupling to gravity

The & - term for the scalar coupling to gravity causes a
proliferation of terms at higher orders.

For spin half fermions, the worldline coupling to gravity is linear.
Higher-valence vertices are generated only through delta functions
arising from the Wick contractions. This suggests that the
formalism might be very suitable for a direct numerical calculation
of the worldline path integral (Worldline Monte Carlo).

Work along these directions has already started (O. Corradini and
M. Muratori, JHEP 11 (2020) 169).



46

Some applications

m Anomalies (Chiral anomaly, conformal anomaly ...)
L. Alvarez-Gaumé 1983, L. Alvarez-Gaumé 1983 and E. Witten
1984, D. Friedan and P. Windey 1984, ...

m One loop graviton self energy (scalar and spinor loop)
F. Bastianelli and A. Zirotti, NPBB 642 (2002) 372.

m One loop graviton self energy (graviton loop)
F. Bastianelli and R. Bonezzi, JHEP 07 (2013), 016; J. Phys. Conf.
Ser. 1208 (2019) 1, 012009.

m One loop photon vacuum polarization in a generic gravitational
background (scalar loop, semiclassical approximation)
T. Hollowood and G. Shore, PLB 655 (2007) 67.



Some applications involving electromagnetic fields

m Leading gravitational corrections to the Euler-Heisenberg
Lagrangian
F. Bastianelli, J.M. Davila and C.S. 2009, JHEP 03 (2009)
086.

m F. Bastianelli, U. Nucamendi, C. Schubert and V.M.
Villanueva, JHEP 0711 (2007) 099
One-loop photon-graviton conversion in a magnetic field

Dy w@wv A

M. Ahlers, J. Jaeckel, and A. Ringwald, PRD 79, 075017
(2009)
(leading source of dichroism in the standard model)



Amplitudes with N photons and one graviton (1)

N. Ahmadiniaz, F. Balli, F. Bastianelli, O. Corradini, J. M. Dévila, C.S., NPB 950 (2020) 114877
Master formula for the scalar propagator dressed with N photons and one graviton:

Fooky k2 ky kvoko Ry ok
%5 .4
+
ko ki ko ky ky ko L,,
ko Ky A ko /vz ks ky

1555 d3wi

~ K "o
DD (o, i, ke i ko) = (i) (=) [ arem T e / ar,
0
N N
X exp {(p/ —p)- Z(—k/‘r/ +ig)) + Z (k, skl =T Filey - kg — g - ky)sgn(T — 1)
1=0

1<I’=0

m.l.

+2¢e e 8(my — T,/))}

where €, 1= A pu , €0y = Ay + pp, ‘'m.l" stands for ‘multilinear’ i.e. linear in all €, / =1, ..., N and linear

in A and p.



Amplitudes with N photons and one graviton (2)

The reducible contributions at the one-graviton level look like

B koke ok bk ko kx

TP
SN E

and they can be generated from the line dressed just with N photons by the (on-shell) replacement rules

ki —  ki+ko =k
{eo, fi} - K’ € - fi- ko +fi - o - ki
K —K

PZ 2kg - k;

& — vi=-

This rule can also be derived in the perturbiner approach (C. Lopez-Arcos, A. Quintero Velez and C.S, work in
progress).



Amplitudes with N photons and one graviton (3)

N. Ahmadiniaz, F. Balli, F. Bastianelli, O.Corradini, J. M. Davila, J. P.

Edwards, C.S., Stefan Theisen (in preparation):
Master formula for the scalar loop dressed with N photons and one
graviton, and explicit results for the low-energy limit (soft-graviton

theorems....)
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Classical black hole scattering

A classical version of the worldline formalism has shown to be very
efficient for the calculation of classical black hole scattering.

G. Mogull, J. Plefka, J. Steinhoff, JHEP 02 (2021) 048; G.U.
Jakobsen, G. Mogull, J. Plefka, Y. Xu, 2306.01714 [hep-th].

Here the counterterm problematics does not appear because they
are of order A?.
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m Find a direct construction of the tails (not through IBP).

m Prove the equivalence of pinching with multiparticle
polarizations for Bern-Kosower and Bern-Dunbar-Shimada.

m Combining the worldline and perturbiner approaches.

m Form factor decomposition of the off-shell N - graviton
vertices.

m Graviton amplitudes with a massive loop and application to
gravitational pair creation.

m etc.
THANK YOU FOR YOUR ATTENTION!



