The Road to Seven Loops in $\mathcal{N}=8$ SUGRA

Alex Edison

Why seven loops?

- SUSY arguments predict $L=7$ counterterm in $D_{c}=4$ (Bossard, Howe, Stelle; Green, Russo, Vanhove; Beisert, Elvang, Freedman, Kiermaier, Morales, Stieberger; many more)
- Similar counterterms proven absent for $\mathcal{N}=4,5$ at $L=\mathcal{N}-1$ (Bossard, Howe, Stelle, Vanhove; Bern, Davies, Dennen; Bern, Davies, Dennen, Huang)
- Improved behavior observed in $D=4$ kinematics (AE, Hermann, Parra-Martinez, Trnka)

The journey so far:

History of direct calculations:

- $1 \& 2$ loops '80 -'90s

- 3 loops '07-'10
(Bern, Carrasco, Dixon, Johansson, Kosower, Roiban)
Color-kinematics dual basis:

- 4 loops '09-'12
(Bern, Carrasco, Dixon, Johansson, Roiban)
CK dual basis:
 \&

(Bern, Carrasco, Chen, AE, Johansson, Parra-Martinez, Roiban, Zeng)
- 5 loops 2018 CK dual basis has problems: generalized double-copy, thousands of diagrams

The road ahead

Largest sYM Numerator

The road ahead

Can't be conquered just by "computing harder". Need physics-driven insights!

Double copy as the initial driver

Color-kinematics duality:
when kinematic numerators also obey Jacobi relations
$c[(8)]+c[(8)]+c[(8)]=0 \Rightarrow n[(8)]+n[(8)]+n[(8)]=0$ then $c \rightarrow n$ yields a valid gravity numerator

$$
\mathcal{A}=\sum_{g} \frac{1}{S_{g}} \frac{c_{g} n_{g}}{D_{g}} \xrightarrow{c \rightarrow n} \mathcal{M}=\sum_{g} \frac{1}{S_{g}} \frac{n_{g}^{2}}{D_{g}}
$$

Implications of color-kinematics duality

Iterated application of kinematic Jacobi relations allow amplitude to be expressed in terms of small number of diagrams

- Tree-level: Construct "half-ladder" functions
(...;Du,Teng;AE,Teng;Cheung, Mangan;...)

$$
\begin{aligned}
& \mathcal{M}_{\mathrm{GR}}^{\text {tree }}=\sum_{\sigma, \rho \in S_{n-2}} \tilde{N}(1, \rho, n) m(1, \rho, n \mid 1, \sigma, n) N(1, \sigma, n)
\end{aligned}
$$

- Loop-level: All diagram numerators can be written in terms of a small basis, e.g.

Racing through three loops

CK relations: all twelve diagrams can be written in terms of "tennis court". Start from no-triangle ansatz

All other cuts satisfied for free

The roadblock at 5 loops

Minimal CK dual basis of 3 diagrams:

Able to match all max cuts. Inconsistent with next-to-max cuts. Can we still extract SUGRA from sYM?

The roadblock at 5 loops

Minimal CK dual basis of 3 diagrams:

Able to match all max cuts. Inconsistent with next-to-max cuts. Can we still extract SUGRA from sYM? Yes! But need to use generalized double-copy.

$$
\begin{aligned}
& n_{\mathrm{SYM}}[(8)]+n_{\mathrm{SYM}}[(B)]+n_{\mathrm{SYM}}[(8)]=J \\
\Rightarrow & n_{\text {SUGRA }}(\boxed{(Q)}) \sim \sum_{g \in \text { cubic }} \frac{J_{\{g, 1\}} J_{\{g, 2\}}}{d_{g}}
\end{aligned}
$$

Turns 752 diagrams in sYM into thousands of SUGRA contacts

Scenic overlooks: learning more from lower loops

Difficult to look inside 5 loops. Need smaller problems to explore challenges.

- 1-loop 6-point $\mathcal{N}=4$: many less-than-perfect approaches
(Bjerrum-Bohr,Dennen,Monteiro, O'Connel; Mafra, Schlotterer; He, Schlotterer, Zhang; Bridges, Mafra)
Solution: Physics-tamed initial ansatz , careful contact analysis
(AE, He, Johansson, Schlotterer, Teng, Zhang)
- 2-loop 4-point pure Yang-Mills: local CK basis cannot satisfy all cuts (e.g.

Partial solution: CK on cuts. BUT need to specify all diagrams separately, thousands of terms each

- 1-loop 4-point in OSS at $\alpha^{\prime 7}$: Bubble diagram cannot be "pure contact" : $n(\rangle-\prec) \nless s^{2}$
\Rightarrow Interplay between CK and UV structure

Scenic overlooks: learning more from lower loops

Difficult to look inside 5 loops. Need smaller problems to explore challenges.

- 1-loop 6-point $\mathcal{N}=4$: many less-than-perfect approaches
(Bjerrum-Bohr,Dennen,Monteiro,O'Connel; Mafra, Schlotterer; He, Schlotterer, Zhang; Bridges, Mafra)
Solution: Physics-tamed initial ansatz, careful contact analysis
(AE, He, Johansson, Schlotterer, Teng, Zhang)
- 2-loop 4-point pure Yang-Mills: local CK basis cannot satisfy all cuts (e.g.

Partial solution: CK on cuts. BUT need to specify all diagrams separately, thousands of terms each

- 1-loop 4-point in OSS at $\alpha^{\prime 7}$: Bubble diagram cannot be "pure contact" : $n(\rangle-\prec) \nless s^{2}$
\Rightarrow Interplay between CK and UV structure

Taming the ansatz

Often resort to sorting the needle from a haystack: write down generic ansatz, impose conditions by solving large linear systems.

How much of the physics can we bake in?

- Symmetry \rightarrow invariant theory, e.g

- Gauge invariance \rightarrow tensor bases:
- Helicity-centric, nonlocal: $\hat{\kappa}_{(a b)(c d)}$ (Johansson, Kälin, Mogull; Kälin, Mogull, Ochirov)
- D-dim local + perms: st $A^{\text {tree }}, s t A^{F}$
(Bern, AE, Kosower, Parra-Martinez)
- CK duality:
- Composition rules
(Carrasco, Rodina, Yin, Zekioglu)
- Kinematic algebra

Taming the ansatz

Often resort to sorting the needle from a haystack: write down generic ansatz, impose conditions by solving large linear systems.

How much of the physics can we bake in?

- Symmetry \rightarrow invariant theory, e.g.

$$
n_{\left\{k_{i}, \ell\right\}}(\square)=\mathbb{Q}\left[p_{1}, . ., p_{6} \mid s_{1}, s_{2}, s_{3}\right]
$$

- Gauge invariance \rightarrow tensor bases
- Helicity-centric, nonlocal: $\hat{\kappa}_{(a b)(c d)} \quad$ (Johansson, Kälin, Mogull; Kälin, Mogull, Ochirov)
- D-dim local + nerms: $s+\Delta^{\text {tree }} s+\Delta^{F}$
(Bern, AE Kosower, Parra Martinez)
- CK duality:
- Composition rules
(Carrasco, Rodina, Yin, Zekioglu)
- Kinematic algebra

Taming the ansatz

Often resort to sorting the needle from a haystack: write down generic ansatz, impose conditions by solving large linear systems.

How much of the physics can we bake in?

- Symmetry \rightarrow invariant theory, e.g.

$$
n_{\left\{k_{i}, \ell\right\}}(\square)=\mathbb{Q}\left[p_{1}, . ., p_{6} \mid s_{1}, s_{2}, s_{3}\right]
$$

- Gauge invariance \rightarrow tensor bases:
- Helicity-centric, nonlocal: $\hat{\kappa}_{(a b)(c d)} \quad$ (Johansson, Kälin, Mogull; Kälin, Mogull, Ochirov)
- D-dim local + perms: st $A^{\text {tree }}$, s $t A^{F^{3}}, \ldots \quad$ (Bern, AE, Kosower, Parra-Martinez)
- Composition rules
(Carrasco, Rodina, Yin, Zekioglu)
- Kinematic algebra

Taming the ansatz

Often resort to sorting the needle from a haystack: write down generic ansatz, impose conditions by solving large linear systems.

How much of the physics can we bake in?

- Symmetry \rightarrow invariant theory, e.g.

$$
n_{\left\{k_{i}, \ell\right\}}(\square)=\mathbb{Q}\left[p_{1}, . ., p_{6} \mid s_{1}, s_{2}, s_{3}\right]
$$

- Gauge invariance \rightarrow tensor bases:
- Helicity-centric, nonlocal: $\hat{\kappa}_{(a b)(c d)} \quad$ (Johansson, Kälin, Mogull; Kälin, Mogull, Ochirov)
- D-dim local + perms: st $A^{\text {tree }}$, s $t A^{F^{3}}, \ldots \quad$ (Bern, AE, Kosower, Parra-Martinez)
- CK duality:
- Composition rules
- Kinematic algebra

Example: 6 points with 5 parameters

Use covariant structures that appear in forward limit/max cut:

$$
\begin{aligned}
& N_{\text {hex }} \supset\left\{\left(\varepsilon_{1} \cdot \ell_{1}\right)\left(\varepsilon_{2} \cdot \ell_{2}\right) t_{8}\left(f_{3}, f_{4}, f_{5}, f_{6}\right)+\text { perms },\right. \\
&\left(\varepsilon_{1} \cdot \ell_{1}\right) t_{8}\left(f_{2}, f_{[3,4]}, f_{5}, f_{6}\right)+\text { perms }, \\
& t_{8}\left(f_{1}, f_{[2,3]}, f_{[4,5]}, f_{6}\right)+\text { perms }, \\
& t_{8}\left(f_{1}, f_{[2,[3,4]]}, f_{5}, f_{6}\right)+\text { perms }, \\
&\left.t_{12}\left(f_{1}, f_{2}, f_{3}, f_{4}, f_{5}, f_{6}\right)\right\}
\end{aligned}
$$

$$
\begin{array}{r}
f_{i}^{\mu \nu}=k_{i}^{\mu} \varepsilon_{i}^{\nu}-k_{i}^{\nu} \varepsilon_{i}^{\mu} \\
\quad f_{[i, j]}=f_{i} f_{j}-f_{j} f_{i}
\end{array}
$$

$$
\begin{gathered}
t_{8}\left(f_{w}, f_{x}, f_{y}, f_{z}\right)=\operatorname{tr}\left(f_{w} f_{x} f_{y} f_{z}\right) \\
-\frac{1}{4} \operatorname{tr}\left(f_{w} f_{x}\right) \operatorname{tr}\left(f_{y} f_{z}\right) \\
+\operatorname{cyc}(x, y, z)
\end{gathered}
$$

Example: 6 points with 5 parameters

Use covariant structures that appear in forward limit/max cut: (AE, He, Schlotterer, Teng)

$$
\begin{aligned}
N_{\text {hex }} \supset\{ & \left(\varepsilon_{1} \cdot \ell_{1}\right)\left(\varepsilon_{2} \cdot \ell_{2}\right) t_{8}\left(f_{3}, f_{4}, f_{5}, f_{6}\right)+\text { perms }, \\
& \left(\varepsilon_{1} \cdot \ell_{1}\right) t_{8}\left(f_{2}, f_{[3,4]}, f_{5}, f_{6}\right)+\text { perms }, \\
& t_{8}\left(f_{1}, f_{[2,3]}, f_{[4,5]}, f_{6}\right)+\text { perms }, \\
& t_{8}\left(f_{1}, f_{[2,[3,4]]}, f_{5}, f_{6}\right)+\text { perms }, \\
& \left.t_{12}\left(f_{1}, f_{2}, f_{3}, f_{4}, f_{5}, f_{6}\right)\right\}
\end{aligned}
$$

But allow contact freedom

$$
\begin{aligned}
N_{\text {hex }} \supset\{ & \varepsilon_{1} \cdot \varepsilon_{2} t_{8}\left(f_{3}, f_{4}, f_{5}, f_{6}\right)\left\{\ell_{6}^{2}+\ell_{2}^{2}, \ell_{1}^{2}\right\}, \\
& \varepsilon_{1} \cdot \varepsilon_{3} t_{8}\left(f_{2}, f_{4}, f_{5}, f_{6}\right)\left\{\ell_{6}^{2}+\ell_{3}^{2}, \ell_{1}^{2}+\ell_{2}^{2}\right\} \\
& \left.\varepsilon_{1} \cdot \varepsilon_{4} t_{8}\left(f_{2}, f_{3}, f_{5}, f_{6}\right)\left\{\ell_{6}^{2}+\ell_{4}^{2}\right\}\right\} \\
& +\operatorname{cyc}
\end{aligned}
$$

$$
\begin{array}{r}
f_{i}^{\mu \nu}=k_{i}^{\mu} \varepsilon_{i}^{\nu}-k_{i}^{\nu} \varepsilon_{i}^{\mu} \\
f_{[i, j]}=f_{i} f_{j}-f_{j} f_{i}
\end{array}
$$

$$
\begin{gathered}
t_{8}\left(f_{w}, f_{x}, f_{y}, f_{z}\right)=\operatorname{tr}\left(f_{w} f_{x} f_{y} f_{z}\right) \\
-\frac{1}{4} \operatorname{tr}\left(f_{w} f_{x}\right) \operatorname{tr}\left(f_{y} f_{z}\right) \\
+\operatorname{cyc}(x, y, z)
\end{gathered}
$$

Lots of data about UV

$\left.\mathcal{A}_{4}^{(1)}\right|_{\text {leading }} \sim$
$\left.\left.\left.\mathcal{A}_{4}^{(2)}\right|_{\text {leading }} \sim\left(N_{c}^{2}\right\}+48\left(\frac{1}{4}\right\}+\frac{1}{4}, b\right)\right)$
$\left.\mathcal{A}_{4}^{(3)}\right|_{\text {leading }} \sim 2\left(N_{c}^{2} \longrightarrow+72\left(\frac{1}{6} \longrightarrow+\right)\right)$
$\left.\mathcal{A}_{4}^{(4)}\right|_{\text {leading }} ^{\sim} \sim\left(N_{c}^{2} \rightarrow+48\left(\frac{1}{4} \rightarrow 0\right)+\frac{1}{2} \rightarrow \infty\right)$
$\left.\mathcal{A}_{4}^{(5)}\right|_{\text {leading }} \frac{144}{5}\left(N_{c}^{2} \circlearrowleft+48\left(\frac{1}{4} \backsim+\frac{1}{2} \circlearrowleft+\frac{1}{4}\right.\right.$
$\left.A_{4}^{(6)}\right|_{\text {leading }} ^{\sim} \sim 120\left(\frac{1}{2}\left(\ell_{1}+\ell_{2}\right)^{2}\right.$
$+\mathcal{O}$ (subleading color)

$\left.\left.\mathcal{M}_{4}^{(2)}\right|_{\text {leading }} \sim-8\left(\frac{1}{4}\right\}+\frac{1}{4} ?\right)$
$\left.\mathcal{M}_{4}^{(3)}\right|_{\text {leading }} ^{\sim} \sim 60\left(\frac{1}{6} \longrightarrow+\frac{1}{2}\right.$
$\left.\mathcal{M}_{4}^{(4)}\right|_{\text {leading }} ^{\sim}-\frac{23}{2}\left(\frac{1}{4} \longrightarrow+\frac{1}{2} \rightarrow \infty\right)$
$\left.\mathcal{M}_{4}^{(5)}\right|_{\text {leading }} ^{\sim}-\frac{16 \times 629}{25}\left(\frac{1}{48} \longrightarrow\right)$

$$
\longrightarrow=\text { dots } \leftrightarrow \text { doubled propagators }=\frac{1}{\left(\ell^{2}\right)^{2}}
$$

(Green, Schwarz, Brink; Bern, Rozowsky, Yan; Bern, Dixon, Dunbar, Perelstein, Rozowsky; Carrasco, Dixon, Johansson, Roiban; Bern, Carraco, Dixon, Douglas, von Hippel, Johansson; Bern, Carrasco, Chen, AE, Johansson, Parra-Martinez, Roiban, Zeng)

Identifying UV structure

Inter-loop consistency of sYM and SUGRA UV:
(Bern, Carrasco, Chen, AE, Johansson, Parra-Martinez, Roiban, Zeng)

- Planar sYM

- SUGRA (similar to non-planar sYM below $L=5$)

$$
\begin{aligned}
& B \rightarrow 12 \text { B, } B \rightarrow 8 \rightarrow 4 \text { 是 } \\
& \Rightarrow\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right) \propto \frac{1}{48} B+\frac{1}{16} B \rightarrow \frac{1}{4} \because+\frac{1}{2} \Leftrightarrow+\frac{1}{4} \oiint
\end{aligned}
$$

Can we target them directly?

Ongoing explorations

- 1-loop 4-point HD scalars:

Possible to identify "redundant" CK terms? Finitely generated?
Combinatoric/geometric interpretations?

- 2-loop 4-point pions:

Very few non-trivial cuts($\bigcirc \prec, \ngtr)$ leads to lots of flexibility in representation. Are there identifiable building blocks?
Can it be extended from something simple like ZM theory?

- 2-loop 4-point YM revisited Minimal non-locality? Interesting tensor structures?

Long-term goals

- $\mathcal{N}=5$ SUGRA
- Explicit 0 found at $L=4$ (Bern, Davies, Dennen; Bern, Davies, Dennen, Huang)
- Behavior at $L=5$ indication of $\mathcal{N}=8$ at $L=8$
- Need good control over tensor structures, generalized double copy
- Lots of space for testing at lower loops
- 6 loops $\mathcal{N}=8$
- Gather data for UV bootstrap
- Have 6 loop sYM, but in a very gross form

$\mathrm{N}^{k} \mathrm{M}$	0	1	2	3	4	\sum
cuts	5548	41649	156853	363963	576582	$1,144,595$
non-zero						
contacts						

- Generalized double copy between contacts?

Thank you for your attention!

AE (This week)
Questions? See. Bern (Weeks 3-4)
Johansson(Weeks 3-4)
Roiban (Week 4)

Cut construction via HID

H Identity: Evaluate \mathcal{P} via constraining limits, on which $\mathcal{C}_{\gamma}^{(k)} \rightarrow \mathcal{C}_{\gamma_{L-1}}^{(k)}$

Cut construction techinicals

$\lim _{\ell_{m} \rightarrow 0}$ realized as projection on invariants: $\pi_{\ell_{m}}$
We want to undo the projection

$$
\mathcal{P}_{\gamma^{(k)}}=\pi_{\ell_{m}} \mathcal{P}_{\gamma^{(k)}}+\operatorname{ker} \pi_{\ell_{m}} \in \underbrace{\left\langle\pi_{\ell_{m}} \mathcal{P}_{\gamma^{(k)}}, \text { ker } \pi_{\ell_{m}}\right\rangle}_{\text {Polynomial Ideal }}
$$

But this must simultaneously hold on every ℓ_{m} !

$$
\Rightarrow \mathcal{P}_{\gamma^{(k)}} \in \mathcal{I}_{\gamma^{(k)}} \equiv \underbrace{\bigcap_{\ell_{m} \in \gamma^{(k)}}\left\langle\pi_{\ell_{m}} \mathcal{P}_{\gamma^{(k)}}, \operatorname{ker} \pi_{\ell_{m}}\right\rangle}_{\text {algorithmic calculation }}
$$

(Almost) always find that lowest degree generator of $\mathcal{I}_{\gamma^{(k)}}$ is unique and the correct degree to be \mathcal{P}. Often much faster than solving ansatz.

