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The string-based formalism

1988-1992 Bern and Kosower: QCD amplitudes from strings

Polyakov path integral for string N-point functions〈
V1 · · · VN

〉
∼
∑
top

∫
Dh

∫
Dx(σ, τ)V1 · · · VN e

−S[x,h]

S[x, h] = worldsheet action∑
top

= sum over worldsheet topologies

∫
Dh = integral over worldsheet metrics∫
Dx = integral over worldsheet embeddings

Vi = vertex operator representing particle i

This is a first-quantized path integral describing a single string propagating and emitting/absorbing N particles.
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E. g., for the closed string case

S [x , h] = − 1

4πα′

∫
dσdτ

√
hhαβηµν∂αxµ∂βxν

( 1
2πα′ is the string tension)

Sum over topologies (corresponds to loop expansion)
76 C. Schubert / Physics Reports 355 (2001) 73–234

Fig. 1. The loop expansion in string perturbation theory.

theory !-functions from various string models [14–17]. In particular, in Ref. [16] the one-loop
!-function for Yang–Mills theory was extracted from the genus one partition function of an
open string coupled to a background gauge !eld. This calculation gives also some insight into
the well known fact that this !-function coe"cient vanishes for D = 26, the critical dimension
of the bosonic string, when calculated in dimensional regularization [280,18].
A systematic investigation of the in!nite string tension limit was undertaken in the follow-

ing years by Bern and Kosower [19–21]. This was done again with a view on application
to non-abelian gauge theory, however now to the computation of complete on-shell scattering
amplitudes. Again the idea was to calculate, say, gauge boson scattering amplitudes in an ap-
propriate string model containing SU (Nc) gauge theory, up to the point where one has obtained
an explicit parameter integral representation for the amplitude considered. At this stage one
performs the in!nite string tension limit, which should eliminate all contributions due to prop-
agating massive modes, and lead to a parameter integral representation for the corresponding
!eld theory amplitude.
In the present work, we will concentrate on a di#erent and more elementary approach to

this formalism, which does not rely on the calculation of string amplitudes any more, and uses
string theory only as a guiding principle. Only a sketchy account will therefore be given of
string perturbation theory, and the reader is referred to the literature for the details [5,22].
The basic tool for the calculation of string scattering amplitudes is the Polyakov path integral.

In the simplest case, the closed bosonic string propagating in $at spacetime, this integral is of
the form

〈V1· · ·VN 〉∼
∑
top

∫
Dh

∫
Dx("; #)V1· · ·VNe−S[x;h] : (1.1)

This path integral corresponds to !rst quantization in the sense that it describes a single string
propagating in a given background. The parameters "; # parametrize the world sheet surface
swept out by the string in its motion, and the integral

∫
Dx("; #) has to be performed over the

space of all embeddings of the string world sheet with a !xed topology into spacetime. The
integral

∫
Dh is over the space of all world sheet metrics, and the sum over topologies

∑
top

corresponds to the loop expansion in !eld theory (Fig. 1).
If the closed string is assumed to be oriented, there is only one topology at any !xed order

of loops.
In the case that the background is simply Minkowski spacetime the world sheet action is

given by

S[x; h]= − 1
4$%′

∫
d" d#

√
hh%!&'(9%x'9!x( ; (1.2)

Infinite string tension limit α′ → 0:
String theory amplitudes → field theory amplitudes
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Bern-Kosower program:

1 Calculate the Polyakov path integral using worldsheet Green’s
functions,

〈
xµ(σ1, τ1)xν(σ2, τ2)

〉
= G (σ1, τ1;σ2, τ2)ηµν

2 Infinite string tension limit → New parameter integral
representations for the one-loop N - gluon amplitudes.

3 Rules for the direct construction of those integrals
(Bern-Kosower rules) Z. Bern and D. A. Kosower, PRD 38,
1888 (1988); PRL 66, 1669 (1991); NPB 379, 451 (1992).

Similar rules for one-loop N - graviton amplitudes (from the closed
string) Z. Bern, D. Dunbar, T. Shimada, PLB 312, 277 (1993)
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The non-abelian master formula

Master formula for N - gluon amplitudes (Z. Bern and D. Kosower 1991)

Γa1...aN [k1, ε1; . . . ; kN , εN ] = (−ig)N tr(T a1 . . .T aN )

∫ ∞
0

dT (4πT )−D/2e−m2T

×
∫ T

0
dτ1

∫ τ1

0
dτ2· · ·

∫ τN−2

0
dτN−1

× exp

{
N∑

i,j=1

[
1

2
Gij ki · kj − i Ġijεi · kj +

1

2
G̈ijεi · εj

]}∣∣∣∣∣
lin(ε1...εN)

As it stands, this is a parameter integral representation for the (color-ordered) N - gluon vertex, with momenta ki
and polarizations εi , induced by a scalar loop, in D dimensions.
Here m and T are the loop mass and proper-time, τi the location of the ith gluon, and

Gij = |τi − τj | −
(τi − τj )2

T
, Ġ(τ1, τ2) = sign(τ1 − τ2)− 2

(τ1 − τ2)

T
, G̈(τ1, τ2) = 2δ(τ1 − τ2)−

2

T
.
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Bern-Kosower rules

Bern and Kosower found purely algebraic rules that

change the loop scalar into a fermion or gluon (loop
replacement rules).

provide an easy way to include the missing one-particle
irreducible diagrams (pinch rules).

The formalism was then used for the first calculation of the QCD
one-loop five - gluon amplitudes (Z. Bern, L. Dixon, D.A. Kosower,
PRL 70 (1993) 2677).
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The string-inspired worldline path integral approach

M. J. Strassler, NPB 385 (1992) 145:

Rederived the master formula and the loop replacement rules using worldline path integral representations
of the gluonic effective actions. E.g. for the scalar loop

Γ[A] = tr

∫ ∞
0

dT

T
e−m2T

∫
Dx(τ)Pe

−
∫T

0 dτ

(
1
4
ẋ2+ig ẋ·A(x(τ))

)

where Aµ = Aa
µT

a and P denotes path ordering.

This also shows that the master formula and the loop replacement rules hold off-shell.

M. J. Strassler, SLAC-PUB-5978 (unpubl.): noted that the IBP generates automatically

abelian field strength tensors f
µν
i ≡ k

µ
i ε
ν
i − ε

µ
i kνi in the bulk and

color commutators [T ai ,T
aj ] as boundary terms.

Those fit together to produce full nonabelian field strength tensors

Fµν ≡ F a
µνT

a = (∂µA
a
ν − ∂νA

a
µ)T a + ig [Ab

µT
b
, Ac
νT

c ]

in the low-energy effective action.

Thus we see the emergence of gauge invariant tensor structures at the integrand level.



9

Integration-by-parts algorithms

Removing all G̈ij by IBP can be done in many ways!

M.J. Strassler 1992: started to investigate this ambiguity at the four-point level.

C. S. 1998: found an algorithm that preserves the full permutation (Bose) symmetry. It leads to an
unambiguous result that is called the Q representation.

exp

{}
|multi−linear = (−i)NPN (Ġij , G̈ij ) e

1
2

∑
Gij ki ·kj

part.int.−→ (−i)NQN (Ġij ) e
1
2

∑
Gij ki ·kj
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Advantages of the Q-representation

1 After the IBP, the integrand for the spinor loop can be obtained by the scalar loop one through the
Bern-Kosower replacement rule:
Replace every closed cycle Ġi1 i2

Ġi2 i3
· · · Ġik i1

in QN by

Ġi1 i2
Ġi2 i3

· · · Ġik i1
− GFi1 i2

GFi2 i3
· · · GFik i1

(and multiply by a global factor of −2).

2 Each such “τ -cycle” comes together with a “Lorentz-cycle” Zn(i1 i2 . . . in) defined as (Strassler)

Z2(ij) ≡
1

2
tr
(
fi fj
)

= εi · kjεj · ki − εi · εj ki · kj

Zn(i1 i2 . . . in) ≡ tr
( n∏
j=1

fij

)
(n ≥ 3)

This motivates the definition of a “bicycle” as the product of the two:

Ġ(i1 i2 · · · in) := Ġi1 i2
Ġi2 i3

· · · Ġin i1
Zn(i1 i2 · · · in)
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Example: N=4

Q4 = Q4
4 + Q3

4 + Q2
4 + Q22

4

Q4
4 = Ġ(1234) + Ġ(1243) + Ġ(1324)

Q3
4 = Ġ(123)T (4) + Ġ(234)T (1) + Ġ(341)T (2) + Ġ(412)T (3)

Q2
4 = Ġ(12)T (34) + Ġ(13)T (24) + Ġ(14)T (23) + Ġ(23)T (14) + Ġ(24)T (13) + Ġ(34)T (12)

Q22
4 = Ġ(12)Ġ(34) + Ġ(13)Ġ(24) + Ġ(14)Ġ(23) (1)

Apart from the bicycles, there are also “tails” T (a),T (ab),

T (a) ≡
∑
i 6=a

Ġaiεa · ki

T (ab) ≡
∑

i 6=a,j 6=b
(i,j)6=(b,a)

Ġaiεa · ki Ġbjεb · kj +
1

2
Ġabεa · εb

[∑
i 6=a,b

Ġai ka · ki −
∑
j 6=b,a

Ġbj kb · kj
]
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The QCD N-gluon vertices

One-loop off-shell 1PI N-gluon functions (“vertices”) Γ
a1a2···aN
s µ1...µN

[k1, . . . , kN ]

s = 0, 1
2
, 1 for scalar, spinor, gluon loop.

Building blocks for higher-loop amplitudes.

Input for the Dyson-Schwinger equations.

Important for the RG group.

IR properties of QCD.

. . .



13

Ball-Chiu decomposition of the three-gluon vertex

J. S. Ball and T. W. Chiu 1980:

Γµ1µ2µ3
(k1, k2, k3) = f abc

{
A(k2

1 , k
2
2 ; k2

3 )gµ1µ2
(k1 − k2)µ3

+ B(k2
1 , k

2
2 ; k2

3 )gµ1µ2
(k1 + k2)µ3

−C(k2
1 , k

2
2 ; k2

3 )[(k1k2)gµ1µ2
− k1µ2

k2µ1
](k1 − k2)µ3

+
1

3
S(k2

1 , k
2
2 , k

2
3 )(k1µ3

k2µ1
k3µ2

+ k1µ2
k2µ3

k3µ1
)

+F (k2
1 , k

2
2 ; k2

3 )[(k1k2)gµ1µ2
− k1µ2

k2µ1
][k1µ3

(k2k3)− k2µ3
(k1k3)]

+H(k2
1 , k

2
2 , k

2
3 )
(
−gµ1µ2

[k1µ3
(k2k3)− k2µ3

(k1k3)] +
1

3
(k1µ3

k2µ1
k3µ2

− k1µ2
k2µ3

k3µ1
)
)

+ [cyclic permutations of (k1, µ1), (k2, µ2), (k3, µ3)]

}

Universal tensor decomposition, valid for scalar, spinor and gluon loop, and also for higher loop corrections.
Only the coefficient functions A, B, C , F ,H, S change.

From an analysis of the Ward identities.

A, B, C : two-point kinematics, not transversal.

F ,H: three-point kinematics, transversal.

At tree-level, A = 1, the other functions vanish. S = 0 even at one-loop.
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Ball-Chiu from the master formula
N. Ahmadiniaz, C. Schubert, NPB 869 (2013) 417:
For N = 3, the master formula yields

Γ
a1a2a3
0 [k1, ε1; k2, ε2; k3, ε3] = (−ig)3tr(T a1T a2T a3 )

∫ ∞
0

dT (4πT )−D/2e−m2T

×
∫ T

0
dτ1

∫ τ1

0
dτ2 (−i)3P3 e(G12k1·k2+G13k1·k3+G23k2·k3)

,

where

P3 = Ġ1iε1 · ki Ġ2jε2 · kj Ġ3kε3 · kk − G̈12ε1 · ε2Ġ3kε3 · kk

−G̈13ε1 · ε3Ġ2jε2 · kj − G̈23ε2 · ε3Ġ1iε1 · ki ,

(repeated indices i, j, k, . . .are to be summed). To remove the term involving G̈12Ġ31, add the total derivative

−
∂

∂τ2

(
Ġ12ε1 · ε2Ġ31ε3 · k1e

(G12k1·k2+G13k1·k3+G23k2·k3)
)
.

In the abelian case this total derivative term would integrate to zero, but here due to the color ordering it produces
(one half of) the term

tr (T a1 [T a2 ,T a3 ])ε3 · f1 · ε2Ġ12Ġ21 eG12k1·(k2+k3)
.

This term involves only a two-point integral, with “pinched” momenta k2 + k3,
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The three-gluon vertex in the Q-representation

At this stage have

Γ0 =
g3

(4π)
D
2

tr(T a1 [T a2 ,T a3 ])(Γbulk
0 + Γbound

0 )

Γbulk
0 = −

∫ ∞
0

dT

T
D
2

e−m2T
∫ T

0
dτ1

∫ τ1

0
dτ2 (Q3

3 + Q3
3 ) exp

{ 3∑
i,j=1

1

2
Gij ki · kj

}

Γbound
0 = −

∫ ∞
0

dT

T
D
2

e−m2T
∫ T

0
dτ1Ġ12Ġ21

[
ε3 · f1 · ε2 eG12k1·(k2+k3) + cycl.

]

Q3
3 = Ġ12Ġ23Ġ31tr (f1f2f3)

Q2
3 =

1

2
Ġ12Ġ21tr (f1f2)Ġ3iε3 · ki + 2 perm.

This is not yet Ball-Chiu: Q3
3 corresponds to the form factor H, but Q2

3 not to F ; it is not even transversal.
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Second integration-by-parts

To make Q2
3 transversal, add another total derivative:

−
r3 · ε3

r3 · k3

1

2
tr(f1f2)

∂

∂τ3

(
Ġ12Ġ21e

(·))
.

Here r3 is a reference momentum such that r3 · k3 6= 0. This transforms Q2
3 into

S2
3 := Ġ12Ġ21

1

2
tr(f1f2)Ġ3k

r3 · f3 · kk
r3 · k3

+ Ġ13Ġ31
1

2
tr(f1f3)Ġ2j

r2 · f2 · kj
r2 · k2

+Ġ23Ġ32
1

2
tr(f2f3)Ġ1i

r1 · f1 · ki
r1 · k1

.

which is transversal. With the cyclic choice of reference vectors

r1 = k2 − k3, r2 = k3 − k1, r3 = k1 − k2

S2
3 becomes the Ball-Chiu form factor F . The boundary terms match with the form factors A, B, C .
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Loop replacement rules for the three-gluon vertex

Scalar to Spinor Loop:

Ġij Ġji → Ġij Ġji − GFijGFji

Ġ12Ġ23Ġ31 → Ġ12Ġ23Ġ31 − GF12GF23GF31

where GFij = sign(τi − τj ).

Scalar to Gluon Loop:

Ġij Ġji → Ġij Ġji − 4GFijGFji

Ġ12Ġ23Ġ31 → Ġ12Ġ23Ġ31 − 4GF12GF23GF31

The generated integrand for the gluon loop corresponds to the background field method with quantum Feynman
gauge.
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The four-gluon vertex

N = 4 is much more challenging - at four points, a priori one can
construct 138 tensors!
N. Ahmadiniaz, C. Schubert, Int. J. Mod. Phys. E 25 (2016)
1642004: Decomposition of the four-gluon vertex in terms of 19
tensors, of which only 14 have the full four-point kinematics.
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On-shell N-gluon matrix elements
When computing the on-shell N-gluon matrix elements, we have to use the full connected amplitude, not just the
irreducible one. Following Bern and Kosower 1991, the additional one-particle-reducible terms can be obtained
from QN by the following procedure:

(i) Draw all possible φ3 1-loop diagrams Di with N legs, labelled 1, . . . ,N (following the ordering of the color
trace). Diagrams where the loop is a tadpole or isolated on an external leg can be omitted. E.g. at the four-point
level there are single and double pinches only:

GRAVITON SCATTERING AMPLITUDES IN FIRST QUANTISATION 5

in the "i. After this, the eventual integral over proper time,
T , produces the familiar Feynman parameter denominator⇥
m2 �PN

i<j=1 ki · kjGBij

⇤D
2 �N

, but in a way that unifies
the different orderings of insertions of the external photons
around the loop – see figure 4, or [29] for progress ex-
ploiting this property under the parameter integrals. Having
thus shown how to arrive at the Kinematic Factor, we shall
now describe its generalisation to graviton amplitudes and
attempts to extend the procedure to off-shell processes.

4. Bern-Dunbar-Shimada Rules

The extension of the Bern-Kosower rules to gravity was sys-
tematically studied in [9], building upon [30,31] and was sub-
sequently applied by Dunbar and Norridge to determine 4-
graviton amplitudes at one-loop order for all helicity assign-
ments [32]. Here we recapitulate their construction before
mentioning some efforts towards extending the technique us-
ing the worldline formalism.

The major difference with respect to photon or gluon
amplitudes is the graviton vertex operator, (7), inserted on
closed string worldsheets where there are two “sectors” that
contribute to the amplitude, corresponding to left- and right-
moving string modes. This also implies that the worldsheet
Green function (analogous to (9)) becomes a genuine func-
tion of two variables, �± := ⌧ ± i�, for these sectors. Then
starting from G(�+,��) we follow the notation of [9, 32]:

• We use Ġ and G̈ for �+ derivatives of G.

• We use ˙̄G and ¨̄G for �� derivatives of G.

• We denote by H the derivative of G with respect to one
left- and one right-moving variable.

Finally, we also decompose the on-shell graviton polarisation
tensor, ", into the two sectors by setting "µ⌫ �! "µ"̄⌫ and
later reconstruct it by identifying "µ"̄⌫ ⌘ "µ⌫ at the end.

4.1. N -graviton rules

The one-loop N -graviton amplitudes are then generated from
some “primordial Feynman diagrams” involving only the cu-
bic vertices produced by the string splitting process according
to the following (simplified) steps developed in [9]:

Step 1:
Draw all one-loop diagrams having �3 topology with N ex-
ternal legs with appropriate labels, such as those in figure 5.

FIGURE 5. Primordial �3 diagrams for a 4-graviton process [9].

All permutations of external legs should be included and la-
belled as in conventional perturbation theory (in contrast to
gluon amplitudes there is no need to worry about colour or-
dering). To internal legs attached to “external trees,” assign a
label equal to the smallest label of the external legs it opens
up to. However, we do ignore “tadpole” diagrams or dia-
grams involving loops on external legs such as in figure 6.

FIGURE 6. Tadpoles and isolated loops on external legs are ignored
(they are renormalised or vanish in dimensional regularisation).

Step 2:
We calculate the contribution from each diagram by a reduc-
tion process. To each diagram we associate an integral (in
dimensional regularisation we take D = 4 � 2✏)

D = i
(�)N

(4⇡)2�✏
�
⇥
`� 2 + ✏

⇤ Z 1

0

du`�1

Z u`�1

0

dx`�2 · · ·
Z u2

0

du1
Kred⇥P

i<j Ki · KjGij

⇤`�2+✏
, (24)

where l is the number of lines attached to the (massless)
loop. Here the ordering of the parameter integrals over the
ui should match the ordering of these lines about the loop
and we have introduced the momenta Ki entering the loop
at point i, being just the sum of the external momenta enter-
ing the trees that join to the loop there. Finally, the graviton
Reduced Kinematic Factor, Kred, that survives the field theory
limit of string theory is to be constructed from the generalised
Kinematic Factor formed by multiplying contributions from

the left- and right-moving sectors:

KN =

Z NY

i=1

duidūi

NY

i<j

eki·kjGij e(ki·"j�kj ·"i)Ġij�"i·"jG̈ij

e(ki·"̄j�kj ·"̄i)
˙̄Gij�"̄i·"̄j

¨̄Gij

e�("i·"̄j+"j ·"̄i)Hij

���
"1"̄1···"N "̄N

(25)

which is somewhat reminiscent of the double copy relations
discussed above (see [33] for an in depth study of this rela-

Rev. Mex. Fis.

(ii) A diagram will contribute if each vertex except the ones attached directly to the loop corresponds to a possible

pinch. A vertex with labels i < j can be pinched if QN is linear in Ġij . The pinching replaces this Ġij by a factor of

2/(ki + kj )
2, removes the vertex and transfers the label i to the ingoing leg.

i

j

· · · loopi
2

(ki+kj)2

The τj - integration is omitted and the index j replaced by i in all Gkl , Ġkl . The pinching can thus be represented
by a pinch operator Dij ,

Dij f (Ġ) ≡
∂

∂Ġij

f (Ġ)

∣∣∣∣ Ġij =0

Ġjk→Ġik

.

(N. Ahmadiniaz, F.M. Balli, C. Lopez-Arcos, A. Quintero Velez and C. S., PRD 104 (2021) L941702)).
The trees are to be “pruned” recursively starting with the outermost vertices.
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Berends-Giele Currents

Returning to the Bern-Kosower formalism, without the pinch rules we would have to construct the reducible
contributions attaching off-shell currents to the loop:

1PJ Q7 A,

!g!"@!@"A# D !g!"@!@#A" C g˛!gˇ"@!g˛ˇ@#A" ! g˛!gˇ"@!g˛ˇ@"A#

! 1

2
g$%g!"@%g!"@#A$ C 1

2
g$%g!"@%g!"@$A#

C ie&@#&" ! ie&"@#& C 2e2A#&&"

#

j

Such currents were recognized as central objects in Yang-Mills theory since the eighties:

They are naturally written in terms of multi-particle polarizations (F.A. Berends and W.T. Giele, NPB 306
(1988) 759) and then are called Berends-Giele currents.

They are instrumental in the perturbiner approach where tree-level amplitudes are constructed directly
from the field equations (A.A. Rosly and K.G. Selivanov, PLB 399 (1997) 135, S. Mizera and B. Skrzypek,
JHEP 10 (2018) 018).

They are important building blocks for amplitudes obeying color-kinematics duality (Z. Bern, J.J.M.
Carrasco and H. Johansson, PRD 78, 085011 (2008)). This requires a specific gauge, BCJ gauge.
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Multiparticle polarizations and field strength tensors

Multi-particle polarization tensors:

εµ12 = 1
2 [ε2 · k1ε

µ
1 − ε1ρf ρµ

2 − (1↔ 2)]

εµ123 = 1
2

[
(k3 · ε12) εµ3 − (k12 · ε3) εµ12 + ε12ν f νµ

3

−ε3ν f νµ
12

]
− kµ

123
1
4ε1 · ε2 ε3 · (k2 − k1)

etc .

Multi-particle field-strength tensors:

f µν
12 = ε2 · k1f µν

1 − (f1f2)µν − (1↔ 2)

f µν
123 = kµ

123ε
ν
123 − k12 · k3ε

µ
12ε

ν
3

−k1 · k2(εµ1 ε
ν
23 + εµ13ε

ν
2 )− (µ↔ ν)

etc .
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BCJ gauge and generalized Jacobi identities

The multi-particle polarizations are subject to generalized gauge
transformations. To construct currents in BCJ gauge, they must
obey the generalized Jacobi identities

εµ123 + εµ213 = 0 , εµ123 + εµ312 + εµ231 = 0 , etc .

(C.R. Mafra and O. Schlotterer, JHEP 03, 090 (2016)).
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Multi-particle polarizations from pinching

Clearly the Bern-Kosower pinching procedure must hold the information on the Berends-Giele currents. It turns out
that to obtain the currents, it is sufficient to look at the maximal pinch of the N-gluon amplitude, defined by the
consecutive pinching of N − 2 adjacent legs. It corresponds to the Bern-Kosower diagram

1PJ Q7 A,

!g!"@!@"A# D !g!"@!@#A" C g˛!gˇ"@!g˛ˇ@#A" ! g˛!gˇ"@!g˛ˇ@"A#

! 1

2
g$%g!"@%g!"@#A$ C 1

2
g$%g!"@%g!"@$A#

C ie&@#&" ! ie&"@#& C 2e2A#&&"

#

j

(which in the original Bern-Kosower rules was actually discarded, since it is absorbed by the gluon wave-function
renormalization).

Only single-cycle terms contribute to it, thus in its calculation we can replace QN by Q̃N ≡ Q2
N + Q3

N + . . .QN
N .

It turns out that the (N − 1) - field-strength tensor f
µν

12···(N−1)
can be harvested through

D1(N−1) · · · D13D12Q̃N = 1
2
f
µν

12···(N−1)
fNνµĠ

2
1N

and (less obviously) the (N − 2) - polarization tensor ε12···(N−2) directly from the (N − 2) - tail:

D1(N−2) · · · D13D12T (1, 2, . . . ,N − 2) = ε12···(N−2) · kN−1Ġ1(N−1) + ε12···(N−2) · kN Ġ1N

(N. Ahmadiniaz, F.M. Balli, C. Lopez-Arcos, A. Quintero Velez and C. S., PRD 104 (2021) L941702)
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BCJ gauge comes for free

It turns out that these polarization and field strength tensors automatically fulfill the generalized Jacobi identities.
This can be shown using the natural mapping between the Bern-Kosower pinch diagrams and the Lie-bracketing
algebra for N ordered legs,

1 2 3 1 2 3

[[1, 2], 3] [1, [2, 3]]

etc.

The proof does not involve any specific properties of the integrand, i.e. it would work with any symmetric
polynomial in the Ġij .
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Constructing the tree-level N-gluon amplitude (1)

N. Ahmadiniaz, F.M. Balli, O. Corradini, C. Lopez-Arcos, A. Quintero Velez and C. S., NPB 975 (2022) 115690

To compute the N-gluon tree-level amplitude:
1 Use the above to calculate the generalized polarization tensor εN−1 in BCJ gauge.

(in the above paper we calculate them up to multiplicity five).

2 Sum over all pinch diagrams to this order to construct the color-stripped Berends-Giele currents
A
µ
12···(N−1)

:

A
µ
1 = ε

µ
1 ,

A
µ
12 =

ε
µ
[1,2]

s12

,

A
µ
123 =

ε
µ
[[1,2],3]

s12s123

+
ε
µ
[1,[2,3]]

s23s123

,

A
µ
1234 =

ε
µ
[[[1,2],3],4]

s12s123s1234

+
ε
µ
[[1,[2,3]],4]

s123s1234s23

+
ε
µ
[[1,2],[3,4]]

s12s1234s34

+
ε
µ
[1,[[2,3],4]]

s1234s23s234

+
ε
µ
[1,[2,[3,4]]]

s1234s234s34

,

.

.

.

The denominators can be read off from the pinch diagram.



26

Constructing the tree-level N-gluon amplitude (2)

3 From this we can get the colour-ordered partial amplitude of N gluons through the Berends-Giele formula

Atree(1, 2, . . . ,N) = s12···(N−1)A
µ
12···(N−1)

ANµ.

The factor s12···(N−1) is inserted to cancel the final off-shell propagator, and the factor ANµ = εNµ puts

the final gluon on-shell.

4 The color-dressed Berends-Giele currents Aµ
12···(N−1)

are obtained from the color-stripped ones

A
µ
12···(N−1)

by summing over all inequivalent orderings ((2N − 5)!! terms in total), and supplying color

factors that (by color-kinematics duality) have the same Lie bracketing structure in color space. E. g.

ε
µ
[[1,2],3]

−→ ε
µ
[[1,2],3]

ca[[1,2],3] ,

ca[[1,2],3] = f̃ b
a1a2

f̃
a

ba3

(f̃ c
ab ≡ i

√
2 f c

ab ).
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Constructing the tree-level N-gluon amplitude (3)

E.g. For N = 5:

Aaµ
1234 =

ca[[[1,2],3],4]ε
µ
[[[1,2],3],4]

s12s123s1234

+
ca[[[1,2],4],3]ε

µ
[[[1,2],4],3]

s12s124s1234

+
ca[[[1,3],4],2]ε

µ
[[[1,3],4],2]

s13s134s1234

+
ca[[[2,3],4],1]ε

µ
[[[2,3],4],1]

s23s234s1234

+
ca[[[1,3],2],4]ε

µ
[[[1,3],2],4]

s13s123s1234

+
ca[[[1,4],2],3]ε

µ
[[[1,4],2],3]

s14s124s1234

+
ca[[[1,4],3],2]ε

µ
[[[1,4],3],2]

s14s134s1234

+
ca[[[2,3],1],4]ε

µ
[[[2,3],1],4]

s23s123s1234

+
ca[[[2,4],1],3]ε

µ
[[[2,4],1],3]

s24s124s1234

+
ca[[[2,4],3],1]ε

µ
[[[2,4],3],1]

s24s234s1234

+
ca[[[3,4],1],2]ε

µ
[[[3,4],1],2]

s34s134s1234

+
ca[[[3,4],2],1]ε

µ
[[[3,4],2],1]

s34s234s1234

+
ca[[1,2],[3,4]]ε

µ
[[1,2],[3,4]]

s12s34s1234

+
ca[[1,3],[2,4]]ε

µ
[[1,3],[2,4]]

s13s24s1234

+
ca[[1,4],[2,3]]ε

µ
[[1,4],[2,3]]

s14s23s1234

.

5 From this we get the total tree-level N - gluon amplitude,

Atree
N = s12···(N−1)A

µ
12···(N−1)

ANµ.
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Pinch terms from multi-particle polarizations (1)

Turning the logic around, it seems plausible that the multiparticle polarizations obtained in this way hold the full
information on the pinch contributions. This leads us to conjecture that the complete effect of the pinching
procedure in the Bern-Kosower formalism may be taken into account simply by adding, to the un-pinched integrand,
all possible terms where some cycles and/or tails are replaced by generalized ones, defined in the following way:

Generalized Lorentz cycle:

Zk (I1, . . . , Ik ) ≡
(

1
2

)δk2 tr

( k∏
i=1

FIi

)

which now uses the full Berends-Giele currents FIi
.

Generalized tail:

Tk (I1, . . . , Ik ) ≡ T (kI1 ,AI1
; . . . ; kIk

,AIk
)

with the Berends-Giele polarizations AIi
.
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Pinch terms from multi-particle polarizations (2)
For example, the three-gluon amplitude, whose un-pinched integrand is Q3

3 + Q2
3 ,

Q3
3 = Ġ12Ġ23Ġ31tr (f1f2f3)

Q2
3 =

1

2
Ġ12Ġ21tr (f1f2)Ġ3iε3 · ki + 2 perm.

should have the pinch contribution

Ġ(1, 23) + Ġ(2, 31) + Ġ(3, 12)

where, e.g.,

Ġ(1, 23) = Ġ12Ġ21
1

2
tr
(
f1F23

)
and this is indeed what the Bern-Kosower pinch rules produce.
Similarly, at the four-point level the prediction for the single-pinch terms would be

Ġ(1, 2, 34) + Ġ(1, 23)T (4) + Ġ(1, 2)T (34) + perm.

and for the double pinches,

Ġ(1, 234) + Ġ(12, 34) + perm. (2)

which we have again found to be in agreement with the application of the pinch rules.
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The Bern-Dunbar-Shimada formalism(1)

Z. Bern, D. Dunbar, T. Shimada, PLB 312, 277 (1993)
Master formula for the irreducible one-loop N-graviton amplitudes with a massless scalar loop:

Γ[k1, h1; · · · ; kn, hn ] = −(−
κ

4
)n
∫ ∞

0

dT

T
(4πT )

− D
2

∫ T

0
dτ1 · · ·

∫ T

0
dτn

× exp

{
n∑

i,j=1

[
1

2
Gij ki · kj − i(Ġijεi + ˙̄Gij ε̄i ) · kj +

1

2
G̈ijεi · εj

+
1

2

¨̄Gij ε̄i · ε̄j +
1

2
Hij (εi · ε̄j + εj · ε̄i )

]}∣∣∣
ε1...εn ε̄1...ε̄n

Here we have used that on-shell the graviton polarisations can be chosen so as to factorize, h
µν
i = ε

µ
i ε̄
ν
i . In the

absence of the terms with Hij this would, after the expansion of the exponent, lead to a prefactor polynomial that
simply factorizes into two copies of the one of the gluonic case,

exp

{
·
}∣∣∣
ε1...εn ε̄1...ε̄n

= Pn( ˙̄Gij ,
¨̄Gij )Pn(Ġij , G̈ij )e

1
2

∑n
i,j=1 Gij ki ·kj

At the string level, this comes from the factorisation of the closed string modes into left-movers and right-movers.
The additional terms involving Hij stem from the fact that the left- and right-movers are coupled through the zero
mode of the string.
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The Bern-Dunbar-Shimada formalism(2)
The integration-by-parts can be done independently for the left- and right-movers, except for derivatives hitting the
universal exponent where the following identities have to be used,

∂

∂τ̄k
Ġij =

1

2
(δkiHij − δkjHij )

∂

∂τk

˙̄G ij =
1

2
(δkiHij − δkjHij )

∂

∂τ̄k
G̈ij = 0

∂

∂τk

¨̄G ij = 0

The Hij are to be treated as constants in the integration-by-parts.

After the removal of the G̈ij ,
¨̄Gij , the inclusion of the reducible contributions can be achieved by a pinching

procedure that is a doubling-up of the one for the gluon case above,

Ġij
˙̄G ij →

4

sij

After the recursive removal of all trees attached to the loop one has at hand a parameter integral representation for
the full on-shell N-graviton matrix element with a scalar loop. Representations for other spins in the loop (Weyl
fermion, vector, gravitino, graviton) can again be obtained from this by certain loop replacement rules that are
essentially independent applications of the QCD rules to the left- and right-mover parts.
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Constructing the tree-level N-graviton amplitude (1)

N. Ahmadiniaz, F.M. Balli, O. Corradini, C. Lopez-Arcos, A. Quintero Velez and C. S., NPB 975 (2022) 115690

We define a “double pinch operator”

D̄ijDij f̄n( ˙̄G)f (Ġ) =

(
∂

∂ ˙̄Gij

f̄ ( ˙̄G)

∣∣∣∣ ˙̄Gij =0

˙̄Gjk→ ˙̄Gik

)(
∂

∂Ġij

f (Ġ)

∣∣∣∣ Ġij =0

Ġjk→Ġik

)

and the “maximal pinch” as in the Yang-Mills case. It turns out that terms involving the left-right correlator HIj do
not survive the maximal pinching, so that a maximal pinch always factorizes. As in the Yang-Mills case, the
gravitational Berends-Giele currents of multiplicity N can be obtained from the (N − 2) - tail:

D̄1(n−1)D1(n−1)D̄1(n−2)D1(n−2) · · · D̄13D13D̄12D12T̄ (1, 2, . . . , n − 2)T (1, 2, . . . , n − 2)

= ε̄
µ
12···(n−2)

ε
ν
12···(n−2)k(n−1)µk(n−1)ν .

They are just simply squares of the Yang-Mills multi-particle polarisation tensors derived above:
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Constructing the tree-level N-graviton amplitude (2)

Up to N = 5:

Gµν1 = ε̄
µ
1 ε
ν
1 ,

Gµν12 =
ε̄
µ
[1,2]

εν[1,2]

s12

,

Gµν123 =
ε̄
µ
[[1,2],3]

εν[[1,2],3]

s12s123

+
ε̄
µ
[[1,3],2]

εν[[1,3],2]

s13s123

+
ε̄
µ
[[2,3],1]

εν[[2,3],1]

s23s123

,

Gµν1234 =
ε̄
µ
[[[1,2],3],4]

εν[[[1,2],3],4]

s12s123s1234

+
ε̄
µ
[[[1,2],4],3]

εν[[[1,2],4],3]

s12s124s1234

+
ε̄
µ
[[[1,3],4],2]

εν[[[1,3],4],2]

s13s134s1234

+
ε̄
µ
[[[2,3],4],1]

εν[[[2,3],4],1]

s23s234s1234

+
ε̄
µ
[[[1,3],2],4]

εν[[[1,3],2],4]

s13s123s1234

+
ε̄
µ
[[[1,4],2],3]

εν[[[1,4],2],3]

s14s124s1234

+
ε̄
µ
[[[1,4],3],2]

εν[[[1,4],3],2]

s14s134s1234

+
ε̄
µ
[[[2,3],1],4]

εν[[[2,3],1],4]

s23s123s1234

+
ε̄
µ
[[[2,4],1],3]

εν[[[2,4],1],3]

s24s124s1234

+
ε̄
µ
[[[2,4],3],1]

εν[[[2,4],3],1]

s24s234s1234

+
ε̄
µ
[[[3,4],1],2]

εν[[[3,4],1],2]

s34s134s1234

+
ε̄
µ
[[[3,4],2],1]

εν[[[3,4],2],1]

s34s234s1234

+
ε̄
µ
[[1,2],[3,4]]

εν[[1,2],[3,4]]

s12s34s1234

+
ε̄
µ
[[1,3],[2,4]]

εν[[1,3],[2,4]]

s13s24s1234

+
ε̄
µ
[[1,4],[2,3]]

εν[[1,4],[2,3]]

s14s23s1234

,
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Constructing the tree-level N-graviton amplitude (3)

Following Berends-Giele, the tree-level N - graviton amplitude now reads

Mtree
N = s12···(N−1)G

µν
12···(N−1)

GNµν .

Not surprisingly, the previous expression takes the well-known double-copy form of the tree-level gravity amplitudes,

Mtree
N =

∑
Γ

n̄ΓnΓ∏
e∈Γ se

which is equivalent to the KLT formula (Z. Bern, J.J.M. Carrasco, M. Chiodaroli, H. Johansson, R. Roiban,
arXiv:1909.01358).
We have also checked our result up to degree N = 5 for particular polarisations.
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Worldline approach to gravity

In gravity, the differences between the string-based and
string-inspired approaches become much more pronounced than in
gauge theory:

On-shell vs. Off-shell.

Worldline Lagrangians in gravity involve various ghost fields.

No left-right structure −→ proliferation of Wick contractions.
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Path integrals in curved space

To include background gravity, naively,

S0 =
1

4

∫ T

0
dτ ẋ2 →

1

4

∫ T

0
dτ ẋµgµν (x(τ))ẋν

gµν = δµν + κhµν

→ Graviton vertex operator εµν
∫ T

0 dτ ẋµ ẋν eik·x

But this leads to ill-defined expressions involving δ(0), δ2(τi − τj ), . . .

This was to be expected already from the nonrelativistic QM case!

If you like excitement, conflict and controversy. . . then you will love the history of quantization on curved spaces. . .

L. Schulman, Techniques and Application of Path Integration, Wiley, 1981.
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Non-relativistic particle in curved space

S[x] =

∫ T

0
dt

(
1

2
gµν (x)ẋµ ẋν + V (x)

)
Hamiltonian

H =
1

2
gµν (x)pµpν + V (x)

Ordering ambiguity⇒ one parameter family of quantum hamiltonians,

Ĥ = −
1

2
∇2 + V (x) + ξR

ξ cannot be determined from first principles (it is, in fact, a free parameter of the Standard Model through the
coupling of the Higgs to gravity).
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The work of DeWitt

B.S. DeWitt, RMP 29, 377 (1957):
Calculating the transition amplitude 〈xf , tf |xi , ti 〉 both using the Schrödinger equation and the path integral

〈xf , tf | xi , ti 〉 = 〈xf | e
− 1

~ (tf−ti )Ĥ | xi 〉

〈xf , tf | xi , ti 〉 =

∫ x(tf )=xf

x(ti )=xi

Dx e
−S

DeWitt found that an additional term was needed in the worldline Lagrangian,

Ĥ → Ĥ + ξR

ξ = − 1
6

(later corrected to ξ = − 1
8

).

Longstanding controversy:

Is this term really needed, or are we just not constructing the path integral properly?

What is its coefficient?
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The worldline formalism in curved space

1993-2006 F. Bastianelli, P. van Nieuwenhuizen and collaborators:
Systematic study of the curved space path integral from the point of view
of 1D quantum field theory (σ-model).

F. Bastianelli & P. van Nieuwenhuizen, NPB 389 (1993) 53
F. Bastianelli, K. Schalm and P. van Nieuwenhuizen, PRD 58: 044022
(1998)
K. Schalm and P. van Nieuwenhuizen, PLB 446, 247 (1999)
F. Bastianelli and O. Corradini, PRD 60: 044014 (1999)
F. Bastianelli, O. Corradini, & P. van Nieuwenhuizen PLB 490 (2000)
154; PLB 494, 161 (2000)
F. Bastianelli, O. Corradini, and A. Zirotti, JHEP 0401:023, 2004

Summarized in
F. Bastianelli and P. van Nieuwenhuizen, Path integrals and anomalies in
curved space, Cambridge University Press 2006.



40

Two basic problems of the worldline path integral in curved
space

1 Nontrivial path integral measure
T.D. Lee and C.N. Yang, Phys. Rev. 128 (1962) 885

Dx → Dx = Dx
∏

0≤τ<T

√
det gµν(x(τ))

2 Spurious UV divergences of the path integral
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The measure
Exponentiate the nontrivial path integral measure,

Dx = Dx
∏

0≤τ<T

√
det gµν (x(τ))

= Dx

∫
PBC

DaDbDc e
−Sgh [x,a,b,c]

with Faddeev-Popov type ghost action

Sgh [x, a, b, c] =

∫ T

0
dτ

1

4
gµν (x)(aµaν + bµcν )

(a bosonic, b, c fermionic )

√
det gµν (x(τ)) =

det gµν (x(τ))√
det gµν (x(τ))

∫
PBC

Da e
−
∫T

0 dτ 1
4
gµν (x)aµaν

=
1√

det gµν (x(τ))∫
PBC

DbDc e
−
∫T

0 dτ 1
4
gµν (x)bµcν

= det gµν (x(τ))
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Correlators

〈aµ(τ1)aν (τ2)〉 = 2δ(τ1 − τ2)δµν

〈bµ(τ1)cν (τ2)〉 = −4δ(τ1 − τ2)δµν

Now,

gµν = δµν + κhµν

leads to the new graviton vertex operator

V h
scal[k, ε] = εµν

∫ T

0
dτ
[
ẋµ ẋν + aµaν + bµcν

]
e
ik·x

After regularization, the ghost field contributions will cancel all divergent terms.
For example, Wick contracting the vertex operator itself

〈
ẋµ(τ)ẋν (τ) + aµ(τ)aν (τ) + bµ(τ)cν (τ)

〉
= δ

µν (G̈B (τ, τ) + 2δ(0)− 4δ(0))

But G̈B (τ, τ) = 2δ(0)− 2
T

, so the δ(0)’s cancel!

Similarly, get cancellations of δ2(τi − τj ), δ3(τi − τj ), . . ..
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Renormalization

These cancellations leave integrals with finite ambiguities, e.g.,

∫ T

0

∫ T

0

dτ1dτ2 δ(τ1 − τ2)θ(τ1 − τ2)θ(τ2 − τ1)

⇒ need finite worldline counterterms to get the correct transition
amplitude.
The curved space σ model behaves effectively like a UV divergent but
renormalizable 1D QFT. Moreover, it turns out to be
super-renormalizable ⇒ only a small number of counterterms needed.
Those are regularization dependent and in general noncovariant:

∆Sreg =

∫ T

0

dτ Vreg



44

Counterterms

Time slicing:

VTS = −
1

4
R −

1

12
gµνgαβgλρΓλµαΓ

ρ
νβ

Mode regularization:

VMR = −
1

4
R +

1

4
gµνΓβµαΓανβ

1D dimensional regularization:

VDR = −
1

4
R .

Only known covariant regularization
H. Kleinert & A. Chervyakov, PLB 464 (1999) 257
Once a regularization scheme has been fixed and the counterterms have been determined, there are no further
ambiguities.
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Spinors coupling to gravity

The ξ - term for the scalar coupling to gravity causes a
proliferation of terms at higher orders.
For spin half fermions, the worldline coupling to gravity is linear.
Higher-valence vertices are generated only through delta functions
arising from the Wick contractions. This suggests that the
formalism might be very suitable for a direct numerical calculation
of the worldline path integral (Worldline Monte Carlo).
Work along these directions has already started (O. Corradini and
M. Muratori, JHEP 11 (2020) 169).
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Some applications

Anomalies (Chiral anomaly, conformal anomaly . . . )
L. Alvarez-Gaumé 1983, L. Alvarez-Gaumé 1983 and E. Witten
1984, D. Friedan and P. Windey 1984, . . .

One loop graviton self energy (scalar and spinor loop)
F. Bastianelli and A. Zirotti, NPBB 642 (2002) 372.

One loop graviton self energy (graviton loop)
F. Bastianelli and R. Bonezzi, JHEP 07 (2013), 016; J. Phys. Conf.
Ser. 1208 (2019) 1, 012009.

One loop photon vacuum polarization in a generic gravitational
background (scalar loop, semiclassical approximation)
T. Hollowood and G. Shore, PLB 655 (2007) 67.
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Some applications involving electromagnetic fields

Leading gravitational corrections to the Euler-Heisenberg
Lagrangian
F. Bastianelli, J.M. Dávila and C.S. 2009, JHEP 03 (2009)
086.

F. Bastianelli, U. Nucamendi, C. Schubert and V.M.
Villanueva, JHEP 0711 (2007) 099
One-loop photon-graviton conversion in a magnetic field

M. Ahlers, J. Jaeckel, and A. Ringwald, PRD 79, 075017
(2009)
(leading source of dichroism in the standard model)
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Amplitudes with N photons and one graviton (1)
N. Ahmadiniaz, F. Balli, F. Bastianelli, O. Corradini, J. M. Dávila, C.S., NPB 950 (2020) 114877:
Master formula for the scalar propagator dressed with N photons and one graviton:

k2

+
x x′

+

k1 k0 k2 kN

· · ·
· · ·

+
x x′

+

k1 k0 k2 kN

· · ·
· · ·

x x′

k0 k1 k2 kN

· · ·

x x′

k0 k1 kN

· · ·

...
...

+ +

+ +

x′

x x′

k0 k2 kN

· · · x x′· · ·

k1 k2k1 k0

+

k3 kN

+ · · ·

D̃(N,1)(p, p′; ε1, k1, . . . , εN , kN ; ε, k0) = (−ie)N
(
−
κ

4

)∫ ∞
0

dTe−T (m2+p′2)
N∏
l=0

∫ T

0
dτl

× exp
{

(p′ − p) ·
N∑
l=0

(−klτl + iεl ) +
N∑

l<l′=0

(
kl · kl′ |τl − τl′ | + i(εl′ · kl − εl · kl′ )sgn(τl − τl′ )

+ 2εl · εl′ δ(τl − τl′ )
)}∣∣∣

m.l.
,

where εµν := λµρν , ε0µ := λµ + ρµ, ‘m.l.’ stands for ‘multilinear’ i.e. linear in all εl , l = 1, ...,N and linear
in λ and ρ.
.



49

Amplitudes with N photons and one graviton (2)

The reducible contributions at the one-graviton level look like

k2

+
x x′

+

k1 k0 k2 kN

· · ·
· · ·

+
x x′

+

k1 k0 k2 kN

· · ·
· · ·

x x′

k0
k1 k2 kN

· · ·

x x′

k0 k1 kN

· · ·

......

+ +

+ +

and they can be generated from the line dressed just with N photons by the (on-shell) replacement rules

ki −→ ki + k0 ≡ k′

εi −→ υi ≡ −κ
{ε0, fi} · k′

k′2
= −κ

ε0 · fi · k0 + fi · ε0 · ki
2k0 · ki

This rule can also be derived in the perturbiner approach (C. Lopez-Arcos, A. Quintero Velez and C.S, work in
progress).
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Amplitudes with N photons and one graviton (3)

N. Ahmadiniaz, F. Balli, F. Bastianelli, O.Corradini, J. M. Dávila, J. P.
Edwards, C.S., Stefan Theisen (in preparation):
Master formula for the scalar loop dressed with N photons and one
graviton, and explicit results for the low-energy limit (soft-graviton
theorems....)
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Classical black hole scattering

A classical version of the worldline formalism has shown to be very
efficient for the calculation of classical black hole scattering.
G. Mogull, J. Plefka, J. Steinhoff, JHEP 02 (2021) 048; G.U.
Jakobsen, G. Mogull, J. Plefka, Y. Xu, 2306.01714 [hep-th].
Here the counterterm problematics does not appear because they
are of order ~2.
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To do list

Find a direct construction of the tails (not through IBP).

Prove the equivalence of pinching with multiparticle
polarizations for Bern-Kosower and Bern-Dunbar-Shimada.

Combining the worldline and perturbiner approaches.

Form factor decomposition of the off-shell N - graviton
vertices.

Graviton amplitudes with a massive loop and application to
gravitational pair creation.

etc.
THANK YOU FOR YOUR ATTENTION!


