HIGH PRECISION GRAVITATIONAL WAVE PHYSICS FROM A WORLDLINE QUANTUM FIELD THEORY

Gustav Uhre Jakobsen, Gustav Mogull, Benjamin Sauer, Jan Steinhoff (AEI)

2010:02865, JHEP 02 (2021) 048 2101.12688, PRL 126 (2021) 20 2106.10256, PRL 128 (2022) 1 2109.04465, JHEP 01 (2022) 027 2207.00569, JHEP 10 (2022) 128 2306.01714

2210.06451, PRD 107 (2023) 4

Humboldt-Universität zu Berlin

Spokesperson: Prof. Dr. Jan Plefka

RTG 2575: Rethinking **Quantum Field Theory**

GRAVITATIONAL TWO-BODY PROBLEM

Neutron Star

mass, spin, radius, tidal deformability

Black Hole/Neutron Star Binaries:

Bound state

- $g_{\mu\nu} = \eta_{\mu\nu} + \sqrt{G} h_{\mu\nu}$ During **inspiral**: weak gravitational fields
- **Quantum** field theory formalism for **classical** two-body problem:

WORLDLINE QUANTUM FIELD THEORY

THE GENERAL RELATIVISTIC 2-BODY PROBLEM

As in Newtonian case has either **bound** or **unbound** orbits.

Weak field expansion: $g_{\mu
u}$ =

Inspiral of 2 black holes or neutron stars: $\frac{GM}{m} \sim v^2$ (c = 1)Virial-theorem: post-Newtonian (PN) expansion in $G \& v^2$

$$= \eta_{\mu\nu} + \kappa h_{\mu\nu} \qquad \qquad \kappa = \sqrt{32\pi G}$$
Newton's constant

Scattering of 2 black holes or neutron stars: Weak field (G), but exact in v^2 post-Minkowskian (PM) expansion

WARMUP: ELECTROMAGNETISM

Scattering of charged particles in Maxwell's theory

$$S = -\sum_{i=1}^{2} \int d\tau_i \left(m_i \sqrt{\eta_{\mu\nu}} \dot{x}_i^{\mu}(\tau_i) \, \dot{x}_i^{\nu}(\tau_i) - q_i \, A_{\mu}(x) \, \dot{x}_i^{\mu}(\tau_i) \right) - \frac{1}{16\pi} \int d^4x F_{\mu\nu}(x) \, F^{\mu\nu}(x) + S_{\text{g.f.}}$$

Charged particles

Equations of motion:

$$\partial_{\mu}F^{\mu\nu}(x) = 4\pi j^{\nu}(x)$$

Maxwell's eqs.

Solve perturbatively in q_i

$$A_{\mu}(x) = \sum_{n=1}^{\infty} q^n A_{\mu}^{(n)}(x)$$

emitted radiation

Non trivial due to back reaction !

Maxwell theory & gauge fixing

$$\frac{d^2 x_i^{\mu}}{ds^2} = \frac{q_i}{m_i} F^{\mu}{}_{\nu} \frac{dx_i^{\nu}}{ds}$$

Lorentz eqs.

$$x_i(\tau) = b_i^{\mu} + v_i^{\mu}\tau + \sum_{n=1}^{\infty} q^n z_i^{(n) \mu}(\tau)$$

straight line: "in" state $n=1$ deflections

WARMUP: ELECTROMAGNETISM

1) Worldline simplification: Introduce "Einbein" $e(\tau)$

$$S_p = -m \int d\tau \sqrt{\eta_{\mu\nu}} \dot{x}^{\mu} \dot{x}^{\nu}$$

Algebraic equations of motion for *e*: $\frac{\delta S}{\delta e} = 0$ -

Proper time gauge: $e = 1 \leftrightarrow \dot{x}^2 = 1$

2) Space-time simplification: Go to Lorenz gauge: $\partial \cdot A = 0$

3) Gauge fixed theory:

$$\tilde{S} = -\sum_{i=1}^{2} \int d\tau_i \left(\frac{m_i}{2} \dot{x}_i^2(\tau_i) - q_i A_\mu[x_i(\tau_i)] \dot{x}_i^\mu(\tau_i) \right) + \frac{1}{16\pi} \int d^4 x A_\mu(x) \Box A^\mu(x)$$

 $\longrightarrow \qquad \tilde{S}_p = -\frac{m}{2} \int (e^{-1} \eta_{\mu\nu} \dot{x}^\mu \dot{x}^\nu + e)$

$$\longrightarrow e^2 = \eta_{\mu\nu} \dot{x}^\mu \dot{x}^\nu$$

Plug this back into \tilde{S}_p to find S_p

Space-time

where $S_{\rm EH} + S_{\rm gf}$ is the gauge-fixed Einstein-Hilbert action $\frac{1}{g_{i}} + \frac{1}{2} \frac{1}{g_{i}} + \frac{1}{$ 16π the elessical setting. We work in mostly mostly in the classical setting. We work in mostly minus the classical setting. We work in mostly minus we have supersonal coupling: we have supersonal coupling: we have supersonal coupling we have supersonal coupling. We have supersonal coupling we have supersonal coupling we have supersonal coupling. We have supersonal coupling we have supersonal coupling we have supersonal coupling. We have supersonal coupling we have supersonal coupling we have supersonal coupling. We have supersonal coupling we have supersonal coupling. We have supersonal coupling we have supersonal coupling we have supersonal coupling. We have supersonal coupling we have supersonal coupling we have supersonal coupling. We have supersonal coupling we have supersonal coupling. We have supersonal coupling we have supersonal coupling we have supersonal coupling. We have supersonal coupling we have supersonal coupling we have supersonal coupling. We have supersonal coupling we have supersonal coupling we have supersonal coupling. The coupling we have supersonal coupling we have supersonal coupling we have supersonal coupling we have supersonal coupling. The coupling we have supersonal coupling we have supersonal coupling the coupling of the coupling Satting We Gork ManusvorT reperentint neecessical on CEIN And path the (3a)(3a) $m \frac{(3b)\nu}{(\omega (3b))^2}$ k w $\frac{\omega}{m} (\omega + i\epsilon)^{\frac{3}{2}}; \qquad (38)'$ $\frac{\omega}{m} (\omega + i\epsilon)^{\frac{3}{2}}; \qquad (38)'$ $\frac{\omega}{m} (\omega + i\epsilon)^{\frac{3}{2}}; \qquad (38)'$ $\frac{\omega}{m} (\omega + i\epsilon)^{\frac{3}{2}}; \qquad (38)'$

AN DIAGRAMMATIC EXPANSI

Propagators: $\mu \bullet \dots \bullet \nu$ Photon $\langle A^{\mu}(k)A^{\nu}(-k)\rangle = i\frac{\eta_{\mu\nu}}{(k^0 + i0)^2 - \vec{k}^2}$

Vertices: Arise from interaction term:

$$A_{\mu}(x(\tau)) = \int_{k} e^{ik \cdot (b + v\tau + z(\tau))} A_{\mu}(-k) = \sum_{n=0}^{\infty} \frac{i^{n}}{n!} \int_{k} e^{it} e^{it} \int_{k} e^{it} e^{it} \int_{k} e^{it} e^{it} e^{it} \int_{k} e^{it} e^{it}$$

straight line background $b^{\mu} \& v^{\mu}$ $\sum_{k=1}^{n} z^{\rho}(\omega)$ $\sim q e^{ik \cdot b} \delta(k \cdot v) v^{\mu}$

 $\sim q e^{ik \cdot b} \delta(k \cdot v + \omega) \left(\omega \eta^{\mu \rho} + v^{\mu} k^{\rho}\right)$

arbitrary # of $z^{\rho_i}(\omega_i)$'s

COULOMB POTENTIAL

Single charge at rest:

$e^{ik \cdot b}$ Put particle at rest & origin: $v^{\mu} = (1, \vec{0})$ $b^{\mu} = 0$ \Rightarrow $\vec{A} = 0$

$$\int d^{3}k \frac{1}{\vec{k}^{2}} e^{-i\vec{k}\cdot\vec{x}} = \frac{q}{4\pi |\vec{x}|}$$

$$D[A, z]\mathcal{O}e^{-rac{i}{\hbar}\tilde{S}[A, z]}$$

 \Rightarrow Loops are quantum effects!

$$\mathcal{P}^{2}(\mathcal{V},\mathcal{P})^{2}$$

THE GENERAL RELATIVISTIC 2-BODY PROBLEM

IC TWO BODY PROBLEM IN PM: TRADITIONAL APPROACH

Point-particle approximation for BHs (or NSs)

$$S = -\sum_{i=1}^{2} m_i \int d\tau_i \sqrt{g_{\mu\nu}} \dot{x}_i^{\mu}(\tau_i) \dot{x}_i^{\nu}(\tau_i) + \frac{1}{1}$$

Point particle approximation

1) Equations of motion:

 $R_{\mu\nu} - \frac{1}{2}g_{\mu\nu} = \frac{\kappa^2}{8}T_{\mu\nu}$

Einstein's eqs.

2) Solve iteratively in G

$$g_{\mu\nu} = \eta_{\mu\nu} + \sqrt{G} \sum_{n=0}^{\infty} \frac{G^n h_{\mu\nu}^{(n)}(x)}{\text{emitted radiation}}$$

3) Construct observables Far field waveform: "Impulse" (change in momentum):

straight line: "in" state n=1

deflections

 $\lim_{r \to \infty} h_{\mu\nu} = \frac{f_{\mu\nu}(t - r, \theta, \varphi)}{r} + \mathcal{O}(\frac{1}{r^2})$

 $\Delta p_i^{\mu} = m_i \dot{x}_i^{\mu} \Big|_{\tau = -\infty}^{\tau = +\infty} = m_i \int d\tau \ddot{x}_i^{\mu}(\tau)$

DLINE QUANTUM FIELD THEORY

Model Black Holes/Neutron Stars as a point particles $S_{\rm BH/NS} = -\frac{m}{2} \int d\tau g_{\mu\nu} \dot{x}^{\mu}(\tau) \dot{x}^{\nu}(\tau) + [\text{spin \& tidal effects}]$

They interact through Einstein's gravity:

Scattering scenario: $x_i^{\mu}(\tau) = b_i^{\mu} + v_i^{\mu}\tau + z^{\mu}(\tau)$ $g_{\mu\nu} = \eta_{\mu\nu} + \sqrt{G}h_{\mu\nu}$

Path integral quantisation perturbative in Newton's constant G but exact in velocity

$$\langle \mathcal{O} \rangle_{\text{WQFT}} = \int D[h, z] \mathcal{O} e^{-\frac{i}{\hbar}S[z, h]}$$

Mogull, JP, Steinhoff JHEP 02 (2021) 048

 $S = S_{\rm BH/NS} + \frac{1}{16\pi G} \int d^4x \sqrt{-g} R(g)$

Tree-level one-point functions $\langle h_{\mu\nu} \rangle$ and $\langle z^{\mu} \rangle$ solve classical equations of motion

\Rightarrow Advanced quantum field theory technology for classical gravitational wave physics

IE QUANTUM FIELD THEORY: PERTURBATIVE SETUP

$$S_{\rm WQFT} = -\frac{m}{2} \int d\tau g_{\mu\nu} \, \dot{x}^{\mu}(\tau) \, \dot{x}^{\nu}(\tau)$$

 $\begin{array}{c} \mu\nu \rightarrow \rho\sigma \\ \bullet & \bullet \end{array}$

k +

- Worldline propagators:
- Perturbative (quantum) gravity:

$$\sqrt{-g} R(g) = -\frac{1}{2} h_{\mu\nu} (P^{-1})^{\mu\nu};$$

$$g_{\mu\nu} = \eta_{\mu\nu} + \sqrt{G} h_{\mu\nu}$$

 $;^{\rho\sigma}\Box h_{\rho\sigma} + \sqrt{G}[\partial^2 h^3] + \sqrt{G}^2[\partial^2 h^4] + \sqrt{G}^3[\partial^2 h^5] + \dots$

 $P_{\mu\nu;\rho\sigma} = \eta_{\mu(\rho}\eta_{\sigma)\nu} - \frac{1}{2}\eta_{\mu\nu}\eta_{\rho\sigma}$

N.B. need to take retarded propagator (in-in formalism)

$$=i\frac{P_{\mu\nu;\rho\sigma}}{(k^0+i0)^2-\mathbf{k}^2}$$

PUTTING SPIN ON THE WORLD-LINE

Hidden **supersymmetry** of spinning black holes! Add N anti-commuting fields $\psi_I^a(\tau)$: N-extended superparticle

Flat space:
$$S_{\text{susy}} = -m \int d\tau \left[\frac{1}{2} \eta_{\mu\nu} \dot{x}^{\mu} \dot{x}^{\nu} + i \eta_{ab} \psi_{I}^{a} \dot{\psi}_{I}^{b} \right]$$

Equivalent to massive, spin N/2 particle.

Coupling to curved space-time: (N = 1)

$$S_1 = -m \int d\tau \Big[\frac{1}{2} g_{\mu\nu} \dot{x}^{\mu} \, \dot{x}^{\nu} + i\psi_a \Big]$$

Captures linear in spin (spin-orbit) interactions of BHs & NSs

[Jakobsen,Mogull,JP,Steinhoff]

 $D_{\tau}\psi^{a} = \dot{\psi}^{a} + \dot{x}^{\mu}\,\omega^{ab}_{\mu}\psi_{b}$

 $D_{ au}\psi^a$ (

$$S^{ab} = -2im\psi^{[a}\psi^{b]}$$

spin tensor

PUTTING SPIN ON THE WORLD-LINE

- Spin-orbit & spin-spin interactions (N = 2 SUSY)
- Augmented by NS-term: spin-induced quadropol moment

$$S_{\rm BH/NS} = -m \int d\tau \Big[\frac{1}{2} g_{\mu\nu} \dot{x}^{\mu} \, \dot{x}^{\nu} + i \bar{\psi}_a D_\tau \psi^a + \frac{1}{2} R_{abcd} \bar{\psi}^a \psi^b \bar{\psi}^c \psi^d + C_E R_{a\dot{x}b\dot{x}} \bar{\psi}^a \psi^b \, \bar{\psi}$$

Approximate SUSY persists.

Spin tensor of BHs/NSs

Scattering scenario:

$$\begin{aligned} x_i^{\mu}(\tau) &= b_i^{\mu} + v_i^{\mu} \tau + z_i^{\mu}(\tau) \\ \psi_i^{a}(\tau) &= \Psi_i^{a} + \psi_i^{\prime a}(\tau) \end{aligned}$$

[Jakobsen,Mogull,JP,Steinhoff]

[Bastianelli,Benincasa,Giombi]

$$x^{\mu}$$

$$\int \psi^{a}_{I}$$

$$I = 1, \dots, N$$

N=2 superparticle

neutron star term

$$S_i^{ab} = -2im\bar{\psi}_i^{[a}\psi_i^{b]}$$

Quantize $z_i^{\mu}, \psi_i^{\prime a}, \psi_i^{\prime a}$

$$\frac{\nu}{2} \qquad \langle \psi^a(\omega)\bar{\psi}^b(-\omega)\rangle = \frac{-i\eta^{ab}}{m(\omega+i0)}$$

PHYSICAL INTERPRETATION OF SUSY

- Traditional approach: [Vines,Kunst,Steinhoff,Hinderer][Steinhoff][Porto][Levi] Spin tensor $S_i^{\mu\nu}(\tau)$ & co-moving frame $\Lambda_i^{A\mu}$
 - $\frac{Dp^{\nu}}{D\tau} + \frac{1}{2} S^{\mu\rho} R_{\mu\rho\nu\kappa} \dot{x}^{\kappa} = 0$ Eoms:

Freedom of imposing a Spin-Supplementary C

Our approach: Spinning super-particle

> Background SUSY transformations:

Interpretation of SUSY:

SUSY = Conservation of SSC

Need of understanding relation to dual amplitudes approach

$$^{\iota}(au)$$

$$\frac{DS^{\mu\nu}}{D\tau} + 2\dot{x}^{[\mu} p^{\nu]} = 0$$

$$p_{\mu} S^{\mu\nu} = 0$$

[Matthisson-Papapetrou-Dixon]

$$S_i^{\mu\nu} = -2i\bar{\psi}_i^{[\mu}\psi_i^{\nu]}$$

$$\begin{split} \delta b_i^{\mu} &= i \bar{\epsilon} \Psi_i^{\mu} + i \epsilon \bar{\Psi}_i^{\mu}, \quad \delta v_i^{\mu} = 0, \quad \delta \Psi_i^{\mu} = -\epsilon v_i^{\mu} \\ \Rightarrow \quad \delta \mathcal{S}_i^{\mu\nu} &= v_i^{\mu} \, \delta b_i^{\nu} - v_i^{\nu} \, \delta b_i^{\mu} \end{split}$$

Covariant SSC: $v_i \cdot \Psi_i = 0 \Rightarrow v_{i,\mu} S_i^{\mu\nu} = 0$

[Bern,Luna,Roiban,Shen,Zeng] [Bern,Kosmopoulos,Luna,Roiban,Teng]

TIDAL INTERACTIONS

First layer of tidal & finite size effects:

$$S_{\text{tidal}} = m \int d\tau \left[c_{E^2} E_{\mu\nu} E^{\mu\nu} + c_E \right]$$

Electric and magnetic curvature:

$$E_{\mu\nu} := R_{\mu\alpha\nu\beta} \dot{x}^{\alpha} \dot{x}^{\beta} \qquad \qquad B_{\mu\alpha\nu\beta} \dot{x}^{\alpha} \dot{x}^{\beta}$$

Wilson coefficients (or "Love numbers"): $c_{E^2} \& c_{B^2}$ (vanish for black holes)

 $\mathbf{B^{2}}B_{\mu\nu}B^{\mu\nu}\mathbf{B}^{\mu\nu$

 $S_{\mu\nu} := R^*_{\mu\alpha\nu\beta} \dot{x}^\alpha \dot{x}^\beta$

ILINE QUANTUM FIELD THEORY: VERTICES

Worldline vertices: n-gravitons & m world-line fluctuations

Bulk" graviton vertices:

N-PM order needs: $V_{n|m}$ for n = 1, ..., N, m = 0, ..., (N + 1 - n) & graviton vertices up to N + 1

CLAIM:

$\langle \mathcal{O} \rangle_{\text{WQFT}} = \int D[h, z] \mathcal{O} e^{-\frac{i}{\hbar}S[z, h]}$

Tree-level one-point functions $\langle h_{\mu\nu} \rangle$ and $\langle z^{\mu} \rangle$ solve classical equations of motion

CLASSICAL DYNAMICS FROM ONE-POINT FUNCT

- Action: $S[\Phi_A]$ with fields $\Phi_A(x_A) = \{h_{\mu\nu}(x), z^{\mu}(\tau)\}$ and coordinates $x_A = \{x^{\mu}, \tau\}$
- Partition function in the presence of sources

 $Z[J_A] = \int D[$

h counting:

Scalings of **connected** n-point functions:

$$\langle \Phi_{A_1} \dots \Phi_{A_n} \rangle_{\text{conn}} \sim \sum_L \hbar^{-1+n+L} (L)$$

Well defined classical limit only for n=1 and L=0: Tree-level one-point functions

[Boulware,Brown,'68]

$$[\Phi_A] \exp\left[\frac{i}{\hbar} \left(S[\Phi_A] + \sum_A \int dx_A J_A(x_A) \Phi_A(x_A)\right)\right]$$

 \Rightarrow Loops are quantum effects!

-loop connected n-point diagrams)

21

CLASSICAL DYNAMICS FROM ONE-POINT FUNCTIONS

Factorization

Consequence for Schwinger-Dyson equations: \Leftrightarrow Ehrenfest theorem in QM

$$\left\langle \frac{\delta S[\Phi_A]}{\delta \Phi_A} \right\rangle = 0 \qquad \qquad \hbar \to 0$$

Tree-level one-point functions solve classical equations of motion

- Importantly $S[\Phi_A]$ must be independent of \hbar (not the case in amplitudes approach massive field!) -> Key advantage of WQFT approach (no "super classical" terms)
- Need non-trivial background field configurations for non-vanishing one-point functions

[Jakobsen]

- $\lim_{\hbar \to 0} \langle \Phi_{A_1} \Phi_{A_2} \dots \Phi_{A_n} \rangle_{\text{discon}} = \langle \Phi_{A_1} \rangle_{\text{con}}^{\text{tree}} \langle \Phi_{A_2} \rangle_{\text{con}}^{\text{tree}} \dots \langle \Phi_{A_n} \rangle_{\text{con}}^{\text{tree}}$

$$\frac{\delta S[\langle \Phi_A \rangle_{\rm tree}]}{\delta \Phi_A} = 0$$

THE IN–IN (SCHWINGER–KELDYSH) Formalism for WQFT

OR WHY RETARDED PROPAGATORS?

[Jakobsen,Mogull,JP,Sauer]

IN-IN (SCHWINGER-KELDYSH) FORMALISM

Standard Feynman path integral yields $\langle \phi_H(x) \rangle_{in-out} = \frac{\langle 0 | \phi_H(x) | 0 \rangle_{in}}{\langle 0 | \phi_H(x) | 0 \rangle_{in}}$ but want

$$\langle \phi_H(x) \rangle_{\text{in-in}} = \frac{1}{\ln} \langle 0 | \phi_H(x) | 0 \rangle_{\text{in}} =$$

 \Rightarrow need two time-evolution operators: Double the fields! $Z[J_1, J_2] = \langle 0 | U_{J_1}(-\infty, \infty) U_{J_1}(\infty, -\infty) | 0 \rangle$

$$\left. \frac{1}{Z[0,0]} \frac{\delta Z[J_1, J_2]}{\delta J_1(x)} \right|_{J_i=0} = \langle \Phi_H(x) \rangle_{\text{in-in}}$$

Boundary conditions:

= $\langle 0|U(-\infty,t)\phi_0(t,\mathbf{x})U(t,-\infty)|0\rangle$

 $= \int D[\phi_1, \phi_2] \exp\left[\frac{i}{\hbar} \left(S[\phi_1] - S[\phi_2] + \int_{x} J_1(x) \phi_1(x) - J_2(x) \phi_2(x)\right)\right]$

KELDYSH BASIS:

This yields

$$Z[J_{\pm}] = \int D[\phi_{\pm}, \phi_{-}] \exp\left[\frac{i}{\hbar} \left(S[\phi_{\pm} +$$

Propagator matrix from free part:

$$\langle \phi_a(x) \phi_b(y) \rangle = \begin{pmatrix} \frac{1}{2} D_H(x, y) & D_{\text{ret}}(x, y) \\ -D_{\text{adv}}(x, y) & 0 \end{pmatrix}$$
irrelevant @ tree-level

Vertices from:

$$S_{\rm int}[\phi_+ + \frac{1}{2}\phi_-] - S_{\rm int}[\phi_+ - \frac{1}{2}\phi_-] - S_{\rm int}[\phi_- - \frac{1}{2}\phi_-] - S_{\rm$$

 \Rightarrow only odd number of ϕ_{-} legs!

 $\phi_{+} = \frac{1}{2}(\phi_{1} + \phi_{2})$ $\phi_{-} = \phi_1 - \phi_2$

$$\frac{1}{2}\phi_{-}] = \phi_{-} \left(\frac{\delta S_{\text{int}}[\phi]}{\delta \phi} \right) \Big|_{\phi \to \phi_{+}} + \mathcal{O}(\phi_{-}^{3})$$

WOFT ONE POINT FUNCTIONS @ TREE-LEVEL

Vertices including background field *Q*

Yields same vertices as in-in theory!

In tree-level one-point functions:

Absorbs the cuts present in **KMOC** formalism!

[Kosower, Maybee, O'Connell]

$$\frac{1}{k^2 + \operatorname{sgn}(k^0)i0} = \frac{1}{k^2 + i0} + 2i\pi\theta(-k^0)\delta(k^2)$$

WQFT OBSERVABLES

THE APPARENCE SEPARATION AND AND AND AND AND AND AND AND AND AN
same in the relevant pertices
$\frac{\partial \eta}{\partial t} = \frac{\partial \eta}{\partial t} = $
\mathcal{O} in the pathemission of a graviton off the worldline read
g to momentum ξ
$ = i \frac{m\kappa v_i k}{2} e^{i k} \delta(k) v^{\mu} v^{\nu}, \qquad (4) $
$h_{\mu} \xi(k) = -i \frac{4\pi k}{2} e^{ik \cdot b} \delta(k \cdot v) v^{\mu} v^{\nu} , \qquad (4)$
$\eta_{\mu\nu}\eta_{\rho\sigma} = h_{\mu\nu}(k) \qquad \qquad$
with k outgoing, $\delta(\omega) := (2\pi)\delta(\omega)$ and
with k outgoing, $\delta(\omega) := (2\pi)\delta(\omega)$ and
$(30) = \frac{m\kappa}{m} e^{ik \cdot b} \delta(k \cdot v + \omega) \left(2\omega v^{(\mu} \delta^{\nu)}_{\rho} + v^{\mu} v^{\nu} k\right)$
ds. $z^{\rho}(\omega) = \frac{z_{\mu}}{m_{\rho}} e^{ik \cdot b} \delta(k \cdot v + \omega) $ (5)
determines $= \frac{m \omega_2}{2} e^{ik \cdot b} \delta(k \cdot (v + \omega_k) \delta^{\nu}) + v^{\mu} v^{\nu} k^{(5)}$
beline need $\frac{h^{\mu\nu}(k)}{h_{\mu\nu}(k)} \times \left(2\omega v^{(\mu}\delta^{\nu)}_{\rho} + v^{\mu}v^{\nu}k_{\rho}\right)^{\rho}.$
$\mathbf{K}_{\mathbf{k}}$
HE ALL STRATTER BY BY IT AND THE OTHER OF BUILDING THE AND STRATE OF BUILDING THE BUILDING THE AND STRATE OF BUILDING THE AND STR
A A CHER HILL CHERTING ON VERTICES, of which we shall need
The determining
The snet new statistic sta
The second watthe watche watthe watthe watche watche watthe watche watch
diagrams contributing you High we integrate over the

ES DEWIET BEFAX IDENIE VOITIGCER, COTIEN-THICLE 7740 (SLIGH & NOED Jineulrajectorie snethous lexistings the Breaks traffing to the horse of the state

WORKFLOW WITH RETARDED INTEGRALS

Find same set of Master integrals for spin and tidal effects@ 3PM

[Jakobsen,Mogull,JP,Sauer]

Generate graphs

BERENDS-GIELE TYPE RECURSION

Recursion \Leftrightarrow equations of motion:

[Jakobsen, Mogull, JP, Sauer]

Causality flow implemented

WORKFLOW WITH RETARDED INTEGRALS

Find same set of Master integrals for spin and tidal effects@ 3PM

[Jakobsen,Mogull,JP,Sauer]

Tensor reduction to scalar integrals

Order **n-PM** : Single scale (**n-1**)-loop integral $I_{\rm nPM} = \int_{a} e^{-q \cdot b} \delta(q \cdot v_1) \delta(q \cdot v_2) \int_{l_1, l_2 \dots l_n} \delta(q \cdot v_2) \int_{l_1, l_2 \dots$

Retarded propagators $D_i(l_i, q, v_*)$ are worldline

As $v_*^2 = 1$ scale q factors out, left with single p

1PM: Trivial - pure Fourier transform

2PM: 1-loop

STRUCTURE OF WQFT INTEGRALS: IMPULSE & SPIN KICK

[Jakobsen, Mogull, JP, Sauer]

$$\begin{array}{l} \displaystyle \underset{l_{n-1}}{\operatorname{num}[l_i]} \frac{\operatorname{num}[l_i]}{D_1 \dots D_j} \delta(l_1 \cdot v_*) \delta(l_2 \cdot v_*) \dots \delta(l_{n-1} \cdot v_*) \in \{v_1 \\ \text{e} \ (l_i \cdot v_*)^{(1,2)} \text{ or quadratic } (l_i + q)^2 \end{array}$$

$$\sum_{n=1}^{\infty} \sim Gm_1m_2$$

$$D_1 = l \cdot v_1 \pm i\epsilon$$
$$D_2 = l^2 ,$$
$$D_3 = (l+q)^2 .$$

Tensor reduction to scalar integrals

4PM:

Two integral families:

$$\begin{split} I_{n_{1},n_{2},...,n_{12}}^{[i](\sigma_{1},\sigma_{2},...,\sigma_{8})} &= \int_{l_{1},l_{2},l_{3}} \frac{\delta(l_{1}\cdot v_{1})\delta(l_{2}\cdot v_{1})\delta(l_{3}\cdot v_{i})}{D_{1}^{n_{1}}D_{2}^{n_{2}}...D_{12}^{n_{12}}} \\ D_{j} &= l_{j}\cdot v_{i_{j}} + i0^{+}\sigma_{j} \\ D_{4} &= -(l_{1}+l_{2}+l_{3}+q)^{2} - i0^{+}\sigma_{4}v\cdot(l_{1}+l_{2}+l_{3}) \\ D_{5} &= -(l_{1}+l_{2}+q)^{2} - i0^{+}\sigma_{5}v\cdot(l_{1}+l_{2}) \\ D_{5+k} &= -(l_{k}+l_{3})^{2} - i0^{+}\sigma_{6+k}v\cdot(l_{k}+l_{3}) \\ D_{7+j} &= -l_{j}^{2}, \qquad D_{10+k} = -(l_{k}+q)^{2}. \end{split}$$

Number of master integrals: I-type 23+23, J-type 64+66 (even & odd # worldline propagators)

[Jakobsen,Mogull,JP,Sauer]

Function space:

$$F_{\alpha}^{(b)}(\gamma) = \{1, \operatorname{arccosh}[\gamma], \log[\gamma], \log\left[\frac{\gamma_{\pm}}{2}\right], \operatorname{arccosh}^{2}[\gamma], \operatorname{arccosh}[\gamma] \log\left[\frac{\gamma_{\pm}}{2}\right], \log\left[\frac{\gamma_{+}}{2}\right] \log\left[\frac{\gamma_{-}}{2}\right], \log^{2}\left[\frac{\gamma_{-}}{2}\right], \log^{2}\left[\frac{\gamma_{-}}{\gamma_{+}}\right], \operatorname{Li}_{2}\left[\frac{\gamma_{-}}{\gamma_{+}}\right], \operatorname{K}^{2}\left[\frac{\gamma_{-}}{\gamma_{+}}\right], \operatorname{K}\left[\frac{\gamma_{-}}{\gamma_{+}}\right] \operatorname{E}\left[\frac{\gamma_{-}}{\gamma_{+}}\right] \right\}$$
Elliptic functions appear!
$$\gamma = v_{1} \cdot v_{2} \qquad (\gamma_{\pm} := \gamma \pm 1)$$

Linplic functions appear:

$$J_{n_1,n_2,...,n_{12}}^{(\sigma_1,\sigma_2,...,\sigma_5)} := \int_{\ell_1,\ell_2,\ell_3} \frac{\delta(\ell_1 \cdot v_1)\delta(\ell_2 \cdot v_1)\delta(\ell_3 \cdot v_2)}{D_1^{n_1}D_2^{n_2}...D_{12}^{n_{12}}}$$

$$D_{j} = \ell_{j} \cdot v_{i} + i0^{+}\sigma_{j}$$

$$D_{4} = -(\ell_{1} - \ell_{3})^{2} - i0^{+}\sigma_{4}v \cdot (\ell_{1} - \ell_{3})$$

$$D_{5} = -(\ell_{2} - \ell_{3})^{2} - i0^{+}\sigma_{5}v \cdot (\ell_{2} - \ell_{3})$$

$$D_{6} = -(\ell_{1} - \ell_{2})^{2}, \quad D_{6+j} = -\ell_{j}^{2}, \quad D_{9+j} = -(\ell_{j} + \ell_{j})^{2}$$

www

www

 $(+ q)^2$

WORKFLOW WITH RETARDED INTEGRALS

Find same set of Master integrals for spin and tidal effects@ 3PM

[Jakobsen,Mogull,JP,Sauer]

RESULTS SPIN-LESS IMPULSE @ 3PM PRECISION:

$$\Delta p_1^{\mu} = p_{\infty} \sin \theta \frac{b^{\mu}}{|b|} + (\cos \theta - 1) \frac{m_1 m_2}{E^2} [(\gamma m_1 + m_2) v_1^{\mu} - (\gamma m_2 + m_1) v_2^{\mu}] - v_2 \cdot P_{\text{rad}} w_2^{\mu} \qquad w_1^{\mu} = \frac{\gamma v_2^{\mu} - v_2}{\gamma^2 - 1} + \frac{\gamma v_2}{\gamma^2$$

Scattering angle:

$$\frac{\theta}{\Gamma} = \frac{GM}{|b|} \frac{2(2\gamma^2 - 1)}{\gamma^2 - 1} + \left(\frac{GM}{|b|}\right)^2 \frac{3\pi(5\gamma^2 - 1)}{4(\gamma^2 - 1)} + \left(\frac{GM}{|b|}\right)^3 \left(2\frac{64\gamma^6 - 120\gamma^4 + 60\gamma^2 - 5}{3(\gamma^2 - 1)^3}\Gamma^2 - \frac{8\nu\gamma(14\gamma^2 + 25)}{3(\gamma^2 - 1)} - 8\nu\frac{(4\gamma^4 - 12\gamma^2 - 3)}{(\gamma^2 - 1)}\frac{4\pi^2}{\sqrt{2\pi^2 - 1}} + \left(\frac{GM}{|b|}\right)^3 \left(2\frac{64\gamma^6 - 120\gamma^4 + 60\gamma^2 - 5}{3(\gamma^2 - 1)^3}\Gamma^2 - \frac{8\nu\gamma(14\gamma^2 + 25)}{3(\gamma^2 - 1)} - 8\nu\frac{(4\gamma^4 - 12\gamma^2 - 3)}{(\gamma^2 - 1)}\frac{4\pi^2}{\sqrt{2\pi^2 - 1}} + \left(\frac{GM}{|b|}\right)^3 \left(2\frac{64\gamma^6 - 120\gamma^4 + 60\gamma^2 - 5}{3(\gamma^2 - 1)^3}\Gamma^2 - \frac{8\nu\gamma(14\gamma^2 + 25)}{3(\gamma^2 - 1)} - 8\nu\frac{(4\gamma^4 - 12\gamma^2 - 3)}{(\gamma^2 - 1)}\frac{4\pi^2}{\sqrt{2\pi^2 - 1}} + \left(\frac{GM}{|b|}\right)^3 \left(2\frac{64\gamma^6 - 120\gamma^4 + 60\gamma^2 - 5}{3(\gamma^2 - 1)^3}\Gamma^2 - \frac{8\nu\gamma(14\gamma^2 + 25)}{3(\gamma^2 - 1)} - 8\nu\frac{(4\gamma^4 - 12\gamma^2 - 3)}{(\gamma^2 - 1)}\frac{4\pi^2}{\sqrt{2\pi^2 - 1}} + \left(\frac{GM}{|b|}\right)^3 \left(2\frac{64\gamma^6 - 120\gamma^4 + 60\gamma^2 - 5}{3(\gamma^2 - 1)^3}\Gamma^2 - \frac{8\nu\gamma(14\gamma^2 + 25)}{3(\gamma^2 - 1)} - 8\nu\frac{(4\gamma^4 - 12\gamma^2 - 3)}{(\gamma^2 - 1)}\frac{4\pi^2}{\sqrt{2\pi^2 - 1}} + \left(\frac{GM}{|b|}\right)^3 \left(2\frac{64\gamma^6 - 120\gamma^4 + 60\gamma^2 - 5}{3(\gamma^2 - 1)^3}\Gamma^2 - \frac{8\nu\gamma(14\gamma^2 + 25)}{3(\gamma^2 - 1)} - 8\nu\frac{(4\gamma^4 - 12\gamma^2 - 3)}{(\gamma^2 - 1)}\frac{4\pi^2}{\sqrt{2\pi^2 - 1}} + \frac{6\pi^2}{\sqrt{2\pi^2 - 1}}\frac{4\pi^2}{\sqrt{2\pi^2 - 1}}$$

$$\frac{GM}{|b|} \frac{2(2\gamma^2 - 1)}{\gamma^2 - 1} + \left(\frac{GM}{|b|}\right)^2 \frac{3\pi(5\gamma^2 - 1)}{4(\gamma^2 - 1)} + \left(\frac{GM}{|b|}\right)^3 \left(2\frac{64\gamma^6 - 120\gamma^4 + 60\gamma^2 - 5}{3(\gamma^2 - 1)^3}\Gamma^2 - \frac{8\nu\gamma(14\gamma^2 + 25)}{3(\gamma^2 - 1)} - 8\nu\frac{(4\gamma^4 - 12\gamma^2 - 3)}{(\gamma^2 - 1)}\frac{\mathrm{arc}}{\sqrt{\gamma^2 - 1}}\right) + \left(\frac{GM}{|b|}\right)^3 \left(2\frac{64\gamma^6 - 120\gamma^4 + 60\gamma^2 - 5}{3(\gamma^2 - 1)^3}\Gamma^2 - \frac{8\nu\gamma(14\gamma^2 + 25)}{3(\gamma^2 - 1)} - 8\nu\frac{(4\gamma^4 - 12\gamma^2 - 3)}{(\gamma^2 - 1)}\frac{\mathrm{arc}}{\sqrt{\gamma^2 - 1}}\right) + \left(\frac{GM}{|b|}\right)^3 \frac{4\nu(2\gamma^2 - 1)^2}{(\gamma^2 - 1)^{3/2}} \left(-\frac{8}{3} + \frac{1}{v^2} + \frac{(3v^2 - 1)}{v^3}\mathrm{arccosh}\gamma\right) \qquad \Gamma = E/M = \sqrt{1 + 2\nu(\gamma^2 - 1)} + \frac{1}{M^2} + \frac{1}{$$

3PM radiation-reaction

Radiated 4-momentum:
$$P_{\rm rad}^{\mu} = -\Delta p_1^{\mu} - \Delta p_2^{\mu}$$

 $P_{\rm rad}^{\mu} = \frac{G^3 m_1^2 m_2^2 \pi}{|b|^3} \frac{v_1^{\mu} + v_2^{\mu}}{\gamma + 1} \left[e_1 + e_2 \log\left(\frac{\gamma + 1}{2}\right) + e_3 \frac{\arccos \gamma}{\sqrt{\gamma^2 - 1}} \right]$

Dissipation! Need for retarded propagators

$$e_{1} = \frac{210\gamma^{6} - 552\gamma^{5} + 339\gamma^{4} - 912\gamma^{3} + 3148\gamma^{2} - 3336\gamma}{48(\gamma^{2} - 1)^{3/2}}$$

$$e_{2} = -\frac{35\gamma^{4} + 60\gamma^{3} - 150\gamma^{2} + 76\gamma - 5}{8\sqrt{\gamma^{2} - 1}},$$

$$e_{3} = \frac{\gamma(2\gamma^{2} - 3)(35\gamma^{4} - 30\gamma^{2} + 11)}{16(\gamma^{2} - 1)^{3/2}}.$$

STATS FOR 4PM:

High Performance Computing Needed:

€ww€

éww**e**wwé

- Number of diagrams: 201 Non-spinning, 529 spin-orbit
- Analytic! Using Mathematica, FORM, Fire & KIRA

& MANNE Num \sim

[Jakobsen,Mogull,JP,Sauer]

Pepsi: (with Uwer) Xeon Gold 48 physical Cores with 1.5 TByte Main Memory

Deepthought: Xeon Gold 18 physical Cores with 0.5 TByte Main Memory

Some 10.000 integrals need to be reduced to the master integrals (I-type 23+23, J-type 64+66)

RESULT SPINNING IMPULSE @ 4PM PRECISION: CONSERVATIVE SECTOR

Scattering angle:

$$\theta_{\rm cons}^{(4,1)} = \sum_{\alpha=1}^{16} \pi \nu \left(s_+ h_{\alpha}^{(+)}(\gamma) + \delta s_- h_{\alpha}^{(-)}(\gamma) \right) F_{\alpha}^{(b)}(\gamma)$$

Spin-orbit coupling: $s_{\pm} = -(a_1 \pm a_2) \cdot \hat{L}$

Function basis:
$$F_{\alpha}^{(b)}(\gamma) = \{1, \operatorname{arccosh}[\gamma], \log[\gamma], \log\left[\frac{\gamma_{+}}{2}\right], \log\left[\frac{\gamma_{-}}{2}\right], \operatorname{arccosh}^{2}[\gamma], \operatorname{arccosh}[\gamma] \log\left[\frac{\gamma_{+}}{2}\right], \operatorname{arccosh}[\gamma] \log\left[\frac{\gamma_{-}}{2}\right], \operatorname{arccosh}[\gamma] \log\left[\frac{\gamma_{-}}{2}\right], \operatorname{bg}\left[\frac{\gamma_{-}}{2}\right], \operatorname{bg}\left[\frac{\gamma_{-}}{2}\right], \operatorname{bg}\left[\frac{\gamma_{-}}{2}\right], \operatorname{Li}_{2}\left[\frac{\gamma_{-}}{\gamma_{+}}\right], \operatorname{Li}_{2}\left[-\frac{\gamma_{-}}{\gamma_{+}}\right], \operatorname{Li}_{2}\left[\sqrt{\frac{\gamma_{-}}{\gamma_{+}}}\right], \operatorname{Li}_{2}\left[\sqrt{\frac{\gamma_{-}}{\gamma_{+}}}\right], \operatorname{Li}_{2}\left[\sqrt{\frac{\gamma_{-}}{\gamma_{+}}}\right], \operatorname{Li}_{2}\left[\frac{\gamma_{-}}{\gamma_{+}}\right], \operatorname{Li}_{2}\left[\frac{\gamma_{-}}{\gamma_{+}}\right], \operatorname{Li}_{2}\left[\frac{\gamma_{-}}{\gamma_{+}}\right], \operatorname{Li}_{2}\left[\sqrt{\frac{\gamma_{-}}{\gamma_{+}}}\right], \operatorname$$

Coefficients:

$$h_{1}^{(+)} = \frac{3\pi^{2}(\gamma+1)^{2}(1225\gamma^{8}+1225\gamma^{7}-1875\gamma^{6}-1875\gamma^{5}+795\gamma^{4}+3035\gamma^{3}-3601\gamma^{2}+1775\gamma-448)}{192(\gamma+1)^{3}\sqrt{\gamma^{2}-1}} - \frac{1}{192\gamma^{8}(\gamma+1)(\gamma^{2}-1)^{5/2}} \left(22050\gamma^{19}+33075\gamma^{18}-71725\gamma^{17}-123397\gamma^{16}+186555\gamma^{15}+67503\gamma^{14}-89885\gamma^{13}-190167\gamma^{12}+181103\gamma^{11}+137042\gamma^{10}-506830\gamma^{9}+407004\gamma^{8}-33671\gamma^{7}-33671\gamma^{6}+8501\gamma^{5}+8501\gamma^{4}-1885\gamma^{3}-1885\gamma^{2}+315\gamma+315}\right) \\ h_{1}^{(-)} = \frac{3\pi^{2}(-1225\gamma^{8}-1225\gamma^{7}+1875\gamma^{6}+1875\gamma^{5}-795\gamma^{4}-1115\gamma^{3}+401\gamma^{2}-111\gamma+64)(\gamma+1)^{2}}{192(\gamma+1)^{3}\sqrt{\gamma^{2}-1}} + \frac{1}{192\gamma^{8}(\gamma+1)(\gamma^{2}-1)^{5/2}} \left(22050\gamma^{19}+33075\gamma^{18}-71725\gamma^{17}-115333\gamma^{16}+96699\gamma^{15}+140871\gamma^{14}-56261\gamma^{13}-73191\gamma^{12}-6593\gamma^{11}+27498\gamma^{10}-3718\gamma^{9}+9004\gamma^{8}-1491\gamma^{7}-1491\gamma^{6}+313\gamma^{5}+313\gamma^{4}+95\gamma^{3}+95\gamma^{2}-105\gamma-105}\right) \dots$$

[Jakobsen,Mogull,JP,Sauer]

$$\frac{21\pi\gamma \left(33\gamma ^{4}-30\gamma ^{2}+5\right) \left(13s_{+}-3\delta s_{-}\right) }{32 \left(\gamma ^{2}-1\right) ^{5/2}}$$

$$\gamma = v_1 \cdot v_2$$
$$\delta = (m_2 - m_2)$$

$$\nu = m_1 m_2$$

4PM RADIATIVE SPINNING IMPULSE: CHECKS

scattering angle (unpublished)

GRAVITATIONAL BREMSSTRAHLUNG

[Jakobsen,Mogull,JP,Sauer]

FAR FIELD WAVEFORM @ NLO

Sum of diagrams with outgoing graviton:

$$\langle h_{\mu\nu}(k) \rangle = \int_{q_2 \uparrow q_2}^{1} \int_{q_2 \to q_2$$

$$\frac{f_{+,\times}(t-r,\hat{\mathbf{x}})}{r} = \frac{4G}{r} \int d\Omega e^{-i\Omega(t-r)} d\Omega e^{-i\Omega(t-r)}$$

FIG. 11. FICIOBrentastratilling att 2204 and a more contributed Branstinhlandbrandhlindevantioes. teri üztesenel harsperindine Everti(1993) Ai in 14 hereesti the here and the second the second se The waveform has two polarization is the interested with a party space of the providence of the provid

$$f_{+,\times}(\underbrace{t-r}_{u}, \underbrace{\theta, \phi}_{\hat{\mathbf{x}}}; v, |b|, \underbrace{m_{1}}_{e}, \underbrace{m_{2}}_{e}, \underbrace{m_{1}}_{e}, \underbrace{m_{2}}_{e}, \underbrace{m_{2}}_$$

Visualization: Plus-Polarization $f_{+}^{(2)}$

v = 0.4

[HU/AEI BSc thesis Babayemi]

THE PRESIONS FOR THE PRIME OF T

																					AL 187
	$\tilde{\eta}$								1A		10						R.	93	5/05		Ę
1.		1	16	TPO	THE	COL	HL/		3.74	18 S	RA		$N S^{+}$	3	47	14		Ľ		23	1

Visualization: Plus-Polarization curvature

More visualisations at:

v = 0.4

https://www.youtube.com/channel/UC5UVcydoMoG7ILkJo9bikIw

FIG.2. Total radiated angular momenta for the scattering of $\sqrt{1-2}$ **FRANCE Representation of the set of the se** $K_{1}^{\mu\nu}v_{2}\cdot K_{1}\cdot \rho - 2(v_{2}\cdot K_{1})^{(\mu}(\rho\cdot K_{1})^{\mu}$ btal initial spinaves memory is propertional to M_{1}^{2} $\frac{\mu\nu}{i} \frac{\mu}{b} \frac{\mu}{i} \frac{\mu}{b} \frac{\mu}{i} \frac{\mu$ body; $b^2 = |b|^2 = \frac{1}{b} k b_{\mu}$ (the impact of angular momenta emitted orthogonal to the b, v plane $f_{S=0}^{(2)}$ $4(2\gamma^2 - 1)\epsilon \cdot v_1(2b \cdot \epsilon \rho)$ celike) and interpretent interpr $\tilde{b}_{\mu}P_{1,2}^{\mu\nu}\tilde{b}_{\nu}K_{i}^{\mu\nu}/b$ $\tilde{b}_{\mu}\tilde{c}_{i}^{\mu\nu}/b$ $\tilde{b}_{i}\tilde{c}_{i}^{\mu\nu}/b$ $\tilde{b}_{i}\tilde{c}_{i}\tilde{c}_{i}^{\mu\nu}/b$ $\tilde{b}_{i}\tilde{c}_{i}\tilde{c}_{i}^{\mu\nu}/b$ $\tilde{b}_{i}\tilde{c}_{i}\tilde{c}_{i}^{\mu\nu}/b$ $\tilde{b}_{i}\tilde{c}_{i}\tilde{c}_{i}^{\mu\nu}/b$ $\tilde{b}_{i}\tilde{c}_{i}\tilde{c}_{i}^{\mu\nu}/b$ $\tilde{b}_{i}\tilde{c}_{i}\tilde{c}_{i}\tilde{c}_{i}^{\mu\nu}/b$ $\tilde{b}_{i}\tilde{c}_{i}\tilde{c}_{i}\tilde{c}_{i}^{\mu\nu}/b$ $\tilde{b}_{i}\tilde{c}_{i}\tilde{c}_{i}\tilde{c}_{i}\tilde{c}_{i}^{\mu\nu}/b$ $\tilde{b}_{i}\tilde{c}_{i$ ahaesre The is second the supplementary is laterial period anski vectors a_i^{μ} as $\mathfrak{S}_{i+}^{\mu\nu}$, $\mathfrak{T} \in \mathfrak{S}_{i}^{\mu\nu}$, $\mathfrak{S}_{i+}^{\mu\nu}$, \mathfrak{S}_{i+ th higher powers of q^{μ} in the numerators are derived = 0. In the aligned spin case what E is two Kerr'black holes (C $-iaking derivatives with respect to b^{\mu}. \underline{2a_i} \cdot b_1 = a_i [\cdot v_j] = 0, \quad ihe spin vectors are orthogond-opposite ispin (a) = b_1 - b_2 -$ $\frac{\overline{Results_{2}}}{\overline{R}} = \frac{1}{2} \frac{$ $\frac{(2f^{2})^{2}}{(2f^{2})^{2}} = \sum_{i=1}^{2} \frac{(2i)^{2}}{(2i)^{2}} \frac{|\tilde{b}|^{2}}{|\tilde{b}|^{2}} = \frac{|\tilde{b}|^{2}}{(2i)^{2}} \frac{|\tilde{b}|^{2}}{|\tilde{b}|^{2}} = \frac{|\tilde{b}|^{$ $\bar{\mathbf{r}}_{e}^{\mu\nu} | \tilde{\mathbf{h}}|_{i}^{2} \operatorname{cbefficients} \langle \mathcal{A}_{i}^{(s)} \rangle^{\nu} | \mathcal{A}_{i}^{(s)} \rangle = \mathcal{A}_{i}^{2} | \mathcal{A}_{i}^{(s)} \rangle | \mathcal{A}_{i}^{(s)}$ by are nunctions of $\psi_{\tau} \equiv 0$. Both intervences any philinear waveform consisting of single-gravito in the Supplementary Material versions of expand the waveform $f_{\tau} = (1 + 1)^{Tad} + 10^{Tad} + 10^{Tad}$ and M-type contributions in Figure under the SUSY transformations in the desingle-graviton emission from (ardd)²there is manifestly no Where y have introduced with equal spins $S_i^{\mu\nu}$ or impact parameter 0) For two Kerr

COMPARISON TO NUMERICAL RELATIVITY AND RESUMMATION TECHNIQUES

Spinning BH scattering angle: Equal mass & equal spin

[Rettengo, Pratten, Thomas, Schmidt, Damour]

PM STATE-OF-THE-ART

WQFT

[Comberiati,Shi][Wang]

WEFT Worldline effective theory [Jakobsen,Mogull,Plefka,Sauer,Steinhoff] [Källin,Porto,Dlapa,Cho,Liu,..] [Bastianelli,Comberiati,de la Cruz] [Riva Vernizzi Mougiakakos]

[Riva, Vernizzi, Mougiakakos..]

deflection & spin kick order spin-orbit plain spin-spin spin>2 WQFT WEFT WQFT WEFT WQFT WEFT **1PM** HEFT Amps HEFT Amps Amps HEFT HEFT Amps WEFT WEFT WQFT WQFT WQFT WEFT **2PM** HEFT Amps HEFT HEFT Amps Amps HEFT Amps **3PM** WQFT WEFT WQFT WQFT w/o r-r HEFT Amps Amps Amps WQFT WEFT WQFT WQFT **3PM** HEFT Amps r-r **4PM** WQFT WQFT WEFT w/o r-r Amps WQFT WEFT WQFT **4PM** w r-r Amps

r-r: Radiation-reaction

HEFT Heavy [Aoude [Brandł	BH effective th ,Haddad,Helse nuber,Travaglin	Scattering an [Bern,Roiban, [Bjerrum-Bohr [Di Vecchia,Ve [Solon,Cheun] [Guevera,Och [Johansson,Pi Cristofoli, Goi	nplitudes Shen,Parra-Martinez,Re r,Damgaard,Plante,Van eneziano,Heissenberg,F g,][Huang,] irov,Vines,] chini[Kosower,O'Conne nzo]			
tidal	plain	spin-orbit spin-spin	tidal	Integration complexity		
Χ	trivial	trivial	trivial	~ tree-level		
WQFT WEFT	WQFT WEFT Amps HEFT	WQFT WEFT	WQFT WEFT	~ 1 - loop		
WQFT WEFT	Amps HEFT			~ 2-loop		
				~ 3-loop		

(...) : partial results

Worldline Quantum Field Theory: Highly efficient technology for classical scattering in GR

- "Quantize" world-line degrees of freedom
- One-point functions = observables
- Classical theory = tree-level diagrams
- IN-IN Formalism: All propagators retarded.
- Include spin degrees of freedom through world-line supersymmetry

OUTLOOK

WQFT still needs to be extended:

- Higher precision (4PM Spin-Spin, 5PM)
- •Higher spin (beyond Spin-Spin)
- Bound orbits? Resummation in Effective-one-body Formalism
- Contact to self force expansion?

Thank you for your attention!

WE ARE HIRING!

Fall 23: Long Term Postdoc (5y), 2 PhD Fall 24: Postdoc (4y), 1 PhD

European Research Council Established by the European Commission

BACKUP

POST-NEWTONIAN VS POST-MINKOWSKIAN EXPANSIONS

Conservative non-spinning 2-body dynamics:

		OPN	1PN	2PN	3PN	4PN	5PN		Integration complexity
OPM [Einstein]	1	V ²	V ⁴	V ⁶	V ⁸	V ¹⁰	V 12		
1PM [Westpfahl]		G/r [Newton]	G v²/r _[EIH]	G v4/r	G v⁰∕r	G v ⁸ /r	G v ¹⁰ /r		~ tree-level
2PM [many]			G² 1/r²	G² v²/r²	G ² v ⁴ /r ²	G ² v ⁶ /r ²	G ² v ⁸ /r ²		~ 1-loop
3PM				G ³ 1/r ³	G ³ v ² /r ³	G ³ v ⁶ /r ³	G ³ v ⁸ /r ³		~ 2-loop
n,Cheung,Roiban,S ,Vanhove,Damgaaro	hen, Solon,Zeng][d][Brandhuber,Ch	Kälin, Liu, Porto][Di en,Travaglini,Wen][Ja	Vecchia, Heissenbe kobsen,Mogull,JP,S	erg, Russo,Venezian Sauer]	o][Bjerrum-				
(4PM)	PM state-of-the-art				G4 1/r4	G ⁴ v ² /r ⁴	G ⁴ v ⁶ /r ⁴		~ 3-loop
n,Parra-Martinez,Ro	oiban,Ruf,Shen,So	lon,Zeng][Dlapa,Käll	in,Liu,Porto]	-			▲		
						G ⁵ 1/r ⁵	Ι:		
						PN s	state-of-th	ne-art	

[Bern Bohr,

[Bern