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GRAVITATIONAL TWO-BODY PROBLEM/d
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During inspiral: weak gravitational fields
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gµ⌫ = ⌘µ⌫ +
p
Ghµ⌫

Black Hole/Neutron Star Binaries: 

K
W

·

E ↑
I

v

W
S

I

E
"

e
E

Bound state

4

݄ା 

݄× 

0 
ߨ
2 

ߨ3
2  ߶ ߨ2 ߨ 

Figure 1: The physical e↵ect of the GW polarizations h+ and h⇥. In the illustration, a sinusoidal GW travels through the z
axis or perpendicular to the page and the e↵ect over the ring of particle that lay in the xy plane or over the page is to stretch
and to squeeze the separation distance between them.

C. Gravitational Waves from Inspiral Binary Systems

The first two direct observations of GW signals recently reported by the LIGO team (GW150914 and GW151226)
were produced by the coalescence of two stellar-mass black holes [13, 14]. In these systems, the two objects gradually
spirals inwards while GW are emitted. In this process, the system evolves in three di↵erent phases, inspiral, merger
and ringdown (Figure 2).

In the inspiral phase the two objects are orbiting and approaching each other while the orbital frequency increases.
At this stage, post-Newtonian approximations to general relativity analytically model the evolution of the system
and thus, high accurate signals can be computed [22]. The resulting GW waveform is a chirp signal, i.e., a sinusoid
increasing in frequency and amplitude up to a limit. The merger phase initiates when the separation distance between
the two objects reaches the so-called innermost stable circular orbit (ISCO). In consequence, the objects collide and
plunge into one. The system is dynamically unstable which leads to a highly complex non-linear system of the Einstein
equations where no analytical solution exits. Therefore, numerical relativity is needed to compute the GW signal [23].
Finally, the ringdown phase stars after the collision and the resulting object, a black hole, relaxes to a stationary
state. In this process, the perturbation theory can used to analytically solve the Einstein equations. This leads to
the quasi-normal modes of the final Kerr black hole where the GW signal is described by well-modeled exponentially
damped sinusoidal oscillations [24]. These three stages in the life of a compact binary system are known as Compact
Binary Coalescence (CBC).

Inspiral Merger Ringdown 

Post െ Newtonian 
Theory 

Perturbation 
Theory 

Numerical 
Relativity 

Figure 2: The three phases in the temporal evolution of a binary system. In the inspiral phase the two object are orbiting and
approaching each other. In the merger phase the two objects fuse into one. In the ringdown phase the resulting object relaxes
to a stationary state.

This work focuses in the detection of GW from the inspiral phase using LIGO data. To accomplish this, we need
the analytical model of the GW. The masses of the two astrophysical objects are m1 and m2, they are separated
a distance a and are orbiting in their common center of mass. The reference frame of the source (Figure 3) is the
Cartesian coordinate system (x, y, z) where the origin is the center of the binary, and the GW is observed at point

inspiral merger
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t

Quantum field theory formalism for classical two-body problem:

WORLDLINE QUANTUM FIELD THEORY
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THE GENERAL RELATIVISTIC  2-BODY PROBLEM
As in Newtonian case has either bound or unbound orbits.

Inspiral of 2 black holes or neutron stars: 

Virial-theorem: 

post-Newtonian (PN) expansion in   & G
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gµ⌫ = ⌘µ⌫ + hµ⌫Weak field expansion:
<latexit sha1_base64="VKUaQRQhNDG/OLL3M0UU/bHPZUc="></latexit>
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32⇡G

Newton’s constant
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Scattering of 2 black holes or neutron stars: 

Weak field ( ), but exact in 

post-Minkowskian (PM) expansion

G
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@µ :=
@

@xµ

WARMUP: ELECTROMAGNETISM

Scattering of charged particles in Maxwell’s theory
<latexit sha1_base64="QejpxF1f4qbOSX6TZUFyQaWk+R0="></latexit>

Fµ⌫ = @µA⌫ � @⌫Aµ

Charged particles Maxwell theory & gauge fixing
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2X

i=1

Z
d⌧i

✓
mi

q
⌘µ⌫ ẋ

µ
i (⌧i) ẋ

⌫
i (⌧i)� qi Aµ(x) ẋ

µ
i (⌧i)

◆
� 1

16⇡

Z
d4xFµ⌫(x)F

µ⌫(x) + Sg.f

straight line: „in“ state deflectionsemitted radiation

Non trivial due to back reaction !

<latexit sha1_base64="KExzjtHe/5ZhaMYVCEvdYfUHzOE="></latexit>

Aµ(x) =
1X

n=1

qn A(n)
µ (x)
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xi(⌧) = bµi + vµi ⌧ +
1X

n=1

qnz(n)µi (⌧)

Solve perturbatively  in  qi

Equations of motion:

Maxwell’s eqs.
Lorentz  eqs.
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@µF
µ⌫(x) = 4⇡j⌫(x)
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WARMUP: ELECTROMAGNETISM 
1) Worldline simplification:  Introduce „Einbein“  e(τ)

<latexit sha1_base64="P7kYg7w836Tn/m1eFyPXWTV0hqk=">AAADDHicjVG7btRAFD0xryS8FihpRqyQKKLV7CoraJAiXqJBChKbRFpvVmPvxFhreyx7HBEs/wJfQxfRUtNS0sIvUHA8cSJBJGAs+54599zjO3ODPIlLK+XXFe/CxUuXr6yurV+9dv3Gzd6t2zulqYpQT0KTmGIvUKVO4kxPbGwTvZcXWqVBoneD5dM2v3uoizI22Rt7lOtZqqIsPohDZUnNe5PadybTIgpmtRyMJddoQw7auDne6Jhxo/frUdOIx0L42qp57aeVn1WNvzBWvNvnTpzCrBLzXv/EQUpxHgw70Ee3tk3vC3wsYBCiQgqNDJY4gULJZ4ohJHJyM9TkCqLY5TUarLO2okpTocgu+Y24q4kNNYb6Bmu4D4EXrjqgvv2DJi4Zf/J977joL26KnbXdHDEGZ46vyFu8peJflWmnbFj1f5VTshYHeOTOHbO/3DHt/YRnPs+YKcgtXUbguVNG9Ajc/pA3kDFO2EF7o6cOwp14wahc1M4l6xwV/QrG9qbZD0c6/HOA58HOaDAcD+Trzf7Wk264q7iLe3jACT7EFl5im32EOMY3fMcP74P30Tv2Pp1IvZWu5g5+W97nX+lFqJ0=</latexit>

e2 = ⌘µ⌫ ẋ
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S̃p = �m

2

Z
(e�1 ⌘µ⌫ ẋ

µẋ⌫ + e)
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Z
d⌧

p
⌘µ⌫ ẋµẋ⌫

Algebraic equations of motion for  :     e
δS̃
δe

= 0
Plug this back into 
  to find  
S̃p Sp

Proper time gauge:    e = 1 ↔ ·x2 = 1

2) Space-time simplification: Go to Lorenz gauge:    ∂ ⋅ A = 0

3) Gauge fixed theory:

Worldline Space-time
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TRICK: QED WITHOUT THE Q

To set up efficient perturbation theory: Quantize and take   limit!ℏ → 0
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xµ
i (⌧) = bµi + vµi ⌧ + zµ(⌧)
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lim
~!0

hzµ(⌧)i = zµclassical(⌧)
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hAµ(x)i = Aµ
classical(x)
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i
~ S̃[A,z]

Tree-level one-point functions             

solve classical equations of motion
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Propagators: 
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hAµ(k)A⌫(�k)i = i
⌘µ⌫

(k0 + i0)2 � ~k2
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FIG. 1. The three diagrams contributing to the
Bremsstrahlung at 2PM order, where !i = k·vi by energy con-
servation at the worldline vertices. All three diagrams have
the integral measure in Eq. (16); in the rest frame of black
hole 1 diagram (a) does not contribute as soon as the outgo-
ing graviton is contracted with a purely spatial polarization
tensor.

these waveforms we furthermore reproduce Damour’s re-
cent result for the total radiated angular momentum [22]
at 2PM order. Our results also complement the recent
result of the total radiated momentum at leading order in
G (3PM) established with amplitude techniques [30]. We
comment on how to achieve this result from our methods.

Worldline Quantum Field Theory. — The classical
gravitational scattering of two massive objects mi mov-
ing on trajectories xµ

i (⌧i) = bµ
i +vµ

i ⌧i+zµ
i (⌧i) is described

by the worldline quantum field theory (WQFT) with par-
tition function [29]
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where SEH+Sgf is the gauge-fixed Einstein-Hilbert action
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with 2 = 32⇡G the gravitational coupling; we have sup-
pressed the ghost contributions in Eq. (1) as they are ir-
relevant in the classical setting. We work in mostly minus
signature, ⌘µ⌫ = diag(1, �1, �1, �1), and set c = ~ = 1.

Correlation functions in the WQFT hO(h, {xi})iWQFT

result from an insertion of the operator O in the path
integral and dividing by ZWQFT. Moving to momentum
space for the graviton hµ⌫(k) and energy space for the
fluctuations zµ(!) we have the retarded propagators

k
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The energy ! is also taken as outgoing. One also has the
standard bulk graviton vertices, of which we shall need
only the three-graviton vertex — see e.g. Ref. [31].

To determine the Bremsstrahlung of two travers-
ing black holes we compute the expectation value
k2

hhµ⌫(k)iWQFT. At leading (2PM) order there are three
diagrams contributing, cp. Fig. 1. We integrate over the
momenta or energies of internal gravitons or fluctuations
respectively; lack of three-momentum conservation at the
worldline vertices leaves unresolved integrals for the tree-
level diagrams.

Diagram (a) of Fig. 1 then takes the form1
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1 In principle we should also contract with Pµ⌫;⇢� for an outgo-
ing graviton line; however as the polarization tensors eµ⌫

+,⇥ are
traceless we find it unnecessary.
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The energy ! is also taken as outgoing. One also has the
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only the three-graviton vertex — see e.g. Ref. [31].

To determine the Bremsstrahlung of two travers-
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hhµ⌫(k)iWQFT. At leading (2PM) order there are three
diagrams contributing, cp. Fig. 1. We integrate over the
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The energy ! is also taken as outgoing. One also has the
standard bulk graviton vertices, of which we shall need
only the three-graviton vertex — see e.g. Ref. [31].
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The energy ! is also taken as outgoing. One also has the
standard bulk graviton vertices, of which we shall need
only the three-graviton vertex — see e.g. Ref. [31].
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result of the total radiated momentum at leading order in
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with 2 = 32⇡G the gravitational coupling; we have sup-
pressed the ghost contributions in Eq. (1) as they are ir-
relevant in the classical setting. We work in mostly minus
signature, ⌘µ⌫ = diag(1, �1, �1, �1), and set c = ~ = 1.
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The energy ! is also taken as outgoing. One also has the
standard bulk graviton vertices, of which we shall need
only the three-graviton vertex — see e.g. Ref. [31].

To determine the Bremsstrahlung of two travers-
ing black holes we compute the expectation value
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hhµ⌫(k)iWQFT. At leading (2PM) order there are three
diagrams contributing, cp. Fig. 1. We integrate over the
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result from an insertion of the operator O in the path
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k2

hhµ⌫(k)iWQFT. At leading (2PM) order there are three
diagrams contributing, cp. Fig. 1. We integrate over the
momenta or energies of internal gravitons or fluctuations
respectively; lack of three-momentum conservation at the
worldline vertices leaves unresolved integrals for the tree-
level diagrams.

Diagram (a) of Fig. 1 then takes the form1

k2
hhµ⌫(k)iWQFT

���
(a)

= �
m1m23

8

Z

q1,q2

µ1,2(k)
(2!1v

(µ
1

�⌫)

⇢ � vµ
1
v⌫
1
k⇢)(2!1v

(�
1

⌘�)⇢
� v�

1
v�
1
q⇢
2
)

(!1 + i✏)2
P��;↵�

[(q0

2
+ i✏)2 � q2

2]
v↵
2
v�
2
,

(6)

1 In principle we should also contract with Pµ⌫;⇢� for an outgo-
ing graviton line; however as the polarization tensors eµ⌫

+,⇥ are
traceless we find it unnecessary.

=
m

2
eik·b��(k · v + !) (5)

⇥

⇣
2!v(µ�⌫)

⇢ + vµv⌫k⇢

⌘
.

The energy ! is also taken as outgoing. One also has the
standard bulk graviton vertices, of which we shall need
only the three-graviton vertex — see e.g. Ref. [31].

To determine the Bremsstrahlung of two travers-
ing black holes we compute the expectation value
k2

hhµ⌫(k)iWQFT. At leading (2PM) order there are three
diagrams contributing, cp. Fig. 1. We integrate over the
momenta or energies of internal gravitons or fluctuations
respectively; lack of three-momentum conservation at the
worldline vertices leaves unresolved integrals for the tree-
level diagrams.

Diagram (a) of Fig. 1 then takes the form1

k2
hhµ⌫(k)iWQFT

���
(a)

= �
m1m23

8

Z

q1,q2

µ1,2(k)
(2!1v

(µ
1

�⌫)

⇢ � vµ
1
v⌫
1
k⇢)(2!1v

(�
1

⌘�)⇢
� v�

1
v�
1
q⇢
2
)

(!1 + i✏)2
P��;↵�

[(q0

2
+ i✏)2 � q2

2]
v↵
2
v�
2
,

(6)

1 In principle we should also contract with Pµ⌫;⇢� for an outgo-
ing graviton line; however as the polarization tensors eµ⌫

+,⇥ are
traceless we find it unnecessary.

μ ν



Propagators: 
<latexit sha1_base64="Br8zv0UWaDJqEeZ4Senoa76Cd94="></latexit>

hAµ(k)A⌫(�k)i = i
⌘µ⌫

(k0 + i0)2 � ~k2

<latexit sha1_base64="3UmJeXzprKpbD2kEaqurXfQD430="></latexit>

hzµ(!)z⌫(�!)i = � i

m

⌘µ⌫
(! + i0)2

FEYNMAN DIAGRAMMATIC EXPANSION

4

where pcani,µ = −∂Lpp/∂ẋµ
i is the canonical momentum

conjugated to xµ. Since we are studying a scattering pro-
cess, in past and future infinity we may assume that the
point particles are so far separated that the interaction
terms vanish. In this case pcani,µ reduces to the kinematic
momentum miẋ

µ
i , so we have

mi∆ẋµ
i = i

∂ lnZWQFT

∂bi,µ
. (14)

Therefore in this letter, we define the generalized eikonal
phase for more than two worldlines as,

χ = −i lnZWQFT. (15)

In section III, we will perform a double copy for the
eikonal to next-to-leading order.
Since we will mostly work in momentum space, it will

be useful to express the worldline fluctuations as

zµ(τ) =

∫

ω
e−iωτzµ(ω),

Ψ(τ) =

∫

ω
e−iωτΨ(ω),

Ψ †(τ) =

∫

ω
e−iωτΨ †(−ω) .

(16)

The dual color wave function Ψ̃ in momentum space is
defined in the same way as Ψ . For convenience we use
the integral shorthands

∫

ω :=
∫

dω
2π ,

∫

k :=
∫

d4k
(2π)4 as well

as δ−(ω) := 2πδ(ω) and δ−(4)(kµ) := (2π)4δ(4)(kµ). When
evaluated on the worldline, the generic field Φ may be
expanded as

Φ(x(τ)) =

∫
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)

+O(z2). (17)

We take the expansion only to linear order in zµ since
this is the highest term we need in this letter. A complete
expression of hµν to all orders in z may be found in [16].
Next we extract the Feynman rules from the worldline

actions. The worldline propagators are the same in all
three theories,

zµ zν
ω

= − i

m

ηµν

ω2
(18)

Ψ † Ψ
ω

=
i

ω
. (19)

The propagator of the dual field Ψ̃ is identical to the one
for Ψ .
Let us now begin with the analysis of the Yang-Mills

coupled WQFT. With (16) and (17) we can expand the
interaction term of Spc from eq. (2) as
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)
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+ vµ(ψ†T aΨ(−ω)+Ψ †(ω)T aψ)
]

+O
(
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)

where we keep the interaction to linear order in worldline
fluctuations. The Feynman rules of the worldline-gluon

vertices can be directly read off from (20),

Aa
µ

k = igeik·bδ−(k · v)vµca (21)

zρ

Aa
µ

ω

k = −geik·bδ−(k·v + ω)

× (ωηµρ + vµkρ)ca
(22)

Ψ †

Aa
µ

ω

k = igeik·bδ−(k · v + ω)vµ(T aψ) (23)

Ψ

Aa
µ

ω

k = igeik·bδ−(k · v − ω)vµ(ψ†T a). (24)

Turning to the bi-adjoint scalar coupled WQFT, we
can expand the worldline-scalar coupling of (6) in the
same way,

Scc
int =

y

m

∫

dτφaã(x(τ))Ca(τ)C ã(τ) (25)

=
y

m

∫

k
eik·bφaã(−k)δ−(k · v)cacã

We treat the gravitational field hµ⌫(x) and deflection zµ(⌧) on an equal footing.

As we are not interested in quantum corrections we will work at tree level, so we can

ignore the ghosts. The graviton is most naturally described in momentum space; the

deflection in energy space (or frequency, using E = ~!):

hµ⌫(x) =

Z

k

e�ik·xhµ⌫(k) , zµ(⌧) =

Z

!

e�i!⌧zµ(!) , (4.1)

where we have introduced the shorthands
Z

k

:=

Z
d4k

(2⇡)4
,

Z

!

:=

Z
d!

2⇡
. (4.2)

From this point onwards we specialize to D = 4. We will also absorb factors of (2⇡)

into the �-functions:

��(k) := (2⇡)4�(4)(k) , ��(!) := (2⇡)�(!) . (4.3)

The Einstein-Hilbert action (2.2) being integrated over all positions x implies the

usual momentum conservation at those interaction vertices; vertices arising from

Spm in (2.7) instead conserve the energy !.

First consider the Einstein-Hilbert action. The Feynman rules arising from here

are the usual ones involving only the graviton hµ⌫ , with propagator

k

hµ⌫(x) h⇢�(y) = iPµ⌫;⇢�

Z

k

e�ik·(x�y)

k2
, (4.4)

where Pµ⌫;⇢� = ⌘µ(⇢⌘�)⌫ �
1

2
⌘µ⌫⌘⇢�. We are flexible about the i✏ prescription: either

write the denominator as k2 + i✏, making it a time-symmetric Feynman propagator,

or (k0
± i✏)2 � k2, making it retarded/advanced. In the retarded case the poles in

k0 occur at k0 = ±
p
k2 � i✏: as both are below the real axis the integration contour

must be closed in the lower-half plane. So the integral is non-zero only when x0 > y0,

thus ensuring causality.

Next we consider the worldline action Spm given in eq. (2.7):

Spm = �
m

2

Z
1

�1

d⌧
�
gµ⌫ ẋ

µẋ⌫ + 1
�
. (4.5)

For now ignoring the parts containing hµ⌫ , we expand ẋµ(⌧) = vµ + żµ(⌧) to obtain

Spm|hµ⌫=0
= �

Z
1

�1

d⌧
⇣
m+m ⌘µ⌫v

µż⌫ +
m

2
⌘µ⌫ ż

µż⌫
⌘
, (4.6)

having used ⌘µ⌫vµv⌫ = 1. Both the first term (a constant) and the second term (a

boundary term) we can ignore; the third gives us our propagator for zµ:

!

zµ(⌧1) z⌫(⌧2) = �i
⌘µ⌫

m

Z

!

e�i!(⌧1�⌧2)

(! ± i✏)2
=

i⌘µ⌫

2m
(|⌧1 � ⌧2| ± (⌧1 � ⌧2)) . (4.7)
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Vertices

straight line background  bμ & vμ
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This term gives rise to the stress-energy tensor T µ⌫(k) = meik·b��(k · v)vµv⌫ (see e.g.

ref. [85]) which we interpret as a classical source for hµ⌫ . The Feynman rule is

hµ⌫(k)

= �i
m

2mPl

eik·b��(k · v)vµv⌫ , (4.12)

with k outgoing. It is a tadpole: the dotted line represents the worldline, and is

intended only as a visual aid. The linear terms in zµ are

Sint

pm

��
z
= �i

m

2mPl

Z

k,!

eik·b��(k · v + !)hµ⌫(�k)z⇢(�!)
�
2!v(µ�⌫)⇢ + vµv⌫k⇢

�
, (4.13)

from which we read o↵ the two-point vertex:

hµ⌫(k)

z⇢(!)
=

m

2mPl

eik·b��(k · v + !)
�
2!v(µ�⌫)⇢ + vµv⌫k⇢

�
. (4.14)

The energy ! is also taken as outgoing. Finally, to quadratic order in zµ:

Sint

pm

��
z2

=
m

2mPl

Z

k,!1,!2

eik·b��(k · v + !1 + !2)hµ⌫(�k)z⇢1(�!1)z
⇢2(�!2)⇥

✓
1

2
k⇢1k⇢2v

µv⌫ + !1k⇢2v
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(µ
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The associated trivalent Feynman vertex is

hµ⌫(k)

z⇢1(!1)
z⇢2(!2)

= i
m

mPl

eik·b��(k · v + !1 + !2)⇥ (4.16)
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While of course the second worldline fluctuation still travels on the worldline, we

draw it above to distinguish it from its partner.

Given that an n-graviton vertex carries an overall m2�n
Pl

, it might seem odd that

each of these z-vertices carries only a single power of m�1

Pl
. To rectify this we might

try rescaling zµ ! m�1

Pl
zµ, similar to how we write gµ⌫ = ⌘µ⌫ + m�1

Pl
hµ⌫ for the

graviton. However, we find this operation to be undesirable as it also rescales the

propagator (4.7) to carry an overall m2

Pl
. As we shall see, despite the higher-point

vertices carrying the same overall power of mPl, their appearance at low orders in

the PM expansion is ruled out by the combinatorics of which diagrams we can draw.
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⇥ [Numerator]

  Non-trivial loop integral due to hybrid (4d-1d) theory⇒
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RELATIVISTIC TWO BODY PROBLEM IN PM: TRADITIONAL  APPROACH 
Point-particle approximation for BHs (or NSs)

Point particle approximation Bulk gravity & gauge fixing

1) Equations of motion: <latexit sha1_base64="J0URwpa/GZJ/SEN9IxzsZz43B5Y="></latexit>

Rµ⌫ � 1

2
gµ⌫ =

2

8
Tµ⌫

Einstein’s eqs.
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ẍµ
i + �µ

⌫⇢ẋ
⌫
i ẋ

⇢
i = 0

Geodesic eqs.

3) Construct observables

Far field waveform:

„Impulse“ (change in momentum):

<latexit sha1_base64="mXJVakUmDN8wwKRFKQBieqn0a8g="></latexit>

lim
r!1

hµ⌫ =
fµ⌫(t� r, ✓,')

r
+O(

1

r2
)
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straight line: „in“ state deflectionsemitted radiation

2) Solve iteratively in 
<latexit sha1_base64="gqOnhn4WtQHF8ooes4RYnLpamAs="></latexit>

xµ
i (⌧) = bµi + vµi ⌧ +

1X
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Gnz(n)µi (⌧)
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gµ⌫ = ⌘µ⌫ +
p
G

1X

n=0

Gnh(n)
µ⌫ (x)
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+ [spin & tidal effects]

Model Black Holes/Neutron Stars as a point particles
<latexit sha1_base64="SH1nk+SA94Tc2pS49LPCumzirWw="></latexit>

SBH/NS = �m

2

Z
d⌧gµ⌫ ẋ

µ(⌧) ẋ⌫(⌧)

They interact through Einstein’s gravity: 

[Goldberger,Rothstein] [Porto,Källin] [Foffa,Sturani] 
WORCDLINEEFFECTIUE FELD THEORY
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WORLDLINE EFFECTIVE FIELD THEORY

<-> EFT logic
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xµ(⌧)
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S = SBH/NS +
1

16⇡G

Z
d4x
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�g R(g)
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gµ⌫ = ⌘µ⌫ +
p
Ghµ⌫

<latexit sha1_base64="9wXy+zOTFuF84HRk2gr/80mOJJ8="></latexit>

xµ
i (⌧) = bµi + vµi ⌧ + zµ(⌧)Scattering scenario:

and

   Advanced quantum field theory technology for classical gravitational wave physics⇒

<latexit sha1_base64="W3CMPVBGfrFxcwKZwYuC2zohGkc="></latexit>

hOiWQFT =

Z
D[h, z]O e�

i
~S[z,h]

Path integral quantisation perturbative in Newton’s constant G but exact in velocity

Tree-level one-point functions             

solve classical equations of motion
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Z
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gµ⌫ = ⌘µ⌫ +
p
Ghµ⌫
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xµ
i (⌧) = bµi + vµi ⌧ + zµ(⌧)Scattering scenario:

Worldline propagators: 
<latexit sha1_base64="3UmJeXzprKpbD2kEaqurXfQD430="></latexit>

hzµ(!)z⌫(�!)i = � i

m

⌘µ⌫
(! + i0)2

4

where pcani,µ = −∂Lpp/∂ẋµ
i is the canonical momentum

conjugated to xµ. Since we are studying a scattering pro-
cess, in past and future infinity we may assume that the
point particles are so far separated that the interaction
terms vanish. In this case pcani,µ reduces to the kinematic
momentum miẋ

µ
i , so we have

mi∆ẋµ
i = i

∂ lnZWQFT

∂bi,µ
. (14)

Therefore in this letter, we define the generalized eikonal
phase for more than two worldlines as,

χ = −i lnZWQFT. (15)

In section III, we will perform a double copy for the
eikonal to next-to-leading order.
Since we will mostly work in momentum space, it will

be useful to express the worldline fluctuations as

zµ(τ) =

∫

ω
e−iωτzµ(ω),

Ψ(τ) =

∫

ω
e−iωτΨ(ω),

Ψ †(τ) =

∫

ω
e−iωτΨ †(−ω) .

(16)

The dual color wave function Ψ̃ in momentum space is
defined in the same way as Ψ . For convenience we use
the integral shorthands

∫

ω :=
∫

dω
2π ,

∫

k :=
∫

d4k
(2π)4 as well

as δ−(ω) := 2πδ(ω) and δ−(4)(kµ) := (2π)4δ(4)(kµ). When
evaluated on the worldline, the generic field Φ may be
expanded as

Φ(x(τ)) =

∫

k
eik·(b+vτ+z(τ))Φ(−k) =

∞
∑

n=0

in

n!

∫

k
eik·(b+vτ)(k · z(τ))nΦ(−k)

=

∫

k
eik·bΦ(−k)

(

eik·vτ + i

∫

ω
ei(k·v+ω)τk · z(−ω)

)

+O(z2). (17)

We take the expansion only to linear order in zµ since
this is the highest term we need in this letter. A complete
expression of hµν to all orders in z may be found in [16].
Next we extract the Feynman rules from the worldline

actions. The worldline propagators are the same in all
three theories,

zµ zν
ω

= − i

m

ηµν

ω2
(18)

Ψ † Ψ
ω

=
i

ω
. (19)

The propagator of the dual field Ψ̃ is identical to the one
for Ψ .
Let us now begin with the analysis of the Yang-Mills

coupled WQFT. With (16) and (17) we can expand the
interaction term of Spc from eq. (2) as

Spc
int =g

∫

dτ ẋµ(τ) ·Aa(x(τ))Ca(τ) (20)

=g

∫

k
eik·bv ·Aa(−k)δ−(k · v)ca

+ g

∫

k,ω
eik·bAa

µ(−k)δ−(k · v + ω)

×
[

i
(

ωzµ(−ω) + vµk · z(−ω)
)

ca

+ vµ(ψ†T aΨ(−ω)+Ψ †(ω)T aψ)
]

+O
(

(z,Ψ)2
)

where we keep the interaction to linear order in worldline
fluctuations. The Feynman rules of the worldline-gluon

vertices can be directly read off from (20),

Aa
µ

k = igeik·bδ−(k · v)vµca (21)

zρ

Aa
µ

ω

k = −geik·bδ−(k·v + ω)

× (ωηµρ + vµkρ)ca
(22)

Ψ †

Aa
µ

ω

k = igeik·bδ−(k · v + ω)vµ(T aψ) (23)

Ψ

Aa
µ

ω

k = igeik·bδ−(k · v − ω)vµ(ψ†T a). (24)

Turning to the bi-adjoint scalar coupled WQFT, we
can expand the worldline-scalar coupling of (6) in the
same way,

Scc
int =

y

m

∫

dτφaã(x(τ))Ca(τ)C ã(τ) (25)

=
y

m

∫

k
eik·bφaã(−k)δ−(k · v)cacã

   graviton propagator:⇒

Perturbative (quantum) gravity: 

<latexit sha1_base64="WiWa5+3JkUrwlDvW8sRCNuH/eSM="></latexit>p
�g R(g)
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p
Ghµ⌫
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Pµ⌫;⇢� = ⌘µ(⇢⌘�)⌫ � 1

2
⌘µ⌫⌘⇢�

Let us now establish the Feynman rules for the in-in WQFT. As we argued in

the last section if one is interested in tree-level one-point functions (as we are) we

only need the retarded propagators. We then have for the graviton

k

!µ⌫ ⇢�

� +
= i

Pµ⌫;⇢�

(k0 + i0)2 � k2
, (2.31)

with Pµ⌫;⇢� := ⌘µ(⇢⌘�)⌫ �
1

D�2
⌘µ⌫⌘⇢�. The retarded worldline propagators for the

fluctuations zµ
i
(!) and anti-commuting vectors  0µ

i
(!) are respectively

!

!µ ⌫

� +
= �i

⌘
µ⌫

mi(! + i0)2
,

!

!µ ⌫

� +
= �i

⌘
µ⌫

mi(! + i0)
. (2.32)

Note that now the direction of the arrow above the propagators indicates the causality

flow. The retarded propagators were already used in [47–51].

For the in-in WQFT vertices at linear order in minus fields the vertex structure

is particularly simple — generalizing the scalar field discussion of eq. (2.27):

S
WQFT

in-in, int

���
lin �

= h
µ⌫

�

 
�S

WQFT

int
[h, z, 0]

�hµ⌫

!

+

+
2X

i=1

z
µ

i�

 
�S

WQFT

int
[h, z, 0]

�z
µ

i

!

+

+
2X

i=1

 
0µ
i�

 
�S

WQFT

int
[h, z, 0]

� 
0µ
i

!

+

. (2.33)

We find precisely the same Feynman rules (including symmetry factors) as in the

in-out formalism, with the distinction that these are extended by dressing each leg

successively by a minus label and all others by a plus label. Importantly, starting

with the one-point functions connected to the background trajectories the connecting

graviton field always carries a minus label:

hµ⌫(k)

�

, (2.34)

while the tensorial structure remains as before [47–51]. Again, the outgoing leg

relevant for the one-point functions hhµ⌫

+ (k)i, hzµ
i+
(!)i or h 0µ

i+
(!)i is strictly plus by

virtue of (2.23).

This leads to the following causality structure for the WQFT in the in-in for-

malism: for the graviton emission

hh
µ⌫(k)i =

� � �

� � �

k

+�
µ⌫

+
+
+

+
+
+

(2.35)

12

N.B. need to take 
retarded propagator

(in-in formalism)
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Hidden supersymmetry of spinning black holes!

Add   anti-commuting fields             : N-extended superparticleN
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PUTTING SPIN ON THE WORLD-LINE
[Jakobsen,Mogull,JP,Steinhoff]
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[Howe,Penati,Pernici,Townsend]

Equivalent to massive, spin N/2 particle.

Flat space:
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h
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2⌘µ⌫ ẋ
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Coupling to curved space-time: ( )N = 1

Captures linear in spin (spin-orbit) interactions of 
BHs & NSs 
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Sab = �2im [a b]

spin tensor
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PUTTING SPIN ON THE WORLD-LINE
[Jakobsen,Mogull,JP,Steinhoff]

Quantize
<latexit sha1_base64="iZMceAH4465mtmq5+yZJz/YQ6sM="></latexit>

zµi , 
0a
i ,  ̄0a

i

Scattering scenario:
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xµ
i (⌧) = bµi + vµi ⌧ + zµi (⌧)

 a
i (⌧) =  

a
i +  0a

i (⌧) <latexit sha1_base64="Yi2GiJNgDHxB4z0kjtDgbVeqlwY="></latexit>

h a(!) ̄b(�!)i = �i⌘ab

m(! + i0)

2

We therefore augment the worldline trajectories xµ
i (⌧i)

(i = 1, 2) of our two massive bodies by anticommuting
complex Grassmann fields  a

i (⌧i). These are vectors in
the flat tangent Minkowski spacetime connected to the
curved spacetime via the vierbein ea

µ(x). The worldline
action in the massive case for each body takes the form
(suppressing the i subscripts) [20, 33]

S = �m

Z
d⌧

h
1
2gµ⌫ ẋ

µẋ⌫+i ̄a
D a

D⌧ + 1
2Rabcd ̄

a b ̄c d
i
,

(1)

where gµ⌫ = ea
µeb
⌫⌘ab is the metric in mostly minus signa-

ture, D a

D⌧ =  ̇a + ẋµ!µ
a

b 
b includes the spin connection

!µab and the Riemann tensor is Rµ⌫ab = ec
µed
⌫Rabcd =

2(@[µ!⌫]ab + ![µ a
c!⌫]cb). This theory enjoys a global

N = 2 SUSY: it is invariant under

�xµ = i✏̄ µ + i✏ ̄µ , � a = �✏ea
µẋµ

� �xµ !µ
a

b 
b , (2)

with constant SUSY parameters ✏ and ✏̄ = ✏†.
The connection to a traditional description of spin-

ning bodies in general relativity, using the spin field Sµ⌫

and the Lorentz body-fixed frame ⇤A
µ [21, 22, 24, 34, 35],

comes about upon identifying the spin field Sµ⌫(⌧) with
the Grassmann bilinear:

Sµ⌫ = �2ieµ
ae⌫b  ̄

[a b] . (3)

One can easily show that Sab obeys the Lorentz algebra
under Poisson brackets { a,  ̄b

}P.B. = �i⌘ab. In fact, the
spin-supplementary condition (SSC) and preservation of
spin length may be related to N = 2 SUSY-related con-
straints [33]. Finally, by deriving the classical equations
of motion from the action these can be shown to match
the Mathisson-Papapetrou equations [36] at quadratic
spin order. This indicates a hidden N = 2 SUSY in
the actions of Refs. [22, 34, 35].

The actions of Refs. [22, 34, 35] also carry a first
spin-induced multipole moment term at quadratic order
in spins with an undertermined Wilson coe�cient CE ,
where here CE = 0 for a Kerr BH. Translating it to our
formalism this term reads

SES2 := �m

Z
d⌧ CEEab ̄

a b  ̄ ·  , (4)

where Eab := Raµb⌫ ẋµẋ⌫ is the “electric” part of the Rie-
mann tensor. The N = 2 SUSY is now maintained only
in an approximate sense [33]: it survives in the action for
terms up to O( 5), i.e. quadratic order in spin.

In order to describe a scattering scenario we expand
the worldline fields about solutions of the equations of
motion along straight-line trajectories:

xµ
i (⌧i) = bµ

i + vµ
i ⌧i + zµ

i (⌧i) ,

 a
i (⌧i) =  a

i +  0a
i (⌧i) ,

(5)

where S
µ⌫
i := �2i ̄[µ

i  
⌫]
i captures the initial spin of the

two massive objects. The weak gravity expansion of the

vierbein reads

ea
µ = ⌘a⌫

✓
⌘µ⌫ +



2
hµ⌫ �

2

8
hµ⇢h

⇢
⌫ + O(3)

◆
, (6)

introducing the graviton field hµ⌫(x) and the gravita-
tional coupling 2 = 32⇡G. Note that in this pertur-
bative framework the distinction between curved µ, ⌫, . . .
and tangent a, b, . . . indices necessarily drops.

The spinning WQFT has the partition function

ZWQFT := const ⇥

Z
D[hµ⌫ ] e

i(SEH+Sgf ) (7)

⇥

Z 2Y

i=1

D[zµ
i ]D[ 0

i
µ
] exp

h
i

2X

i=1

S(i) + S(i)
ES2

i
,

where SEH is the Einstein-Hilbert action and the gauge-
fixing term Sgf enforces de Donder gauge. The SUSY
variations (2) leave an imprint on the free energy (or
eikonal) FWQFT(bi, vi, Si) := �i log ZWQFT: ¡¡¡¡¡¡¡ HEAD
after integrating out the fluctuations hµ⌫ , zµ and  0µ

in the path integral (7), ======= after integrating
out the fluctuations hµ⌫ , zµ and  0µ in the path integral
(7), ¿¿¿¿¿¿¿ 859fc402↵356b06f03c853b7a9c2d4c03d43df5
the SUSY variations of the background trajectories (5)
remain intact in an asymptotically flat spacetime. That
is, the transformations

�bµ
i = i✏̄ µ

i + i✏ ̄µ
i , �vµ

i = 0 , � µ
i = �✏vµ

i

) �Sµ⌫
i = vµ

i �b
⌫
i � v⌫i �b

µ
i

(8)

are a symmetry of FWQFT(bi, vi, Si) (only up to quadratic
spin order when the Wilson coe�cients CE,i are in-
cluded). As we shall see, this is also a symmetry of the
waveform. Using a suitable shift of the proper times ⌧i
we may choose b·vi = 0, where bµ = bµ

2 �bµ
1 is the relative

impact parameter; by gauge fixing the SUSY transforma-
tions (8) we impose vi,µS

µ⌫
i = 0 (the covariant SSC).

Feynman rules. — As the Feynman rules for the
Einstein-Hilbert action are conventional we will not dwell
on them; the only subtlety is our use of a retarded gravi-
ton propagator:

k

µ⌫ ⇢�
= i

Pµ⌫;⇢�

(k0 + i✏)2 � k2
, (9)

with Pµ⌫;⇢� := ⌘µ(⇢⌘�)⌫ �
1
2⌘µ⌫⌘⇢�. On the worldline

we work in one-dimensional energy (frequency) space:
the propagators for the fluctuations zµ(!) and anti-
commuting vectors  0µ(!) are respectively

!

µ ⌫ = �i
⌘µ⌫

m (! + i✏)2
, (10a)

!

µ ⌫ = �i
⌘µ⌫

m (! + i✏)
, (10b)

which also both involve a retarded i✏ prescription. The
former was already used in Refs. [16, 17].

Spin-orbit & spin-spin interactions (  SUSY)N = 2

N=2 superparticle neutron star term

Spin tensor of BHs/NSs
<latexit sha1_base64="0qCx8DdTk2dKb48L4g7aI+KuK6U="></latexit>

Sab
i = �2im ̄[a

i  
b]
i

[Bastianelli,Benincasa,Giombi]

Augmented by NS-term: spin-induced quadropol moment 

<latexit sha1_base64="NwKrI8B3Stzs9DptlP/DAhdD7O0="></latexit>

SBH/NS = �m

Z
d⌧

h
1

2
gµ⌫ ẋµ ẋ⌫ + i ̄aD⌧ a + 1

2
Rabcd ̄a b ̄c d + CERaẋbẋ ̄a b  ̄ ·  

i

Approximate SUSY persists.
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PHYSICAL INTERPRETATION OF SUSY

[Matthisson-Papapetrou-Dixon]

Traditional approach:
Spin tensor              & co-moving frame

<latexit sha1_base64="gCcfs3AQNSILycg/KUnkIdHxxLk="></latexit>

Sµ⌫
i (⌧)

<latexit sha1_base64="bkhA4fjz1FHD5N5UHGKYIqPZ3zY="></latexit>

⇤Aµ
i (⌧)

Eoms:
<latexit sha1_base64="+IhQvUK2jRh7gcajbUGAyayIgRQ="></latexit>

Dp⌫

D⌧
+

1

2
Sµ⇢Rµ⇢⌫ẋ

 = 0

<latexit sha1_base64="fsojP6PiIXNb/UKLEfU8S/nida0="></latexit>

DSµ⌫

D⌧
+ 2ẋ[µ p⌫] = 0

Freedom of imposing a Spin-Supplementary Condition (SSC):
<latexit sha1_base64="Q8JuQmP7vu06taUi97vtxv9o5Xk="></latexit>

pµ S
µ⌫ = 0

Our approach:  Spinning super-particle

Background SUSY 
transformations: 

2

We therefore augment the worldline trajectories xµ
i (⌧i)

(i = 1, 2) of our two massive bodies by anticommuting
complex Grassmann fields  a

i (⌧i). These are vectors in
the flat tangent Minkowski spacetime connected to the
curved spacetime via the vierbein ea

µ(x). The worldline
action in the massive case for each body takes the form
(suppressing the i subscripts) [20, 33]

S = �m

Z
d⌧

h
1
2gµ⌫ ẋ

µẋ⌫+i ̄a
D a

D⌧ + 1
2Rabcd ̄

a b ̄c d
i
,

(1)

where gµ⌫ = ea
µeb
⌫⌘ab is the metric in mostly minus signa-

ture, D a

D⌧ =  ̇a + ẋµ!µ
a

b 
b includes the spin connection

!µab and the Riemann tensor is Rµ⌫ab = ec
µed
⌫Rabcd =

2(@[µ!⌫]ab + ![µ| a
c!⌫]cb). This theory enjoys a global

N = 2 SUSY: it is invariant under

�xµ = i✏̄ µ + i✏ ̄µ , � a = �✏ea
µẋµ

� �xµ !µ
a

b 
b , (2)

with constant SUSY parameters ✏ and ✏̄ = ✏†.
The connection to a traditional description of spin-

ning bodies in general relativity, using the spin field Sµ⌫

and the Lorentz body-fixed frame ⇤A
µ [21, 22, 24, 34, 35],

comes about upon identifying the spin field Sµ⌫(⌧) with
the Grassmann bilinear:

Sµ⌫ = �2ieµ
ae⌫b  ̄

[a b] . (3)

One can easily show that Sab obeys the Lorentz algebra
under Poisson brackets { a,  ̄b

}P.B. = �i⌘ab. In fact, the
spin-supplementary condition (SSC) and preservation of
spin length may be related to N = 2 SUSY-related con-
straints [33]. Finally, by deriving the classical equations
of motion from the action these can be shown to match
the Mathisson-Papapetrou equations [36] at quadratic
spin order. This indicates a hidden N = 2 SUSY in
the actions of Refs. [22, 34, 35].

The actions of Refs. [22, 34, 35] also carry a first
spin-induced multipole moment term at quadratic order
in spins with an undertermined Wilson coe�cient CE ,
where here CE = 0 for a Kerr BH. Translating it to our
formalism this term reads

SES2 := �m

Z
d⌧ CEEab ̄

a b  ̄ ·  , (4)

where Eab := Raµb⌫ ẋµẋ⌫ is the “electric” part of the Rie-
mann tensor. The N = 2 SUSY is now maintained only
in an approximate sense [33]: it survives in the action for
terms up to O( 5), i.e. quadratic order in spin.

In order to describe a scattering scenario we expand
the worldline fields about solutions of the equations of
motion along straight-line trajectories:

xµ
i (⌧i) = bµ

i + vµ
i ⌧i + zµ

i (⌧i) ,

 a
i (⌧i) =  a

i +  0a
i (⌧i) ,

(5)

where S
µ⌫
i := �2i ̄[µ

i  
⌫]
i captures the initial spin of the

two massive objects. The weak gravity expansion of the

vierbein reads

ea
µ = ⌘a⌫

✓
⌘µ⌫ +



2
hµ⌫ �

2

8
hµ⇢h

⇢
⌫ + O(3)

◆
, (6)

introducing the graviton field hµ⌫(x) and the gravita-
tional coupling 2 = 32⇡G. Note that in this pertur-
bative framework the distinction between curved µ, ⌫, . . .
and tangent a, b, . . . indices necessarily drops.

The spinning WQFT has the partition function

ZWQFT := const ⇥

Z
D[hµ⌫ ] e

i(SEH+Sgf ) (7)

⇥

Z 2Y

i=1

D[zµ
i ]D[ 0

i
µ
] exp

h
i

2X

i=1

S(i) + S(i)
ES2

i
,

where SEH is the Einstein-Hilbert action and the gauge-
fixing term Sgf enforces de Donder gauge. The SUSY
variations (2) leave an imprint on the free energy (or
eikonal) FWQFT(bi, vi, Si) := �i log ZWQFT: after inte-
grating out the fluctuations zµ and  0µ in the path inte-
gral (7), the SUSY variations of the background trajecto-
ries (5) remain intact in an asymptotically flat spacetime.
That is, the transformations

�bµ
i = i✏̄ µ

i + i✏ ̄µ
i , �vµ

i = 0 , � µ
i = �✏vµ

i

) �Sµ⌫
i = vµ

i �b
⌫
i � v⌫i �b

µ
i

(8)

are a symmetry of FWQFT(bi, vi, Si) (only up to quadratic
spin order when the Wilson coe�cients CE,i are in-
cluded). As we shall see, this is also a symmetry of the
waveform. Using a suitable shift of the proper times ⌧i
we may choose b·vi = 0, where bµ = bµ

2 �bµ
1 is the relative

impact parameter; by gauge fixing the SUSY transforma-
tions (8) we impose vi,µS

µ⌫
i = 0 (the covariant SSC).

Feynman rules. — As the Feynman rules for the
Einstein-Hilbert action are conventional we will not dwell
on them; the only subtlety is our use of a retarded gravi-
ton propagator:

k

µ⌫ ⇢�
= i

Pµ⌫;⇢�

(k0 + i✏)2 � k2
, (9)

with Pµ⌫;⇢� := ⌘µ(⇢⌘�)⌫ �
1
2⌘µ⌫⌘⇢�. On the worldline

we work in one-dimensional energy (frequency) space:
the propagators for the fluctuations zµ(!) and anti-
commuting vectors  0µ(!) are respectively

!

µ ⌫ = �i
⌘µ⌫

m (! + i✏)2
, (10a)

!

µ ⌫ = �i
⌘µ⌫

m (! + i✏)
, (10b)

which also both involve a retarded i✏ prescription. The
former was already used in Refs. [16, 17].

<latexit sha1_base64="8+gwrgCqaVun/JVEGuWLrriv8go="></latexit>

Sµ⌫
i = �2i ̄[µ

i  
⌫]
i

SUSY = Conservation of SSC

Interpretation of SUSY: Covariant SSC:
<latexit sha1_base64="5ntD3DRZRy/7yaKd6xugr2Zqna8="></latexit>

vi · i = 0 ) vi,µS
µ⌫
i = 0
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[Vines,Kunst,Steinhoff,Hinderer][Steinhoff][Porto][Levi]

Need of understanding relation to dual amplitudes approach [Bern,Luna,Roiban,Shen,Zeng]

[Bern,Kosmopoulos,Luna,Roiban,Teng]
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First layer of tidal & finite size effects:
<latexit sha1_base64="6PVXAxDTCM7YRnSdALNJEg6D2Fs=">AAACunicjVHJSsRAEH3GbdxHPXoJDoKnIROXUfAwuOFFUHBUcKMT27GZbCQ94sJ8g1f9K6/+iwdf2ih4cKmQVPWrVy/VVV4SqEw7zmuP1dvXPzBYGhoeGR0bnyhPTh1mcSf1ZdOPgzg99kQmAxXJplY6kMdJKkXoBfLIa2/k+aMbmWYqjg70XSLPQtGK1JXyhSbUvD0/DTsX5YpTXV1Zdpdc26k6Tt1dWM4Dt77oLtg1IrlVUNheXH7BKS4Rw0cHISQiaMYBBDI+J6jBQULsDA/EUkbK5CW6GGZthyxJhiDa5rfF0wPjmJyY/C6GMAcb26baIz//g2Sc0b/xvTdY6xc1wc7ybu7ovS/FXeIa12T8VRkWzC6r/ld5QlTjCivm3or9JQbJ5+N/6WwykxJrm4yNLcNsUcMz5xtOIKJvsoN8op8KtrnxJb0wXhqVqFAU1Evp80mzH670c2/2z8GhW60tVZ39xUpjvVhuCTOYxTw3WEcDO9hjHz41H/GEZ2vN8ixltT+oVk9RM41vZul3iqOMdw==</latexit>

xµ

<latexit sha1_base64="yy2M1gLKRbF9yPd1fSHBWTFm6hc="></latexit>
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TIDAL INTERACTIONS

<latexit sha1_base64="oyA9lIOLwCkVRweTB7ki5HhTG84="></latexit>

Stidal = m

Z
d⌧

⇥
cE2Eµ⌫E

µ⌫ + cB2Bµ⌫B
µ⌫
⇤

Electric and magnetic curvature:

Wilson coefficients (or „Love numbers“):     &   (vanish for black holes)cE2 cB2

<latexit sha1_base64="OgP4M+qndF2DYtARxhF1KGbhO2w="></latexit>

Eµ⌫ := Rµ↵⌫� ẋ
↵ẋ�

<latexit sha1_base64="oP1bsAs+JXJosauCWSW3CfIAt8w=">AAADB3icjVFNS9xQFD2mWj9a26ku3QSHgnQxZMSiCAWxH3QjTIujgtHhJfNmDJPkheRFtCE/wF/TnXTrP+hWcGt/RRc9eY2CFaw3JPe+c889ue9eLwmDTDvO5Zj1ZHzi6eTU9Myz57MvXjZeze1kKk992fVVqNI9T2QyDGLZ1YEO5V6SShF5odz1Ru+r/O6xTLNAxdv6NJEHkRjGwSDwhSbUa3Q2e4Ub5bYb5+VhUa6/s78eFm/KGhRhciSqnO16UovSdvtKFydk1rk7iKH0Gk2n5Riz7wftOmiito5q/ISLPhR85IggEUMzDiGQ8dlHGw4SYgcoiKWMApOXKDHD2pwsSYYgOuJ3yFPBWJGjyC8xjdew8clUe+RXf5CMM/rffL8ZbPiAmmBnVTen9N6t4hZxjSMy/lcZ1cySVY+r3CeqMcCauXfA/hKDVPPxb3U+MJMSG5mMjY+GOaSGZ87HnEBM32UH1URvFGxz4z69MF4albhWFNRL6atJsx+utP3vAu8HO8ut9tuW82WlubFZL3cKC1jEEje4ig18Rod9+DjHFa7xyzqzvlvn1o+/VGusrpnHHbMu/gB0jKtt</latexit>

Bµ⌫ := R⇤
µ↵⌫� ẋ

↵ẋ�
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Worldline vertices: n-gravitons & m world-line fluctuations

Energy conservation on worldline

<latexit sha1_base64="KYk7Xyj+kz2mPDaTqi7w8IENd/E="></latexit>

= m
p
G

n
eib·

P
j kj�

✓
v ·

nX

j=1

kj +
mX

i=1

!i

◆
⇥

0

@
polynomial in !i, kj
of degree 2n+m

depending on vµ, Sµ⌫

1

A

+   for neutron starsCE, cE2, cB2

3

agree, the dots tell us which b&v one has to use.]

Vn|m =

k1 kn

!1

...

. . .

!m

⇠

mn eik·b��
✓
k · v +

nX

i=1

!i

◆
⇥

⇥

✓
polynomial in !i, kj
of degree 2n+m

◆
(6)

where kµ =
Pn

i=1
kµi is the total outflowing four-

momentum and the dotted outgoing line symbolizes the
background parameters {bµ, vµ, µ

} of eq. (2). We see
that only energy is conserved on the worldline. The bulk
graviton vertices are generic. We automatised the con-
struction of the vertices with Mathematica. At 4PM
order we need the worldline vertices Vn|m above for
{n = 1, . . . , 4;m = 0, . . . , 5 � n}, as well as the bulk
graviton vertices up to multiplicity 5.

Momentum impulse and spin kick. — The two ob-
servables of the impulse �pµi := [pµi ]

⌧=+1
⌧=�1 and spin

kick �Sµ⌫
i follow from the one-point functions [Gus:

Shouldn’t we use the “vector” spin kick of the
Pauli Lubanski vector?]

�pµi = mi

Z 1

�1
d⌧

⌧
d2xµ

i (⌧)

d⌧2

�
= �mi!

2
hzµi (!)i|!=0

,

� µ
i =

Z 1

�1
d⌧

⌧
d µ

i (⌧)

d⌧

�
= �i! h 0µ

i (!)i
��
!=0

, (7)

where we have Fourier transformed to momentum space
in the last steps. Both observables follow from the sum of
all diagrams at a given PM order with one outgoing Zµ

i
line with vanishing energy. The spin kick is consequently
derived from the kick of the Grassmann variable as in
Ref. [41]. The workflow of our computation proceeds as
follows:

Integrand generation. — The 4PM impulse and spin-
kick integrands are generated recursively via Berends-
Giele type relations. The one-point functions for the
worldline “super-fields” Zi = {zi, 0

i} and for the gravi-
ton are represented as[Gus: remove the n label?]

hZi(!)i =
!, n
!

Zi , hhµ⌫(k)i =
!

k
h (8)

Their recursive definitions follow from the Schwinger-
Dyson equations and are depicted in figure 1. Spelling
this out systematically to order G4 allows for an algorith-
mic construction of the integrand. Inserting the Feynman
rules into the generated tree-graphs is done using FORM

[91]. Using these tools the integrand is automatically
generated to any desired order in G for all WQFT one-
point functions. The resulting number of graphs for �pµ

1

is 83 in the non-spinning sector, 201 linear S1 and 253
linear in S2.

Reduction to scalar integrals. — A generic 4PM in-
tegral after performing the worldline energy integrals via

the ��-functions in eq. (6) takes the form
Z

q
e�iq·b��(q · v1)�

�(q · v2)⇥ (9)

Z

`1,`2,`3

num[`i]

D1 . . . D12

��(`1 · vi1)�
�(`1 · vi2)�

�(`3 · vi3)

where the Di are either linear or massless propagators
depending on the loop-momenta `i, velocities vi and mo-
mentum transfer q. The numerators num[`i] are poly-
nomial in loop-momenta. The only dimensionful quan-
tity in the 3-loop `i integral is the momentum transfer
qµ. Hence, |q| =

p
�q2 may be scaled out and the

Fourier transform over q factorizes. The 3-loop inte-
grals to be performed depend on a single parameter which
may be taken as the relative Lorentz factor � = v1 · v2.
The three ��(`n · vil)-functions in eq. (9) are connected
to the mass dependence of this contribution which is
m1m2mi1mi2mi3 . This groups the diagrams into two
categories: the test-body contributions with mass depen-
dence mim4

ī (see fig. 2) and the comparable-mass contri-
butions m2

im
3

ī (see fig. 3)1. The test-body contributions
to the scattering angle are known from geodesic motion in
a Kerr background [92]. The tensor reduction of num[`i]
is performed by expanding the loop momenta on a basis
dual to vµi and qµ and the (D � 3)-transverse metric as
in the 3PM case [70]
[Gustav: talk about CDR] [Jan: What is CDR?]
Integral families and reduction to masters. — We find

three integral families that need to be reduced to master
integrals. The first 4PM family is (i = 1, 2)

I [i](�1,�2,...,�8)
n1,n2,...,n12

=

Z

`1,`2,`3

��(`1 · vi)��(`2 · v1)��(`3 · v1)

Dn1
1
Dn2

2
...Dn12

12

(10a)

with the propagators (j = 1, 2, 3 and k = 1, 2):

D1 = `1 · vı̄ + �1i0
+ , D1+k = `1+k · v2 + �1+ki0

+ ,

D4 = (`1 + `2 + `3 + q)2 , D5 = (`1 + `2 + q)2 , (10b)

D5+k= (`k + `3)
2 , D7+j = `2j , D10+k= (`k + q)2 .

The I [1] family contributes exclusively to the test-body
sector as is evident from the ��-function structure. In this
case, we can ignore the i0+ prescription on the gravi-
ton propagators D4,5,6. The other 4PM family is given
by[Gustav: comment on needed i0]

J (�1,�2,...,�5)
n1,n2,...,n12

:=

Z

`1,`2,`3

��(`1 · v1)��(`2 · v1)��(`3 · v2)

Dn1
1
Dn2

2
...Dn12

12

(11a)

with (j = 1, 2, 3, k = 1, 2)

Dk = `k · v2 + �ki0
+ , D3 = `3 · v1 + �3i0

+ ,

D3+k = (`k � `3)
2 , D6 = (`1 � `2)

2 ,

D6+j = `2j , D9+j = (`j + q)2 .

1 We have i = 1, 2 and use the notation 1̄ = 2 and 2̄ = 1 [Gus:
Add to main text or at least streamline with the pre-
sentation of the I family]

„Bulk“ graviton vertices:

1.7 Feynman rules for perturbative quantum gravity 17

One indeed verifies that I↵�,�� P��,⇢ = �↵(⇢�
�
)

. The graviton self-interaction vertices
take an involved structure due to a proliferation of indices. Exemplary we exhibit the
three-graviton vertex [7]

µ
1↵ ⌫ 2

�

⇢
3
�

= i
p

G sym[

�
1
2 P3(k1 · k2⌘µ↵⌘⌫�⌘⇢�) �

1
2 P6(k1⌫k1�⌘µ↵⌘⇢�) +

1
2 P3(k1 · k2⌘µ⌫⌘↵�⌘⇢�)

+ P6(k1 · k2⌘µ↵⌘⌫⇢⌘��) + 2P3(k1⌫k1�⌘µ↵⌘�⇢) � P3(k1�k2µ⌘↵⌫⌘⇢�)

+ P3(k1⇢k2�⌘µ⌫⌘↵�) + P6(k1⇢k1�⌘µ⌫⌘↵�) � 2P6(k1⌫k2�⌘�µ⌘↵⇢)

+ 2P3(k1⌫k2µ⌘�⇢⌘�↵) � 2P3(k1 · k2⌘⌫↵⌘⇢�⌘µ�)] , (1.77) {3gravitonvertex}{3gravitonvertex}

with the symbol Pn denoting the symmetrisation in the index blocks (k1µ↵, k2⌫�, k3⇢�)
associated with the three legs and resulting in n distinct terms.

The higher point vertices take a schematic structure as

⇠
p

G
2
k2 , ⇠

p
G

3
k2

⇠
p

G
4
k2 , . . . (1.78) {gravitonvertexscaling}{gravitonvertexscaling}

Through the Fadeev-Popov procedure one also picks up a ghost sector. The local
symmetry transformation are now the general coordinate transformations given in
eq. (1.71). Hence, the gravity ghosts carry a vector index: b⌫(x) and b̄µ(x). The ghost
contribution to the Lagrangian takes the form

LGH = �b̄µ(
�Gµ

�⇠⌫
)b⌫ . (1.79)

From the de Donder gauge fixing function of eq. (1.73) one deduces the di�erential
operator in the ghost sector


�Gµ

�⇠⌫
= ⌘µ⌫@

2+(@⇢hµ⌫@⇢+@⇢h⌫⇢@µ+@⇢(@⌫hµ⇢)�@µh⌫⇢@⇢� 1
2@µ(@⌫h)) , (1.80)

where the first term gives rise to the kinetic term of the ghost fields yielding the
propagator

↵ � =
i ⌘↵�

p2 + i0
. (1.81)

The remaining terms yield a graviton-ghost-anti-ghost interaction vertex

↵ �

⌫µ
(1.82)

However, ghosts will play no rôle in the modern approaches to scattering amplitudes
developed in this book. Therefore we do not need to spell out this involved vertex
here.

Four-momentum conservation in bulk  δ4(∑ p)
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Partition function in the 
presence of sources 
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Well defined classical limit only for n=1 and L=0:   Tree-level one-point functions

Scalings of connected n-point functions:

     (L-loop connected n-point diagrams)⟨ΦA1
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[Boulware,Brown‚‘68]
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[Jakobsen]

Factorization    lim
ℏ→0

Consequence for Schwinger-Dyson equations:      Ehrenfest theorem in QM⇔
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= 0

Tree-level one-point functions solve classical equations of motion

Importantly   must be independent of   (not the case in amplitudes approach - 
massive field!)  -> Key advantage of WQFT approach (no „super classical“ terms)

S[ΦA] ℏ

Need non-trivial background field configurations for non-vanishing one-point functions
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THE IN-IN (SCHWINGER-KELDYSH)  
FORMALISM FOR WQFT

background:

h�(k)i =
k

+�
. (2.22)

The grey shaded rectangle subsumes all tree-level interactions containing two-valent,

three-valent and higher-point vertices that connect the n ingoing retarded propaga-

tors emerging from the background Q to the single outgoing leg.

The crucial insight is that at tree level only vertices with a single minus leg can

contribute to these one-point functions. Any tree-level graph will have the topological

structure of a rooted tree, i.e. take a form such as

� +
. (2.23)

From this structure it is immediately clear that inserting a vertex with three (or more)

minus-labeled (outgoing) legs in the shaded box inevitably leads to a loop-level graph,

as we just have a single outgoing leg. So we learn that at tree level only single-minus

vertices may contribute to the one-point functions. Similarly, the h�+�+i Hadamard

propagator cannot make an appearance, as conecting to plus labeled (ingoing) legs

of a vertex inevitably yields a loop diagram as every vertex has at least one minus

labeled leg. The consequence is that exclusively retarded propagators appear in the

computation if one assigns a momentum flow according to causality from Q sources

to the outgoing operator line. Therefore, in practical computations of one-point

functions in a background field theory one may e↵ectively forget about the in-in

formalism altogether. One simply applies the usual (in-out) Feynman rules and uses

retarded propagators everywhere, with the direction of causality always pointing

towards the outgoing line.

In hindsight, this fact is not surprising. As we showed in eq. (2.18), it is a

well-known fact that at tree level the path integral is dominated by solutions to the

classical equations of motion of the theory (the saddle-point approximation). The

sum of rooted tree diagrams is then simply a visual interpretation of a perturbative

expansion of the classical solution in powers of the coupling constant. From a purely

classical perspective, using retarded propagators is then necessary to ensure fixing of

boundary conditions at past infinity.

10

[Jakobsen,Mogull,JP,Sauer]

OR WHY RETARDED PROPAGATORS?
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[Galley,Tiglio]

Standard Feynman path integral yields 
[Jordan]
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Propagator matrix from free part:

<latexit sha1_base64="uL7R4hRFZvB42EhoNFM6XfNRa4I="></latexit>

�+ =
1

2
(�1 + �2)

<latexit sha1_base64="anxWrxnDCrnvleNGEvsOGusL244="></latexit>
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This yields 
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Vertices from:

The generating functional W [J1, J2] has a path integral representation upon dou-

bling the fields. It is established by inserting the unit operator 1 =
P

| i | i h | into

eq. (2.16) using eq. (2.12):

e
i
~W [J1,J2] =

X

| i

h0|ÛJ2(�1,1) | i h |ÛJ1(1,�1)|0i (2.18)

=

Z
D[�1,�2] exp

n
i

~

h
S[�1]� S[�2] +

Z
d4
x

⇣
J1(x)�1(x)� J2(x)�2(x)

⌘io
.

The �1 field propagates forward in time, the �2 field backwards. Importantly, in the

path integral above the two fields are linked via the boundary condition at future

infinity �1(t = +1,x) = �2(t = +1,x), while at past infinity both fields vanish

�1(t = �1,x) = �2(t = �1,x) = 0. This is a consequence of the sum over all

states | i in the first line above.

In order to set up the in-in perturbation theory we need to establish the propa-

gator structure in the free theory. We encounter a 2⇥2 propagator matrix D
AB(x, y)

related to the doubled fields. It is most easily derived from the free-field generat-

ing functional W0[J1, J2] in the operator representation (2.16) [11, 93, 94] — see

Appendix A for a derivation (A,B = 1, 2):

h�A(x)�B(y)i =

✓
h0|T �(x)�(y)|0i h0|�(y)�(x)|0i

h0|�(x)�(y)|0i h0|T ⇤
�(x)�(y)|0i

◆
=

✓
DF (x, y) D�(x, y)

D+(x, y) DD(x, y)

◆
,

(2.19)

with the Feynman DF (x, y) and Dyson (or anti-time-ordered) DD(x, y) Green’s func-

tion appearing on the diagonal. The o↵-diagonal entries are known as the Wightman

Green’s functions, D+(x, y) = h0|�(x)�(y)|0i = D�(y, x). Note that here |0i is the

Fock vacuum of the free theory which is stationary under time evolution.

We find it convenient to adopt the Keldysh basis [46] by introducing the sum

and di↵erence of the two fields and sources:

�� = �1 � �2 , �+ = 1

2
(�1 + �2) ,

J� = J1 � J2 , J+ = 1

2
(J1 + J2) .

(2.20)

The propagator matrix in the Keldysh basis then becomes (a, b = +,�) [11]

h�a(x)�b(y)i =

✓
1

2
DH(x, y) Dret(x, y)

�Dadv(x, y) 0

◆
, (2.21)

with the advanced Dadv(x, y) and retarded Dret(x, y) Greens’s functions as well as

the symmetric Hadamard function DH(x, y) = h0|{�(x),�(y)}|0i. In the Keldysh

basis the generating functional of the interacting theory takes the form

e
i
~W [J+,J�] (2.22)

=

Z
D[�+,��] exp

n
i
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h
S[�+ + 1

2
��]� S[�+ �

1

2
��] +

Z
d4
x

⇣
J+�� + J��+

⌘io
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  only odd number of   legs!⇒ ϕ−

The true vacuum expectation value of the Heisenberg field operator may now be

computed from the one-point function of �+ at vanishing sources J± by

h�̂H(t,x)iin-in = h�̂H +(t,x)iin-in
���
J±=0

=
�W [J+, J�]

�J�

���
J±=0

(2.23)

=

Z
D[�+,��]�+(t,x) exp

n
i

~

h
S[�+ + 1

2
��]� S[�+ �

1

2
��]

io
,

using h�1iin-in|Ji=0 = h�2iin-in|Ji=0 in the Schwinger basis. Importantly, the in-in e↵ec-

tive action �[h�±i] is obtained as the Legendre transform of the generating functional

�[h�+i, h��i] = W [J+, J�]�

Z
d4
x (J�h�+i+ J+h��i) . (2.24)

Finally, at tree level the in-in e↵ective action gives rise to the classical equations of

motion that are solved by the expectation value (2.23):

0 =
��

�h��i

���
h��i=0, h�+i=�class, J±=0

. (2.25)

Note that at tree level the h�+�+i component DH(x, y) of the Keldysh propagator

matrix (2.21) does not contribute — in momentum space it is D̃H(k) = �
�(k2) and only

has on-shell support — as we will show this in the next section. Hence, the tree-level

or classical physics result can only depend on advanced and retarded propagators.

This is the key relation to exploit for our purposes: applying the in-in formalism

to the computation of the one-point functions hz
µ

i
i and hhµ⌫i of WQFT yields a

PM perturbative, diagrammatic procedure to establish the solutions zclass(⌧) and

h
µ⌫

class
(t,x) to the equations of motion of the classical two-body scattering problem.

2.3 In-in one-point functions in background field theory

Evaluating the in-in path integral can be quite laborious due to the need to establish

“doubled” Feynman rules from eq. (2.22) — now adopting the Keldysh basis. These

involve vertices dressed with plus- and minus-labeled legs and novel symmetry factors

(the tensorial structure of the vertices remains inert with respect to the standard in-

out Feynman rules). As for the propagators, in momentum space the retarded and

advanced propagators are

eDret(k) =
� +

=
�i

(k0 + i0)2 � k2
,

eDadv(k) = + �
=

�i

(k0 � i0)2 � k2
,

(2.26)

with the direction of the arrow above indicating the direction of causality flow — i0

denotes a small positive imaginary part. However, for the special case of tree-level

one-point functions in a background field theory the in-in diagrammatics are very

9

irrelevant @ tree-level
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Vertices including background field  Q
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structure of a rooted tree, i.e. take a form such as

� +
. (2.30)

From this structure it is immediately clear that inserting a vertex with three (or more)

minus-labeled (outgoing) legs in the shaded box inevitably leads to a loop-level graph,

as we just have a single outgoing leg. So we learn that at tree level only single-minus

vertices may contribute to the one-point functions. Similarly, the h�+�+i Hadamard

propagator cannot make an appearance, as conecting to plus labeled (ingoing) legs

of a vertex inevitably yields a loop diagram as every vertex has at least one minus

labeled leg. The consequence is that exclusively retarded propagators appear in the

computation if one assigns a momentum flow according to causality from Q sources

to the outgoing operator line. Therefore, in practical computations of one-point

functions in a background field theory one may e↵ectively forget about the in-in

formalism altogether. One simply applies the usual (in-out) Feynman rules and uses

retarded propagators everywhere, with the direction of causality always pointing

towards the outgoing line.

In hindsight, this fact is not surprising. As we showed in eq. (2.25), it is a

well-known fact that at tree level the path integral is dominated by solutions to the

classical equations of motion of the theory (the saddle-point approximation). The

sum of rooted tree diagrams is then simply a visual interpretation of a perturbative

expansion of the classical solution in powers of the coupling constant. From a purely

classical perspective, using retarded propagators is then necessary to ensure fixing of

boundary conditions at past infinity.

2.4 In-in formalism for WQFT: observables

We now implement the in-in formalism for the WQFT. In the non-spinning case there

are two key observables to be computed which we typically evaluate in momentum

space: The impulse and the waveform. In the spinning case this is augmented by the

spin-kick. For the worldline coordinate we expand x
µ

i
(⌧i) = b

µ

i
+ v

µ

i
⌧i + z

µ

i
(⌧i) with

i = 1, 2 denoting the two compact objects. In the in-in path integral we are led to

double the fluctuation field z
µ

i
! {z

µ

i+
, z

µ

i�} but we do not double the background

b
µ

i
+ v

µ

i
⌧i. This is justified, as in the end of the calculation the expectation value of

the minus fields are set to zero, cp. (2.25). We proceed analogously in the spin case

[49, 50], where we have the background field expansion  µ

i
=  µ

i
+  

0µ
i
, and double

according to  0µ
i

! { 
0µ
i+
, 

0µ
i�} in the Keldysh basis. Finally, the graviton field is

doubled according to h
µ⌫

! {h
µ⌫

+ , h
µ⌫

� }.
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two-body problem for the unbound scenario. Yet, in the applications for gravitational wave physics the bound
scenario including radiative e�ects is required and remains underdeveloped. In addition, the systematic inclusion
of higher orders in spin, finite-size and tidal-e�ects including radiative e�ects at high PM orders needs to be
performed. Finally, the present QFT based technology is limited to the weak gravitational field sector, the strong
gravity regime accessible in the small mass ratio expansion (the gravitational self-force approach) remained
untouched by recent innovations.

a.2. Research objectives

The research objectives of the GraWFTy project that I would like to pursue in four work-packages are therefore
the following:

1) Radiative e�ects: How can we systematically control the radiative PM expansion including spin, finite size
and tidal e�ects?

2) Higher spin: What are the hidden symmetries behind Kerr-BH scattering and how do we e�ciently handle
higher spin contributions?

3) Strong gravity: How can we innovate the small mass ratio expansion with QFT techniques in order to access
the strong gravity regime?

4) Bound state: How can we port the QFT based innovations from the scattering to the bound state regime?

I plan to pursue these objectives in the framework of the WQFT formalism outlined above. The ERC grant
would provide me with the means to fully unfold the enormous potential of this approach. My GraWFTy team
will consist of a long-term (5y) senior postdoc with a background in amplitudes and collider physics that will
bring in expertise in modern Feynman integration methods, a postdoc (3y) with a background in gravitational
wave physics in particular EOB and/or the self-force approach, as well as two talented PhD students (4y).

Work-packages

WP1 Radiative e�ects: Retarded WQFT including spin, tidal and finite size e�ects
Team: Senior Postdoc, PhD

As we know in classical physics one needs to use the retarded Green’s function (or propagator) to solve
Maxwell’s equations with time-dependent sources. The same is true for a perturbative PM solution of the
gravitational two-body problem. Yet, to date all QFT based approaches fail to do so and use the Feynman
propagator – this being the correct choice for the quantum regime. This seemingly technical detail actually
has profound consequences: It leads to an unphysical split of the resulting observables into conservative and
radiation reaction contributions. It was also the reason for an initial confusion in the field about a divergent
high-energy limit of the 3PM amplitudes based computation of the e�ective potential. The key advantage of
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Diagrammatically this amounts to a simple prescription:
draw all tree-level diagrams with a single cut external zµ

i
or ��µ

i line.

The diagrams required to calculate both �p(3)µ
1 and

��(3)µ
1 are divided into three categories, the first two of

which are illustrated schematically in Figures 1 and 2.
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ever, it should be assumed that each internal worldline
mode could be of all three types (with symmetry fac-
tors adjusted accordingly). The third set of diagrams
(not drawn) consists simply of mirrored versions of the
graphs in Figure 1 through a horizontal plane, but with
the external cut line still on the first (upper) worldline.
For the impulse we avoid calculating these contributions

directly, instead making use of momentum conservation
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2 = ��p(3)µ

1 (for conservative scattering).

We assemble expressions using the WQFT Feynman
rules in D = 4 � 2� spacetime dimensions, with the
later intention of recovering four-dimensional results in
the � � 0 limit. Each retarded worldline propagator (7)
points towards the outgoing line: from cause to e�ect. As
diagrams belonging to each of the three categories carry
common overall factors of the masses m�

1 m�
2 the cate-

gories themselves are separately gauge invariant. This is
a considerable practical benefit to our approach, as it al-
lows us to break up the calculation into gauge-invariant
sub-components. Diagrams in Figure 1 carry the maxi-
mum allowed power of m2, and represent the test-body
limit m1 � m2. Integrals are performed over the ener-
gies (on the worldlines
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�) or momenta (in the bulk
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The integrals involved in both �p(3)µ
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two-body problem for the unbound scenario. Yet, in the applications for gravitational wave physics the bound
scenario including radiative e�ects is required and remains underdeveloped. In addition, the systematic inclusion
of higher orders in spin, finite-size and tidal-e�ects including radiative e�ects at high PM orders needs to be
performed. Finally, the present QFT based technology is limited to the weak gravitational field sector, the strong
gravity regime accessible in the small mass ratio expansion (the gravitational self-force approach) remained
untouched by recent innovations.

a.2. Research objectives

The research objectives of the GraWFTy project that I would like to pursue in four work-packages are therefore
the following:

1) Radiative e�ects: How can we systematically control the radiative PM expansion including spin, finite size
and tidal e�ects?

2) Higher spin: What are the hidden symmetries behind Kerr-BH scattering and how do we e�ciently handle
higher spin contributions?

3) Strong gravity: How can we innovate the small mass ratio expansion with QFT techniques in order to access
the strong gravity regime?

4) Bound state: How can we port the QFT based innovations from the scattering to the bound state regime?

I plan to pursue these objectives in the framework of the WQFT formalism outlined above. The ERC grant
would provide me with the means to fully unfold the enormous potential of this approach. My GraWFTy team
will consist of a long-term (5y) senior postdoc with a background in amplitudes and collider physics that will
bring in expertise in modern Feynman integration methods, a postdoc (3y) with a background in gravitational
wave physics in particular EOB and/or the self-force approach, as well as two talented PhD students (4y).

Work-packages

WP1 Radiative e�ects: Retarded WQFT including spin, tidal and finite size e�ects
Team: Senior Postdoc, PhD

As we know in classical physics one needs to use the retarded Green’s function (or propagator) to solve
Maxwell’s equations with time-dependent sources. The same is true for a perturbative PM solution of the
gravitational two-body problem. Yet, to date all QFT based approaches fail to do so and use the Feynman
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FIG. 1. The three diagrams contributing to the
Bremsstrahlung at 2PM order, where �i = k·vi by energy con-
servation at the worldline vertices. All three diagrams have
the integral measure in Eq. (16); in the rest frame of black
hole 1 diagram (a) does not contribute as soon as the outgo-
ing graviton is contracted with a purely spatial polarization
tensor.

these waveforms we furthermore reproduce Damour’s re-
cent result for the total radiated angular momentum [22]
at 2PM order. Our results also complement the recent
result of the total radiated momentum at leading order in
G (3PM) established with amplitude techniques [30]. We
comment on how to achieve this result from our methods.

Worldline Quantum Field Theory. — The classical
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with �2 = 32�G the gravitational coupling; we have sup-
pressed the ghost contributions in Eq. (1) as they are ir-
relevant in the classical setting. We work in mostly minus
signature, �µ� = diag(1, �1, �1, �1), and set c = � = 1.

Correlation functions in the WQFT �O(h, {xi})�WQFT

result from an insertion of the operator O in the path
integral and dividing by ZWQFT. Moving to momentum
space for the graviton hµ�(k) and energy space for the
fluctuations zµ(�) we have the retarded propagators
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The energy � is also taken as outgoing. One also has the
standard bulk graviton vertices, of which we shall need
only the three-graviton vertex — see e.g. Ref. [31].

To determine the Bremsstrahlung of two travers-
ing black holes we compute the expectation value
k2�hµ�(k)�WQFT. At leading (2PM) order there are three
diagrams contributing, cp. Fig. 1. We integrate over the
momenta or energies of internal gravitons or fluctuations
respectively; lack of three-momentum conservation at the
worldline vertices leaves unresolved integrals for the tree-
level diagrams.
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these waveforms we furthermore reproduce Damour’s re-
cent result for the total radiated angular momentum [22]
at 2PM order. Our results also complement the recent
result of the total radiated momentum at leading order in
G (3PM) established with amplitude techniques [30]. We
comment on how to achieve this result from our methods.
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with �2 = 32�G the gravitational coupling; we have sup-
pressed the ghost contributions in Eq. (1) as they are ir-
relevant in the classical setting. We work in mostly minus
signature, �µ� = diag(1, �1, �1, �1), and set c = � = 1.
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The energy � is also taken as outgoing. One also has the
standard bulk graviton vertices, of which we shall need
only the three-graviton vertex — see e.g. Ref. [31].

To determine the Bremsstrahlung of two travers-
ing black holes we compute the expectation value
k2�hµ�(k)�WQFT. At leading (2PM) order there are three
diagrams contributing, cp. Fig. 1. We integrate over the
momenta or energies of internal gravitons or fluctuations
respectively; lack of three-momentum conservation at the
worldline vertices leaves unresolved integrals for the tree-
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The energy � is also taken as outgoing. Finally, to quadratic order in zµ:
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The associated trivalent Feynman vertex is
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While of course the second worldline fluctuation still travels on the worldline, we

draw it above to distinguish it from its partner.

Given that an n-graviton vertex carries an overall m2�n
Pl , it might seem odd that

each of these z-vertices carries only a single power of m�1
Pl . To rectify this we might

try rescaling zµ � m�1
Pl z

µ, similar to how we write gµ� = �µ� + m�1
Pl hµ� for the

graviton. However, we find this operation to be undesirable as it also rescales the

propagator (4.7) to carry an overall m2
Pl. As we shall see, despite the higher-point

vertices carrying the same overall power of mPl, their appearance at low orders in

the PM expansion is ruled out by the combinatorics of which diagrams we can draw.

The three vertices given above will be su�cient for all of the calculations done in

this paper. However, using eq. (4.10) we can easily generalize to an nth order vertex:
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An intriguing property of this vertex is that, should we set the energy on one of the

external zµ lines to zero, the resulting expression can also be obtained as a derivative

of its lower-point cousin with respect to the impact factor:
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This will be important when we return to the eikonal phase in Section 7.
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Figure B2.1.: Sketch of the non-spinning WQFT momentum space Feynman rules. The dotted line represents the unde-
flected world-line trajectories. There exist hzn vertices for all n.

also produce gravitational radiation, or gravitational Bremsstrahlung. The resulting waveform in the far field
at leading order in G was found (in the spinless case) with traditional techniques in the 1970s [21–24].
Bremsstrahlung events currently appear to be out of reach for GW wave detectors as the signal is not periodic
and typically less intensive [25–27]. Still, there is a debate in the field as to their detectability in the third
generation of GW detectors (see [28] for a summary) calling for accurate waveform models just as well. They
would be relevant for the understanding of dense stellar environments. Due to the lack of an orbital scale r in
the scattering case, the dynamics is organized in an expansion solely in G for arbitrary relative velocities of the
compact objects: the post-Minkowskian (PM) expansion. From a quantum field theorist’s perspective this is
the much more natural and e�cient expansion. It is a pure weak field expansion in powers of Newton’s constant
G and precisely the expansion one performs in a perturbative quantization of general relativity. It is exact in
velocities, subsuming the PN expansion, and maintains Lorentz invariance.

Together with my research team at Humboldt University Berlin and Dr. Jan Steinho� from the MPI for Gravita-
tional Physics in Potsdam, I very recently developed a novel and highly e�cient QFT based formalism to address
the gravitational two-body problem in the PM expansion: worldline quantum field theory (WQFT) [1]. The
WQFT starts out from the identical description as the “non-relativistic general relativity” worldline approach,
discussed above, which may also be used for the PM expansion [29, 30]. We model the black-holes or neutron
stars as (spinning) point-particles coupled to the gravitational field. Using an einbein e in a “Polyakov” type
action in order to linearize the graviton coupling to the world-line one has (in the spin-less case)
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where we exposed the first two finite size corrections with free Wilson-coe�cients cR and cV . It is convenient to
go to proper time gauge e = 1. The key di�erence to the worldline EFT approach in the PM expansion [29,30], is
that in WQFT one quantizes both the graviton field hµ⌫(x) and the fluctuations zµi (⌧i) about the bodies’ straight
worldline trajectories xµa (⌧) = bµi + v

µ
i ⌧i + zµi (⌧i). They are integrated out in the path integral
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in the classical (~ ! 0) limit. In the scattering scenario there are two key observables: The momentum
deflection, i.e. the change in momentum �pµi of the two compact objects undergoing the scatterings, and
the emitted gravitational waveform (“Bremsstrahlung”). These follow directly from the one-point correlation
functions [1, 31]
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This leads to a highly streamlined PM expansion wherein classical scattering observables arise only from sums
of tree-level Feynman diagrams. Hence, the usual expectancy of classical field theory = tree-level quantum
field theory is recovered. In figure B2.1 I sketch the Feynman rules and observables of WQFT.
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FIG. 1. The three diagrams contributing to the
Bremsstrahlung at 2PM order, where �i = k·vi by energy con-
servation at the worldline vertices. All three diagrams have
the integral measure in Eq. (16); in the rest frame of black
hole 1 diagram (a) does not contribute as soon as the outgo-
ing graviton is contracted with a purely spatial polarization
tensor.

these waveforms we furthermore reproduce Damour’s re-
cent result for the total radiated angular momentum [22]
at 2PM order. Our results also complement the recent
result of the total radiated momentum at leading order in
G (3PM) established with amplitude techniques [30]. We
comment on how to achieve this result from our methods.
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with �2 = 32�G the gravitational coupling; we have sup-
pressed the ghost contributions in Eq. (1) as they are ir-
relevant in the classical setting. We work in mostly minus
signature, �µ� = diag(1, �1, �1, �1), and set c = � = 1.

Correlation functions in the WQFT �O(h, {xi})�WQFT

result from an insertion of the operator O in the path
integral and dividing by ZWQFT. Moving to momentum
space for the graviton hµ�(k) and energy space for the
fluctuations zµ(�) we have the retarded propagators
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The energy � is also taken as outgoing. One also has the
standard bulk graviton vertices, of which we shall need
only the three-graviton vertex — see e.g. Ref. [31].

To determine the Bremsstrahlung of two travers-
ing black holes we compute the expectation value
k2�hµ�(k)�WQFT. At leading (2PM) order there are three
diagrams contributing, cp. Fig. 1. We integrate over the
momenta or energies of internal gravitons or fluctuations
respectively; lack of three-momentum conservation at the
worldline vertices leaves unresolved integrals for the tree-
level diagrams.
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i ẋ�
i

�
,

where SEH+Sgf is the gauge-fixed Einstein-Hilbert action

SEH + Sgf =

�
d4x

�
� 2

�2

�
�gR + (��hµ� � 1

2�µh�
�)2

�
,

(2)

with �2 = 32�G the gravitational coupling; we have sup-
pressed the ghost contributions in Eq. (1) as they are ir-
relevant in the classical setting. We work in mostly minus
signature, �µ� = diag(1, �1, �1, �1), and set c = � = 1.

Correlation functions in the WQFT �O(h, {xi})�WQFT

result from an insertion of the operator O in the path
integral and dividing by ZWQFT. Moving to momentum
space for the graviton hµ�(k) and energy space for the
fluctuations zµ(�) we have the retarded propagators

k

µ� ��
= i

Pµ�;��

(k0 + i�)2 � k2
, (3a)

�

µ � = �i
�µ�

m (� + i�)2
, (3b)

with Pµ�;�� := �µ(���)� � 1
2�µ����. The relevant vertices

for the emission of a graviton o� the worldline read

hµ�(k)

= �i
m�

2
eik·b��(k · v)vµv� , (4)

with k outgoing, ��(�) := (2�)�(�) and

hµ�(k)

z�(�)
=

m�

2
eik·b��(k · v + �) (5)

�
�
2�v(µ��)

� + vµv�k�

�
.

The energy � is also taken as outgoing. One also has the
standard bulk graviton vertices, of which we shall need
only the three-graviton vertex — see e.g. Ref. [31].

To determine the Bremsstrahlung of two travers-
ing black holes we compute the expectation value
k2�hµ�(k)�WQFT. At leading (2PM) order there are three
diagrams contributing, cp. Fig. 1. We integrate over the
momenta or energies of internal gravitons or fluctuations
respectively; lack of three-momentum conservation at the
worldline vertices leaves unresolved integrals for the tree-
level diagrams.

Diagram (a) of Fig. 1 then takes the form1

k2�hµ�(k)�WQFT

���
(a)

= �m1m2�3

8

�

q1,q2

µ1,2(k)
(2�1v

(µ
1 ��)

� � vµ
1 v�

1k�)(2�1v
(�
1 ��)� � v�

1 v�
1 q�

2)

(�1 + i�)2
P��;��

[(q0
2 + i�)2 � q2

2]
v�
2 v�

2 ,

(6)

1 In principle we should also contract with Pµ�;�� for an outgo-
ing graviton line; however as the polarization tensors eµ�

+,� are
traceless we find it unnecessary.

= �i
�µ⌫

m (! + i� )2
,

2

µ,�

���1

k
q2 �

1

2

(a)

µ,�

�2�� k

q1 �

2

1

(b)

µ,�k
q1 �

q2 �

1

2

(c)

FIG. 1. The three diagrams contributing to the
Bremsstrahlung at 2PM order, where �i = k·vi by energy con-
servation at the worldline vertices. All three diagrams have
the integral measure in Eq. (16); in the rest frame of black
hole 1 diagram (a) does not contribute as soon as the outgo-
ing graviton is contracted with a purely spatial polarization
tensor.

these waveforms we furthermore reproduce Damour’s re-
cent result for the total radiated angular momentum [22]
at 2PM order. Our results also complement the recent
result of the total radiated momentum at leading order in
G (3PM) established with amplitude techniques [30]. We
comment on how to achieve this result from our methods.
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with �2 = 32�G the gravitational coupling; we have sup-
pressed the ghost contributions in Eq. (1) as they are ir-
relevant in the classical setting. We work in mostly minus
signature, �µ� = diag(1, �1, �1, �1), and set c = � = 1.
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The energy � is also taken as outgoing. One also has the
standard bulk graviton vertices, of which we shall need
only the three-graviton vertex — see e.g. Ref. [31].

To determine the Bremsstrahlung of two travers-
ing black holes we compute the expectation value
k2�hµ�(k)�WQFT. At leading (2PM) order there are three
diagrams contributing, cp. Fig. 1. We integrate over the
momenta or energies of internal gravitons or fluctuations
respectively; lack of three-momentum conservation at the
worldline vertices leaves unresolved integrals for the tree-
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The energy � is also taken as outgoing. Finally, to quadratic order in zµ:
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The associated trivalent Feynman vertex is
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While of course the second worldline fluctuation still travels on the worldline, we

draw it above to distinguish it from its partner.

Given that an n-graviton vertex carries an overall m2�n
Pl , it might seem odd that

each of these z-vertices carries only a single power of m�1
Pl . To rectify this we might

try rescaling zµ � m�1
Pl z

µ, similar to how we write gµ� = �µ� + m�1
Pl hµ� for the

graviton. However, we find this operation to be undesirable as it also rescales the

propagator (4.7) to carry an overall m2
Pl. As we shall see, despite the higher-point

vertices carrying the same overall power of mPl, their appearance at low orders in

the PM expansion is ruled out by the combinatorics of which diagrams we can draw.

The three vertices given above will be su�cient for all of the calculations done in

this paper. However, using eq. (4.10) we can easily generalize to an nth order vertex:
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An intriguing property of this vertex is that, should we set the energy on one of the

external zµ lines to zero, the resulting expression can also be obtained as a derivative

of its lower-point cousin with respect to the impact factor:
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This will be important when we return to the eikonal phase in Section 7.
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Figure B2.1.: Sketch of the non-spinning WQFT momentum space Feynman rules. The dotted line represents the unde-
flected world-line trajectories. There exist hzn vertices for all n.

also produce gravitational radiation, or gravitational Bremsstrahlung. The resulting waveform in the far field
at leading order in G was found (in the spinless case) with traditional techniques in the 1970s [21–24].
Bremsstrahlung events currently appear to be out of reach for GW wave detectors as the signal is not periodic
and typically less intensive [25–27]. Still, there is a debate in the field as to their detectability in the third
generation of GW detectors (see [28] for a summary) calling for accurate waveform models just as well. They
would be relevant for the understanding of dense stellar environments. Due to the lack of an orbital scale r in
the scattering case, the dynamics is organized in an expansion solely in G for arbitrary relative velocities of the
compact objects: the post-Minkowskian (PM) expansion. From a quantum field theorist’s perspective this is
the much more natural and e�cient expansion. It is a pure weak field expansion in powers of Newton’s constant
G and precisely the expansion one performs in a perturbative quantization of general relativity. It is exact in
velocities, subsuming the PN expansion, and maintains Lorentz invariance.

Together with my research team at Humboldt University Berlin and Dr. Jan Steinho� from the MPI for Gravita-
tional Physics in Potsdam, I very recently developed a novel and highly e�cient QFT based formalism to address
the gravitational two-body problem in the PM expansion: worldline quantum field theory (WQFT) [1]. The
WQFT starts out from the identical description as the “non-relativistic general relativity” worldline approach,
discussed above, which may also be used for the PM expansion [29, 30]. We model the black-holes or neutron
stars as (spinning) point-particles coupled to the gravitational field. Using an einbein e in a “Polyakov” type
action in order to linearize the graviton coupling to the world-line one has (in the spin-less case)
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where we exposed the first two finite size corrections with free Wilson-coe�cients cR and cV . It is convenient to
go to proper time gauge e = 1. The key di�erence to the worldline EFT approach in the PM expansion [29,30], is
that in WQFT one quantizes both the graviton field hµ⌫(x) and the fluctuations zµi (⌧i) about the bodies’ straight
worldline trajectories xµa (⌧) = bµi + v

µ
i ⌧i + zµi (⌧i). They are integrated out in the path integral
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in the classical (~ ! 0) limit. In the scattering scenario there are two key observables: The momentum
deflection, i.e. the change in momentum �pµi of the two compact objects undergoing the scatterings, and
the emitted gravitational waveform (“Bremsstrahlung”). These follow directly from the one-point correlation
functions [1, 31]
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This leads to a highly streamlined PM expansion wherein classical scattering observables arise only from sums
of tree-level Feynman diagrams. Hence, the usual expectancy of classical field theory = tree-level quantum
field theory is recovered. In figure B2.1 I sketch the Feynman rules and observables of WQFT.
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FIG. 1. The three diagrams contributing to the
Bremsstrahlung at 2PM order, where �i = k·vi by energy con-
servation at the worldline vertices. All three diagrams have
the integral measure in Eq. (16); in the rest frame of black
hole 1 diagram (a) does not contribute as soon as the outgo-
ing graviton is contracted with a purely spatial polarization
tensor.

these waveforms we furthermore reproduce Damour’s re-
cent result for the total radiated angular momentum [22]
at 2PM order. Our results also complement the recent
result of the total radiated momentum at leading order in
G (3PM) established with amplitude techniques [30]. We
comment on how to achieve this result from our methods.
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with �2 = 32�G the gravitational coupling; we have sup-
pressed the ghost contributions in Eq. (1) as they are ir-
relevant in the classical setting. We work in mostly minus
signature, �µ� = diag(1, �1, �1, �1), and set c = � = 1.

Correlation functions in the WQFT �O(h, {xi})�WQFT

result from an insertion of the operator O in the path
integral and dividing by ZWQFT. Moving to momentum
space for the graviton hµ�(k) and energy space for the
fluctuations zµ(�) we have the retarded propagators
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The energy � is also taken as outgoing. One also has the
standard bulk graviton vertices, of which we shall need
only the three-graviton vertex — see e.g. Ref. [31].

To determine the Bremsstrahlung of two travers-
ing black holes we compute the expectation value
k2�hµ�(k)�WQFT. At leading (2PM) order there are three
diagrams contributing, cp. Fig. 1. We integrate over the
momenta or energies of internal gravitons or fluctuations
respectively; lack of three-momentum conservation at the
worldline vertices leaves unresolved integrals for the tree-
level diagrams.
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comment on how to achieve this result from our methods.
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with �2 = 32�G the gravitational coupling; we have sup-
pressed the ghost contributions in Eq. (1) as they are ir-
relevant in the classical setting. We work in mostly minus
signature, �µ� = diag(1, �1, �1, �1), and set c = � = 1.
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The energy � is also taken as outgoing. One also has the
standard bulk graviton vertices, of which we shall need
only the three-graviton vertex — see e.g. Ref. [31].

To determine the Bremsstrahlung of two travers-
ing black holes we compute the expectation value
k2�hµ�(k)�WQFT. At leading (2PM) order there are three
diagrams contributing, cp. Fig. 1. We integrate over the
momenta or energies of internal gravitons or fluctuations
respectively; lack of three-momentum conservation at the
worldline vertices leaves unresolved integrals for the tree-
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The energy � is also taken as outgoing. Finally, to quadratic order in zµ:

Sint
pm

��
z2 =

m

2mPl

�

k,�1,�2

eik·b��(k · v + �1 + �2)hµ�(�k)z�1(��1)z
�2(��2)�

�
1

2
k�1k�2v

µv� + �1k�2v
(µ��)

�1
+ �2k�1v

(µ��)
�2

+ �1�2�
(µ
�1

��)
�2

�
.

(4.15)

The associated trivalent Feynman vertex is
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While of course the second worldline fluctuation still travels on the worldline, we

draw it above to distinguish it from its partner.

Given that an n-graviton vertex carries an overall m2�n
Pl , it might seem odd that

each of these z-vertices carries only a single power of m�1
Pl . To rectify this we might

try rescaling zµ � m�1
Pl z

µ, similar to how we write gµ� = �µ� + m�1
Pl hµ� for the

graviton. However, we find this operation to be undesirable as it also rescales the

propagator (4.7) to carry an overall m2
Pl. As we shall see, despite the higher-point

vertices carrying the same overall power of mPl, their appearance at low orders in

the PM expansion is ruled out by the combinatorics of which diagrams we can draw.

The three vertices given above will be su�cient for all of the calculations done in

this paper. However, using eq. (4.10) we can easily generalize to an nth order vertex:

V WL,µ�
�1···�n

(k; �1, · · · , �n) = in�1 m

mPl
eik·b��

�
k · v +

n�

i=1

�i

�
� (4.17)

�
1

2

�
n�

i=1

k�i

�
vµv� +

n�

i=1

�i

�
n�

j �=i

k�j

�
v(µ��)

�i
+

n�

i<j

�i�j

�
n�

l �=i,j

k�l

�
�(µ
�i

��)
�j

�
.

An intriguing property of this vertex is that, should we set the energy on one of the

external zµ lines to zero, the resulting expression can also be obtained as a derivative

of its lower-point cousin with respect to the impact factor:
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This will be important when we return to the eikonal phase in Section 7.
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Figure B2.1.: Sketch of the non-spinning WQFT momentum space Feynman rules. The dotted line represents the unde-
flected world-line trajectories. There exist hzn vertices for all n.

also produce gravitational radiation, or gravitational Bremsstrahlung. The resulting waveform in the far field
at leading order in G was found (in the spinless case) with traditional techniques in the 1970s [21–24].
Bremsstrahlung events currently appear to be out of reach for GW wave detectors as the signal is not periodic
and typically less intensive [25–27]. Still, there is a debate in the field as to their detectability in the third
generation of GW detectors (see [28] for a summary) calling for accurate waveform models just as well. They
would be relevant for the understanding of dense stellar environments. Due to the lack of an orbital scale r in
the scattering case, the dynamics is organized in an expansion solely in G for arbitrary relative velocities of the
compact objects: the post-Minkowskian (PM) expansion. From a quantum field theorist’s perspective this is
the much more natural and e�cient expansion. It is a pure weak field expansion in powers of Newton’s constant
G and precisely the expansion one performs in a perturbative quantization of general relativity. It is exact in
velocities, subsuming the PN expansion, and maintains Lorentz invariance.

Together with my research team at Humboldt University Berlin and Dr. Jan Steinho� from the MPI for Gravita-
tional Physics in Potsdam, I very recently developed a novel and highly e�cient QFT based formalism to address
the gravitational two-body problem in the PM expansion: worldline quantum field theory (WQFT) [1]. The
WQFT starts out from the identical description as the “non-relativistic general relativity” worldline approach,
discussed above, which may also be used for the PM expansion [29, 30]. We model the black-holes or neutron
stars as (spinning) point-particles coupled to the gravitational field. Using an einbein e in a “Polyakov” type
action in order to linearize the graviton coupling to the world-line one has (in the spin-less case)
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where we exposed the first two finite size corrections with free Wilson-coe�cients cR and cV . It is convenient to
go to proper time gauge e = 1. The key di�erence to the worldline EFT approach in the PM expansion [29,30], is
that in WQFT one quantizes both the graviton field hµ⌫(x) and the fluctuations zµi (⌧i) about the bodies’ straight
worldline trajectories xµa (⌧) = bµi + v

µ
i ⌧i + zµi (⌧i). They are integrated out in the path integral
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in the classical (~ ! 0) limit. In the scattering scenario there are two key observables: The momentum
deflection, i.e. the change in momentum �pµi of the two compact objects undergoing the scatterings, and
the emitted gravitational waveform (“Bremsstrahlung”). These follow directly from the one-point correlation
functions [1, 31]
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This leads to a highly streamlined PM expansion wherein classical scattering observables arise only from sums
of tree-level Feynman diagrams. Hence, the usual expectancy of classical field theory = tree-level quantum
field theory is recovered. In figure B2.1 I sketch the Feynman rules and observables of WQFT.
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FIG. 1. The three diagrams contributing to the
Bremsstrahlung at 2PM order, where �i = k·vi by energy con-
servation at the worldline vertices. All three diagrams have
the integral measure in Eq. (16); in the rest frame of black
hole 1 diagram (a) does not contribute as soon as the outgo-
ing graviton is contracted with a purely spatial polarization
tensor.

these waveforms we furthermore reproduce Damour’s re-
cent result for the total radiated angular momentum [22]
at 2PM order. Our results also complement the recent
result of the total radiated momentum at leading order in
G (3PM) established with amplitude techniques [30]. We
comment on how to achieve this result from our methods.
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with �2 = 32�G the gravitational coupling; we have sup-
pressed the ghost contributions in Eq. (1) as they are ir-
relevant in the classical setting. We work in mostly minus
signature, �µ� = diag(1, �1, �1, �1), and set c = � = 1.

Correlation functions in the WQFT �O(h, {xi})�WQFT

result from an insertion of the operator O in the path
integral and dividing by ZWQFT. Moving to momentum
space for the graviton hµ�(k) and energy space for the
fluctuations zµ(�) we have the retarded propagators
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The energy � is also taken as outgoing. One also has the
standard bulk graviton vertices, of which we shall need
only the three-graviton vertex — see e.g. Ref. [31].

To determine the Bremsstrahlung of two travers-
ing black holes we compute the expectation value
k2�hµ�(k)�WQFT. At leading (2PM) order there are three
diagrams contributing, cp. Fig. 1. We integrate over the
momenta or energies of internal gravitons or fluctuations
respectively; lack of three-momentum conservation at the
worldline vertices leaves unresolved integrals for the tree-
level diagrams.

Diagram (a) of Fig. 1 then takes the form1

k2�hµ�(k)�WQFT

���
(a)

= �m1m2�3

8

�

q1,q2

µ1,2(k)
(2�1v

(µ
1 ��)

� � vµ
1 v�

1k�)(2�1v
(�
1 ��)� � v�

1 v�
1 q�

2)

(�1 + i�)2
P��;��

[(q0
2 + i�)2 � q2

2]
v�
2 v�

2 ,

(6)

1 In principle we should also contract with Pµ�;�� for an outgo-
ing graviton line; however as the polarization tensors eµ�

+,� are
traceless we find it unnecessary.

= i
�µ(⇢��)⌫ �

1
2 �µ⌫�⇢�

(k0 + i� )2 � k2 ,

hzµ (!)z⌫ (�!)i =

2

µ,�

���1

k
q2 �

1

2

(a)

µ,�

�2�� k

q1 �

2

1

(b)

µ,�k
q1 �

q2 �

1

2

(c)

FIG. 1. The three diagrams contributing to the
Bremsstrahlung at 2PM order, where �i = k·vi by energy con-
servation at the worldline vertices. All three diagrams have
the integral measure in Eq. (16); in the rest frame of black
hole 1 diagram (a) does not contribute as soon as the outgo-
ing graviton is contracted with a purely spatial polarization
tensor.

these waveforms we furthermore reproduce Damour’s re-
cent result for the total radiated angular momentum [22]
at 2PM order. Our results also complement the recent
result of the total radiated momentum at leading order in
G (3PM) established with amplitude techniques [30]. We
comment on how to achieve this result from our methods.

Worldline Quantum Field Theory. — The classical
gravitational scattering of two massive objects mi mov-
ing on trajectories xµ

i (�i) = bµ
i +vµ

i �i+zµ
i (�i) is described

by the worldline quantum field theory (WQFT) with par-
tition function [29]

ZWQFT := const �
�

D[hµ� ]

� 2�

i=1

D[zi] e
i(SEH+Sgf ) (1)

exp
�
�i

2�

i=1

� �

��
d�i

mi

2
[�µ� + �hµ�(x)]ẋµ

i ẋ�
i

�
,

where SEH+Sgf is the gauge-fixed Einstein-Hilbert action

SEH + Sgf =

�
d4x

�
� 2

�2

�
�gR + (��hµ� � 1

2�µh�
�)2

�
,

(2)

with �2 = 32�G the gravitational coupling; we have sup-
pressed the ghost contributions in Eq. (1) as they are ir-
relevant in the classical setting. We work in mostly minus
signature, �µ� = diag(1, �1, �1, �1), and set c = � = 1.

Correlation functions in the WQFT �O(h, {xi})�WQFT

result from an insertion of the operator O in the path
integral and dividing by ZWQFT. Moving to momentum
space for the graviton hµ�(k) and energy space for the
fluctuations zµ(�) we have the retarded propagators

k

µ� ��
= i

Pµ�;��

(k0 + i�)2 � k2
, (3a)

�

µ � = �i
�µ�

m (� + i�)2
, (3b)

with Pµ�;�� := �µ(���)� � 1
2�µ����. The relevant vertices

for the emission of a graviton o� the worldline read

hµ�(k)

= �i
m�

2
eik·b��(k · v)vµv� , (4)

with k outgoing, ��(�) := (2�)�(�) and

hµ�(k)

z�(�)
=

m�

2
eik·b��(k · v + �) (5)

�
�
2�v(µ��)

� + vµv�k�

�
.

The energy � is also taken as outgoing. One also has the
standard bulk graviton vertices, of which we shall need
only the three-graviton vertex — see e.g. Ref. [31].

To determine the Bremsstrahlung of two travers-
ing black holes we compute the expectation value
k2�hµ�(k)�WQFT. At leading (2PM) order there are three
diagrams contributing, cp. Fig. 1. We integrate over the
momenta or energies of internal gravitons or fluctuations
respectively; lack of three-momentum conservation at the
worldline vertices leaves unresolved integrals for the tree-
level diagrams.

Diagram (a) of Fig. 1 then takes the form1

k2�hµ�(k)�WQFT

���
(a)

= �m1m2�3

8

�

q1,q2

µ1,2(k)
(2�1v

(µ
1 ��)

� � vµ
1 v�

1k�)(2�1v
(�
1 ��)� � v�

1 v�
1 q�

2)

(�1 + i�)2
P��;��

[(q0
2 + i�)2 � q2

2]
v�
2 v�

2 ,

(6)

1 In principle we should also contract with Pµ�;�� for an outgo-
ing graviton line; however as the polarization tensors eµ�

+,� are
traceless we find it unnecessary.

= �i
�µ⌫

m (! + i� )2
,

2

µ,�

���1

k
q2 �

1

2

(a)

µ,�

�2�� k

q1 �

2

1

(b)

µ,�k
q1 �

q2 �

1

2

(c)

FIG. 1. The three diagrams contributing to the
Bremsstrahlung at 2PM order, where �i = k·vi by energy con-
servation at the worldline vertices. All three diagrams have
the integral measure in Eq. (16); in the rest frame of black
hole 1 diagram (a) does not contribute as soon as the outgo-
ing graviton is contracted with a purely spatial polarization
tensor.

these waveforms we furthermore reproduce Damour’s re-
cent result for the total radiated angular momentum [22]
at 2PM order. Our results also complement the recent
result of the total radiated momentum at leading order in
G (3PM) established with amplitude techniques [30]. We
comment on how to achieve this result from our methods.

Worldline Quantum Field Theory. — The classical
gravitational scattering of two massive objects mi mov-
ing on trajectories xµ

i (�i) = bµ
i +vµ

i �i+zµ
i (�i) is described

by the worldline quantum field theory (WQFT) with par-
tition function [29]

ZWQFT := const �
�

D[hµ� ]

� 2�

i=1

D[zi] e
i(SEH+Sgf ) (1)

exp
�
�i

2�

i=1

� �

��
d�i

mi

2
[�µ� + �hµ�(x)]ẋµ
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with �2 = 32�G the gravitational coupling; we have sup-
pressed the ghost contributions in Eq. (1) as they are ir-
relevant in the classical setting. We work in mostly minus
signature, �µ� = diag(1, �1, �1, �1), and set c = � = 1.
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The energy � is also taken as outgoing. One also has the
standard bulk graviton vertices, of which we shall need
only the three-graviton vertex — see e.g. Ref. [31].

To determine the Bremsstrahlung of two travers-
ing black holes we compute the expectation value
k2�hµ�(k)�WQFT. At leading (2PM) order there are three
diagrams contributing, cp. Fig. 1. We integrate over the
momenta or energies of internal gravitons or fluctuations
respectively; lack of three-momentum conservation at the
worldline vertices leaves unresolved integrals for the tree-
level diagrams.
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these waveforms we furthermore reproduce Damour’s re-
cent result for the total radiated angular momentum [22]
at 2PM order. Our results also complement the recent
result of the total radiated momentum at leading order in
G (3PM) established with amplitude techniques [30]. We
comment on how to achieve this result from our methods.
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The energy � is also taken as outgoing. Finally, to quadratic order in zµ:
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The associated trivalent Feynman vertex is
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While of course the second worldline fluctuation still travels on the worldline, we

draw it above to distinguish it from its partner.

Given that an n-graviton vertex carries an overall m2�n
Pl , it might seem odd that

each of these z-vertices carries only a single power of m�1
Pl . To rectify this we might

try rescaling zµ � m�1
Pl z

µ, similar to how we write gµ� = �µ� + m�1
Pl hµ� for the

graviton. However, we find this operation to be undesirable as it also rescales the

propagator (4.7) to carry an overall m2
Pl. As we shall see, despite the higher-point

vertices carrying the same overall power of mPl, their appearance at low orders in

the PM expansion is ruled out by the combinatorics of which diagrams we can draw.

The three vertices given above will be su�cient for all of the calculations done in

this paper. However, using eq. (4.10) we can easily generalize to an nth order vertex:
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An intriguing property of this vertex is that, should we set the energy on one of the

external zµ lines to zero, the resulting expression can also be obtained as a derivative

of its lower-point cousin with respect to the impact factor:
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This will be important when we return to the eikonal phase in Section 7.
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Figure B2.1.: Sketch of the non-spinning WQFT momentum space Feynman rules. The dotted line represents the unde-
flected world-line trajectories. There exist hzn vertices for all n.

also produce gravitational radiation, or gravitational Bremsstrahlung. The resulting waveform in the far field
at leading order in G was found (in the spinless case) with traditional techniques in the 1970s [21–24].
Bremsstrahlung events currently appear to be out of reach for GW wave detectors as the signal is not periodic
and typically less intensive [25–27]. Still, there is a debate in the field as to their detectability in the third
generation of GW detectors (see [28] for a summary) calling for accurate waveform models just as well. They
would be relevant for the understanding of dense stellar environments. Due to the lack of an orbital scale r in
the scattering case, the dynamics is organized in an expansion solely in G for arbitrary relative velocities of the
compact objects: the post-Minkowskian (PM) expansion. From a quantum field theorist’s perspective this is
the much more natural and e�cient expansion. It is a pure weak field expansion in powers of Newton’s constant
G and precisely the expansion one performs in a perturbative quantization of general relativity. It is exact in
velocities, subsuming the PN expansion, and maintains Lorentz invariance.

Together with my research team at Humboldt University Berlin and Dr. Jan Steinho� from the MPI for Gravita-
tional Physics in Potsdam, I very recently developed a novel and highly e�cient QFT based formalism to address
the gravitational two-body problem in the PM expansion: worldline quantum field theory (WQFT) [1]. The
WQFT starts out from the identical description as the “non-relativistic general relativity” worldline approach,
discussed above, which may also be used for the PM expansion [29, 30]. We model the black-holes or neutron
stars as (spinning) point-particles coupled to the gravitational field. Using an einbein e in a “Polyakov” type
action in order to linearize the graviton coupling to the world-line one has (in the spin-less case)
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where we exposed the first two finite size corrections with free Wilson-coe�cients cR and cV . It is convenient to
go to proper time gauge e = 1. The key di�erence to the worldline EFT approach in the PM expansion [29,30], is
that in WQFT one quantizes both the graviton field hµ⌫(x) and the fluctuations zµi (⌧i) about the bodies’ straight
worldline trajectories xµa (⌧) = bµi + v

µ
i ⌧i + zµi (⌧i). They are integrated out in the path integral
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in the classical (~ ! 0) limit. In the scattering scenario there are two key observables: The momentum
deflection, i.e. the change in momentum �pµi of the two compact objects undergoing the scatterings, and
the emitted gravitational waveform (“Bremsstrahlung”). These follow directly from the one-point correlation
functions [1, 31]
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This leads to a highly streamlined PM expansion wherein classical scattering observables arise only from sums
of tree-level Feynman diagrams. Hence, the usual expectancy of classical field theory = tree-level quantum
field theory is recovered. In figure B2.1 I sketch the Feynman rules and observables of WQFT.
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FIG. 1. The three diagrams contributing to the
Bremsstrahlung at 2PM order, where �i = k·vi by energy con-
servation at the worldline vertices. All three diagrams have
the integral measure in Eq. (16); in the rest frame of black
hole 1 diagram (a) does not contribute as soon as the outgo-
ing graviton is contracted with a purely spatial polarization
tensor.

these waveforms we furthermore reproduce Damour’s re-
cent result for the total radiated angular momentum [22]
at 2PM order. Our results also complement the recent
result of the total radiated momentum at leading order in
G (3PM) established with amplitude techniques [30]. We
comment on how to achieve this result from our methods.
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ing on trajectories xµ
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with �2 = 32�G the gravitational coupling; we have sup-
pressed the ghost contributions in Eq. (1) as they are ir-
relevant in the classical setting. We work in mostly minus
signature, �µ� = diag(1, �1, �1, �1), and set c = � = 1.

Correlation functions in the WQFT �O(h, {xi})�WQFT

result from an insertion of the operator O in the path
integral and dividing by ZWQFT. Moving to momentum
space for the graviton hµ�(k) and energy space for the
fluctuations zµ(�) we have the retarded propagators
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The energy � is also taken as outgoing. One also has the
standard bulk graviton vertices, of which we shall need
only the three-graviton vertex — see e.g. Ref. [31].

To determine the Bremsstrahlung of two travers-
ing black holes we compute the expectation value
k2�hµ�(k)�WQFT. At leading (2PM) order there are three
diagrams contributing, cp. Fig. 1. We integrate over the
momenta or energies of internal gravitons or fluctuations
respectively; lack of three-momentum conservation at the
worldline vertices leaves unresolved integrals for the tree-
level diagrams.
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result from an insertion of the operator O in the path
integral and dividing by ZWQFT. Moving to momentum
space for the graviton hµ�(k) and energy space for the
fluctuations zµ(�) we have the retarded propagators
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The energy � is also taken as outgoing. One also has the
standard bulk graviton vertices, of which we shall need
only the three-graviton vertex — see e.g. Ref. [31].

To determine the Bremsstrahlung of two travers-
ing black holes we compute the expectation value
k2�hµ�(k)�WQFT. At leading (2PM) order there are three
diagrams contributing, cp. Fig. 1. We integrate over the
momenta or energies of internal gravitons or fluctuations
respectively; lack of three-momentum conservation at the
worldline vertices leaves unresolved integrals for the tree-
level diagrams.
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FIG. 1. The three diagrams contributing to the
Bremsstrahlung at 2PM order, where �i = k·vi by energy con-
servation at the worldline vertices. All three diagrams have
the integral measure in Eq. (16); in the rest frame of black
hole 1 diagram (a) does not contribute as soon as the outgo-
ing graviton is contracted with a purely spatial polarization
tensor.

these waveforms we furthermore reproduce Damour’s re-
cent result for the total radiated angular momentum [22]
at 2PM order. Our results also complement the recent
result of the total radiated momentum at leading order in
G (3PM) established with amplitude techniques [30]. We
comment on how to achieve this result from our methods.
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i ẋ�
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The energy � is also taken as outgoing. Finally, to quadratic order in zµ:
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(4.15)

The associated trivalent Feynman vertex is

hµ�(k)
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While of course the second worldline fluctuation still travels on the worldline, we

draw it above to distinguish it from its partner.

Given that an n-graviton vertex carries an overall m2�n
Pl , it might seem odd that

each of these z-vertices carries only a single power of m�1
Pl . To rectify this we might

try rescaling zµ � m�1
Pl z

µ, similar to how we write gµ� = �µ� + m�1
Pl hµ� for the

graviton. However, we find this operation to be undesirable as it also rescales the

propagator (4.7) to carry an overall m2
Pl. As we shall see, despite the higher-point

vertices carrying the same overall power of mPl, their appearance at low orders in

the PM expansion is ruled out by the combinatorics of which diagrams we can draw.

The three vertices given above will be su�cient for all of the calculations done in

this paper. However, using eq. (4.10) we can easily generalize to an nth order vertex:
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An intriguing property of this vertex is that, should we set the energy on one of the

external zµ lines to zero, the resulting expression can also be obtained as a derivative

of its lower-point cousin with respect to the impact factor:

V WL,µ�
�1...�n+1

(k; �1, . . . , �n, 0) =
�

�b�n+1
V WL,µ�

�1...�n
(k; �1, . . . , �n) . (4.18)

This will be important when we return to the eikonal phase in Section 7.
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Figure B2.1.: Sketch of the non-spinning WQFT momentum space Feynman rules. The dotted line represents the unde-
flected world-line trajectories. There exist hzn vertices for all n.

also produce gravitational radiation, or gravitational Bremsstrahlung. The resulting waveform in the far field
at leading order in G was found (in the spinless case) with traditional techniques in the 1970s [21–24].
Bremsstrahlung events currently appear to be out of reach for GW wave detectors as the signal is not periodic
and typically less intensive [25–27]. Still, there is a debate in the field as to their detectability in the third
generation of GW detectors (see [28] for a summary) calling for accurate waveform models just as well. They
would be relevant for the understanding of dense stellar environments. Due to the lack of an orbital scale r in
the scattering case, the dynamics is organized in an expansion solely in G for arbitrary relative velocities of the
compact objects: the post-Minkowskian (PM) expansion. From a quantum field theorist’s perspective this is
the much more natural and e�cient expansion. It is a pure weak field expansion in powers of Newton’s constant
G and precisely the expansion one performs in a perturbative quantization of general relativity. It is exact in
velocities, subsuming the PN expansion, and maintains Lorentz invariance.

Together with my research team at Humboldt University Berlin and Dr. Jan Steinho� from the MPI for Gravita-
tional Physics in Potsdam, I very recently developed a novel and highly e�cient QFT based formalism to address
the gravitational two-body problem in the PM expansion: worldline quantum field theory (WQFT) [1]. The
WQFT starts out from the identical description as the “non-relativistic general relativity” worldline approach,
discussed above, which may also be used for the PM expansion [29, 30]. We model the black-holes or neutron
stars as (spinning) point-particles coupled to the gravitational field. Using an einbein e in a “Polyakov” type
action in order to linearize the graviton coupling to the world-line one has (in the spin-less case)

S(i)
pm = �mi

π
d⌧i

✓
1
2e

gµ⌫(xi) €x
µ
i €x

⌫
i +

e
2
+
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µ
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⌫
i +
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e

Rµ⌫(xi) €x
µ
i €x

⌫
i + . . .

◆
, (B2.1)

where we exposed the first two finite size corrections with free Wilson-coe�cients cR and cV . It is convenient to
go to proper time gauge e = 1. The key di�erence to the worldline EFT approach in the PM expansion [29,30], is
that in WQFT one quantizes both the graviton field hµ⌫(x) and the fluctuations zµi (⌧i) about the bodies’ straight
worldline trajectories xµa (⌧) = bµi + v

µ
i ⌧i + zµi (⌧i). They are integrated out in the path integral

e
i
~ �[b,vi ] =

π
D[hµ⌫, z

µ
i ]e

i
~ (SEH+

Õ
i S

(i)
pm) . (B2.2)

in the classical (~ ! 0) limit. In the scattering scenario there are two key observables: The momentum
deflection, i.e. the change in momentum �pµi of the two compact objects undergoing the scatterings, and
the emitted gravitational waveform (“Bremsstrahlung”). These follow directly from the one-point correlation
functions [1, 31]

�pµ
(i)
= p(a)(⌧i = +1) � p(a)(⌧i = �1) = �mi !

2
hzµi i

���
!=0
, (B2.3)
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d⌦ e�ik ·xk2
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���
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r )
+O(

1
r2 ) . (B2.4)

This leads to a highly streamlined PM expansion wherein classical scattering observables arise only from sums
of tree-level Feynman diagrams. Hence, the usual expectancy of classical field theory = tree-level quantum
field theory is recovered. In figure B2.1 I sketch the Feynman rules and observables of WQFT.
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Figure B2.1.: Sketch of the WQFT momentum space Feynman rules and observables. The dotted line represents the
undeflected world-line trajectories. There exist hzn vertices for all n.

actual state-of-the-art results for the Bremsstrahlung waveform1 [31] including spin up to quadratic order [33],
as well as for deflection of momenta and spin kicks of spinning bodies at the 3PM and quadratic spin order [34],
which were all published in PRL within the past year. Recent work on WQFT includes applications to light
bending [35], the state-of-the-art 2PM three-body potential [36] and on the double copy nature [37].

My WQFT approach is an extension of the traditional worldline EFT approach to the PM expansion [29, 30].
The latter only integrates out the graviton fluctuation hµ⌫ in the path-integral (B2.2). It computes the e�ective
action Se�(xi) whose equations of motion thereafter need to be solved perturbatively in G in a second step. The
WQFT procedure shortcuts this and directly leads to the observables. Still, the emerging e�ective potential
of the scattering problem carries valuable information that may be ported to the bound case. The group or R.
Porto (DESY) has computed the conservative e�ective action, i.e. neglecting radiation reaction contributions,
to 3PM [30] and 4PM [38] order, as well as spin [39] and tidal [40] e�ects at 2PM order, using the worldline
EFT approach.

The WQFT and EFT approaches are complementary to a recently blossoming QFT approach to the gravitational
two-body problem: applying the theory of scattering amplitudes [41–47]. Here, one uses massive scalar fields
as avatars of spinless black holes and studies their 2 ! 2 scattering amplitudes. Only thereafter one takes
the classical limit. The innovations of the scattering amplitude program for constructing tree and loop-level
amplitudes in perturbatively quantized GR allowed a quick advance to higher PM orders in the past three years.
The conservative e�ective potential has been established at 3PM [44–46] and recently at 4PM order [48] all
in the spin-less case, while the inclusion of radiation-reaction e�ects [49–52] needed to be done separately
and to date only exists for the 3PM result. However, the amplitude approach su�ers from three drawbacks:
(i) The need to take a classical limit. This limit is subtle due to the quantum nature of the mass: opposed to
WQFT here it is not equivalent to tree-level amplitudes, rather loop-level amplitudes contribute in parts to the
classical result. Certain super-classical contributions arise that mask the classical result and need to cancel
before one may retrieve the classical result. This implies that one actually needs to compute more than is needed

1See https://box.hu-berlin.de/f/94445439e1b54757b881 for a visualization of an equal mass encounter (plus
polarization) (B.Sc. thesis O. Babayemi, HU Berlin).
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Figure B2.2.: Representation of GW observables

two-body problem for the unbound scenario. Yet, in the applications for gravitational wave physics the bound
scenario including radiative e�ects is required and remains underdeveloped. In addition, the systematic inclusion
of higher orders in spin, finite-size and tidal-e�ects including radiative e�ects at high PM orders needs to be
performed. Finally, the present QFT based technology is limited to the weak gravitational field sector, the strong
gravity regime accessible in the small mass ratio expansion (the gravitational self-force approach) remained
untouched by recent innovations.

a.2. Research objectives

The research objectives of the GraWFTy project that I would like to pursue in four work-packages are therefore
the following:

1) Radiative e�ects: How can we systematically control the radiative PM expansion including spin, finite size
and tidal e�ects?

2) Higher spin: What are the hidden symmetries behind Kerr-BH scattering and how do we e�ciently handle
higher spin contributions?

3) Strong gravity: How can we innovate the small mass ratio expansion with QFT techniques in order to access
the strong gravity regime?

4) Bound state: How can we port the QFT based innovations from the scattering to the bound state regime?

I plan to pursue these objectives in the framework of the WQFT formalism outlined above. The ERC grant
would provide me with the means to fully unfold the enormous potential of this approach. My GraWFTy team
will consist of a long-term (5y) senior postdoc with a background in amplitudes and collider physics that will
bring in expertise in modern Feynman integration methods, a postdoc (3y) with a background in gravitational
wave physics in particular EOB and/or the self-force approach, as well as two talented PhD students (4y).

Work-packages

WP1 Radiative e�ects: Retarded WQFT including spin, tidal and finite size e�ects
Team: Senior Postdoc, PhD

As we know in classical physics one needs to use the retarded Green’s function (or propagator) to solve
Maxwell’s equations with time-dependent sources. The same is true for a perturbative PM solution of the
gravitational two-body problem. Yet, to date all QFT based approaches fail to do so and use the Feynman
propagator – this being the correct choice for the quantum regime. This seemingly technical detail actually
has profound consequences: It leads to an unphysical split of the resulting observables into conservative and
radiation reaction contributions. It was also the reason for an initial confusion in the field about a divergent
high-energy limit of the 3PM amplitudes based computation of the e�ective potential. The key advantage of

5
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FIG. 1: The nine types of diagram contributing to the m1m
3
2 components of �p(3)µ

1 and the m3
2 components of ��(3)µ

1 ,
involving I(1;±)-type integrals (13). In the test-body limit m1 � m2 these are the only surviving contributions. All graphs
should be considered trees — the dotted lines represent the worldlines on which energy is conserved, instead of momentum.
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FIG. 2: The twenty-two types of diagram contributing to the m2
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2 components of �p(3)µ

1 and the m1m
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2 components of
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1 , involving I(2;±)-type integrals (13). We exclude “mushroom graphs” that integrate to zero in the potential region.
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In the WQFT formalism these quantities are considered
observables:
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We assemble expressions using the WQFT Feynman
rules in D = 4 � 2� spacetime dimensions, with the
later intention of recovering four-dimensional results in
the � � 0 limit. Each retarded worldline propagator (7)
points towards the outgoing line: from cause to e�ect. As
diagrams belonging to each of the three categories carry
common overall factors of the masses m�
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2 the cate-

gories themselves are separately gauge invariant. This is
a considerable practical benefit to our approach, as it al-
lows us to break up the calculation into gauge-invariant
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two-body problem for the unbound scenario. Yet, in the applications for gravitational wave physics the bound
scenario including radiative e�ects is required and remains underdeveloped. In addition, the systematic inclusion
of higher orders in spin, finite-size and tidal-e�ects including radiative e�ects at high PM orders needs to be
performed. Finally, the present QFT based technology is limited to the weak gravitational field sector, the strong
gravity regime accessible in the small mass ratio expansion (the gravitational self-force approach) remained
untouched by recent innovations.

a.2. Research objectives

The research objectives of the GraWFTy project that I would like to pursue in four work-packages are therefore
the following:

1) Radiative e�ects: How can we systematically control the radiative PM expansion including spin, finite size
and tidal e�ects?

2) Higher spin: What are the hidden symmetries behind Kerr-BH scattering and how do we e�ciently handle
higher spin contributions?

3) Strong gravity: How can we innovate the small mass ratio expansion with QFT techniques in order to access
the strong gravity regime?

4) Bound state: How can we port the QFT based innovations from the scattering to the bound state regime?

I plan to pursue these objectives in the framework of the WQFT formalism outlined above. The ERC grant
would provide me with the means to fully unfold the enormous potential of this approach. My GraWFTy team
will consist of a long-term (5y) senior postdoc with a background in amplitudes and collider physics that will
bring in expertise in modern Feynman integration methods, a postdoc (3y) with a background in gravitational
wave physics in particular EOB and/or the self-force approach, as well as two talented PhD students (4y).

Work-packages

WP1 Radiative e�ects: Retarded WQFT including spin, tidal and finite size e�ects
Team: Senior Postdoc, PhD

As we know in classical physics one needs to use the retarded Green’s function (or propagator) to solve
Maxwell’s equations with time-dependent sources. The same is true for a perturbative PM solution of the
gravitational two-body problem. Yet, to date all QFT based approaches fail to do so and use the Feynman
propagator – this being the correct choice for the quantum regime. This seemingly technical detail actually
has profound consequences: It leads to an unphysical split of the resulting observables into conservative and
radiation reaction contributions. It was also the reason for an initial confusion in the field about a divergent
high-energy limit of the 3PM amplitudes based computation of the e�ective potential. The key advantage of
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these waveforms we furthermore reproduce Damour’s re-
cent result for the total radiated angular momentum [22]
at 2PM order. Our results also complement the recent
result of the total radiated momentum at leading order in
G (3PM) established with amplitude techniques [30]. We
comment on how to achieve this result from our methods.
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with �2 = 32�G the gravitational coupling; we have sup-
pressed the ghost contributions in Eq. (1) as they are ir-
relevant in the classical setting. We work in mostly minus
signature, �µ� = diag(1, �1, �1, �1), and set c = � = 1.
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result from an insertion of the operator O in the path
integral and dividing by ZWQFT. Moving to momentum
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fluctuations zµ(�) we have the retarded propagators

k

µ� ��
= i

Pµ�;��

(k0 + i�)2 � k2
, (3a)

�

µ � = �i
�µ�

m (� + i�)2
, (3b)

with Pµ�;�� := �µ(���)� � 1
2�µ����. The relevant vertices

for the emission of a graviton o� the worldline read

hµ�(k)

= �i
m�

2
eik·b��(k · v)vµv� , (4)

with k outgoing, ��(�) := (2�)�(�) and

hµ�(k)

z�(�)
=

m�

2
eik·b��(k · v + �) (5)

�
�
2�v(µ��)

� + vµv�k�

�
.

The energy � is also taken as outgoing. One also has the
standard bulk graviton vertices, of which we shall need
only the three-graviton vertex — see e.g. Ref. [31].

To determine the Bremsstrahlung of two travers-
ing black holes we compute the expectation value
k2�hµ�(k)�WQFT. At leading (2PM) order there are three
diagrams contributing, cp. Fig. 1. We integrate over the
momenta or energies of internal gravitons or fluctuations
respectively; lack of three-momentum conservation at the
worldline vertices leaves unresolved integrals for the tree-
level diagrams.
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The energy � is also taken as outgoing. Finally, to quadratic order in zµ:
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The associated trivalent Feynman vertex is
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While of course the second worldline fluctuation still travels on the worldline, we

draw it above to distinguish it from its partner.

Given that an n-graviton vertex carries an overall m2�n
Pl , it might seem odd that

each of these z-vertices carries only a single power of m�1
Pl . To rectify this we might

try rescaling zµ � m�1
Pl z

µ, similar to how we write gµ� = �µ� + m�1
Pl hµ� for the

graviton. However, we find this operation to be undesirable as it also rescales the

propagator (4.7) to carry an overall m2
Pl. As we shall see, despite the higher-point

vertices carrying the same overall power of mPl, their appearance at low orders in

the PM expansion is ruled out by the combinatorics of which diagrams we can draw.
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An intriguing property of this vertex is that, should we set the energy on one of the

external zµ lines to zero, the resulting expression can also be obtained as a derivative

of its lower-point cousin with respect to the impact factor:
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This will be important when we return to the eikonal phase in Section 7.
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Figure B2.1.: Sketch of the non-spinning WQFT momentum space Feynman rules. The dotted line represents the unde-
flected world-line trajectories. There exist hzn vertices for all n.

also produce gravitational radiation, or gravitational Bremsstrahlung. The resulting waveform in the far field
at leading order in G was found (in the spinless case) with traditional techniques in the 1970s [21–24].
Bremsstrahlung events currently appear to be out of reach for GW wave detectors as the signal is not periodic
and typically less intensive [25–27]. Still, there is a debate in the field as to their detectability in the third
generation of GW detectors (see [28] for a summary) calling for accurate waveform models just as well. They
would be relevant for the understanding of dense stellar environments. Due to the lack of an orbital scale r in
the scattering case, the dynamics is organized in an expansion solely in G for arbitrary relative velocities of the
compact objects: the post-Minkowskian (PM) expansion. From a quantum field theorist’s perspective this is
the much more natural and e�cient expansion. It is a pure weak field expansion in powers of Newton’s constant
G and precisely the expansion one performs in a perturbative quantization of general relativity. It is exact in
velocities, subsuming the PN expansion, and maintains Lorentz invariance.

Together with my research team at Humboldt University Berlin and Dr. Jan Steinho� from the MPI for Gravita-
tional Physics in Potsdam, I very recently developed a novel and highly e�cient QFT based formalism to address
the gravitational two-body problem in the PM expansion: worldline quantum field theory (WQFT) [1]. The
WQFT starts out from the identical description as the “non-relativistic general relativity” worldline approach,
discussed above, which may also be used for the PM expansion [29, 30]. We model the black-holes or neutron
stars as (spinning) point-particles coupled to the gravitational field. Using an einbein e in a “Polyakov” type
action in order to linearize the graviton coupling to the world-line one has (in the spin-less case)

S(i)
pm = �mi

π
d⌧i

✓
1
2e

gµ⌫(xi) €x
µ
i €x

⌫
i +

e
2
+

cR
e

R(xi)gµ⌫(xi) €x
µ
i €x

⌫
i +

cV
e

Rµ⌫(xi) €x
µ
i €x

⌫
i + . . .

◆
, (B2.1)

where we exposed the first two finite size corrections with free Wilson-coe�cients cR and cV . It is convenient to
go to proper time gauge e = 1. The key di�erence to the worldline EFT approach in the PM expansion [29,30], is
that in WQFT one quantizes both the graviton field hµ⌫(x) and the fluctuations zµi (⌧i) about the bodies’ straight
worldline trajectories xµa (⌧) = bµi + v

µ
i ⌧i + zµi (⌧i). They are integrated out in the path integral
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in the classical (~ ! 0) limit. In the scattering scenario there are two key observables: The momentum
deflection, i.e. the change in momentum �pµi of the two compact objects undergoing the scatterings, and
the emitted gravitational waveform (“Bremsstrahlung”). These follow directly from the one-point correlation
functions [1, 31]
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This leads to a highly streamlined PM expansion wherein classical scattering observables arise only from sums
of tree-level Feynman diagrams. Hence, the usual expectancy of classical field theory = tree-level quantum
field theory is recovered. In figure B2.1 I sketch the Feynman rules and observables of WQFT.
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FIG. 1. The three diagrams contributing to the
Bremsstrahlung at 2PM order, where �i = k·vi by energy con-
servation at the worldline vertices. All three diagrams have
the integral measure in Eq. (16); in the rest frame of black
hole 1 diagram (a) does not contribute as soon as the outgo-
ing graviton is contracted with a purely spatial polarization
tensor.

these waveforms we furthermore reproduce Damour’s re-
cent result for the total radiated angular momentum [22]
at 2PM order. Our results also complement the recent
result of the total radiated momentum at leading order in
G (3PM) established with amplitude techniques [30]. We
comment on how to achieve this result from our methods.

Worldline Quantum Field Theory. — The classical
gravitational scattering of two massive objects mi mov-
ing on trajectories xµ
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with �2 = 32�G the gravitational coupling; we have sup-
pressed the ghost contributions in Eq. (1) as they are ir-
relevant in the classical setting. We work in mostly minus
signature, �µ� = diag(1, �1, �1, �1), and set c = � = 1.

Correlation functions in the WQFT �O(h, {xi})�WQFT

result from an insertion of the operator O in the path
integral and dividing by ZWQFT. Moving to momentum
space for the graviton hµ�(k) and energy space for the
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The energy � is also taken as outgoing. One also has the
standard bulk graviton vertices, of which we shall need
only the three-graviton vertex — see e.g. Ref. [31].

To determine the Bremsstrahlung of two travers-
ing black holes we compute the expectation value
k2�hµ�(k)�WQFT. At leading (2PM) order there are three
diagrams contributing, cp. Fig. 1. We integrate over the
momenta or energies of internal gravitons or fluctuations
respectively; lack of three-momentum conservation at the
worldline vertices leaves unresolved integrals for the tree-
level diagrams.
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i ẋ�
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The associated trivalent Feynman vertex is
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While of course the second worldline fluctuation still travels on the worldline, we

draw it above to distinguish it from its partner.

Given that an n-graviton vertex carries an overall m2�n
Pl , it might seem odd that

each of these z-vertices carries only a single power of m�1
Pl . To rectify this we might

try rescaling zµ � m�1
Pl z

µ, similar to how we write gµ� = �µ� + m�1
Pl hµ� for the

graviton. However, we find this operation to be undesirable as it also rescales the

propagator (4.7) to carry an overall m2
Pl. As we shall see, despite the higher-point

vertices carrying the same overall power of mPl, their appearance at low orders in

the PM expansion is ruled out by the combinatorics of which diagrams we can draw.
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An intriguing property of this vertex is that, should we set the energy on one of the

external zµ lines to zero, the resulting expression can also be obtained as a derivative

of its lower-point cousin with respect to the impact factor:
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This will be important when we return to the eikonal phase in Section 7.
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Figure B2.1.: Sketch of the non-spinning WQFT momentum space Feynman rules. The dotted line represents the unde-
flected world-line trajectories. There exist hzn vertices for all n.

also produce gravitational radiation, or gravitational Bremsstrahlung. The resulting waveform in the far field
at leading order in G was found (in the spinless case) with traditional techniques in the 1970s [21–24].
Bremsstrahlung events currently appear to be out of reach for GW wave detectors as the signal is not periodic
and typically less intensive [25–27]. Still, there is a debate in the field as to their detectability in the third
generation of GW detectors (see [28] for a summary) calling for accurate waveform models just as well. They
would be relevant for the understanding of dense stellar environments. Due to the lack of an orbital scale r in
the scattering case, the dynamics is organized in an expansion solely in G for arbitrary relative velocities of the
compact objects: the post-Minkowskian (PM) expansion. From a quantum field theorist’s perspective this is
the much more natural and e�cient expansion. It is a pure weak field expansion in powers of Newton’s constant
G and precisely the expansion one performs in a perturbative quantization of general relativity. It is exact in
velocities, subsuming the PN expansion, and maintains Lorentz invariance.

Together with my research team at Humboldt University Berlin and Dr. Jan Steinho� from the MPI for Gravita-
tional Physics in Potsdam, I very recently developed a novel and highly e�cient QFT based formalism to address
the gravitational two-body problem in the PM expansion: worldline quantum field theory (WQFT) [1]. The
WQFT starts out from the identical description as the “non-relativistic general relativity” worldline approach,
discussed above, which may also be used for the PM expansion [29, 30]. We model the black-holes or neutron
stars as (spinning) point-particles coupled to the gravitational field. Using an einbein e in a “Polyakov” type
action in order to linearize the graviton coupling to the world-line one has (in the spin-less case)
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where we exposed the first two finite size corrections with free Wilson-coe�cients cR and cV . It is convenient to
go to proper time gauge e = 1. The key di�erence to the worldline EFT approach in the PM expansion [29,30], is
that in WQFT one quantizes both the graviton field hµ⌫(x) and the fluctuations zµi (⌧i) about the bodies’ straight
worldline trajectories xµa (⌧) = bµi + v

µ
i ⌧i + zµi (⌧i). They are integrated out in the path integral
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in the classical (~ ! 0) limit. In the scattering scenario there are two key observables: The momentum
deflection, i.e. the change in momentum �pµi of the two compact objects undergoing the scatterings, and
the emitted gravitational waveform (“Bremsstrahlung”). These follow directly from the one-point correlation
functions [1, 31]
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This leads to a highly streamlined PM expansion wherein classical scattering observables arise only from sums
of tree-level Feynman diagrams. Hence, the usual expectancy of classical field theory = tree-level quantum
field theory is recovered. In figure B2.1 I sketch the Feynman rules and observables of WQFT.
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FIG. 1. The three diagrams contributing to the
Bremsstrahlung at 2PM order, where �i = k·vi by energy con-
servation at the worldline vertices. All three diagrams have
the integral measure in Eq. (16); in the rest frame of black
hole 1 diagram (a) does not contribute as soon as the outgo-
ing graviton is contracted with a purely spatial polarization
tensor.

these waveforms we furthermore reproduce Damour’s re-
cent result for the total radiated angular momentum [22]
at 2PM order. Our results also complement the recent
result of the total radiated momentum at leading order in
G (3PM) established with amplitude techniques [30]. We
comment on how to achieve this result from our methods.

Worldline Quantum Field Theory. — The classical
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ing on trajectories xµ
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with �2 = 32�G the gravitational coupling; we have sup-
pressed the ghost contributions in Eq. (1) as they are ir-
relevant in the classical setting. We work in mostly minus
signature, �µ� = diag(1, �1, �1, �1), and set c = � = 1.

Correlation functions in the WQFT �O(h, {xi})�WQFT

result from an insertion of the operator O in the path
integral and dividing by ZWQFT. Moving to momentum
space for the graviton hµ�(k) and energy space for the
fluctuations zµ(�) we have the retarded propagators
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The energy � is also taken as outgoing. One also has the
standard bulk graviton vertices, of which we shall need
only the three-graviton vertex — see e.g. Ref. [31].

To determine the Bremsstrahlung of two travers-
ing black holes we compute the expectation value
k2�hµ�(k)�WQFT. At leading (2PM) order there are three
diagrams contributing, cp. Fig. 1. We integrate over the
momenta or energies of internal gravitons or fluctuations
respectively; lack of three-momentum conservation at the
worldline vertices leaves unresolved integrals for the tree-
level diagrams.

Diagram (a) of Fig. 1 then takes the form1

k2�hµ�(k)�WQFT

���
(a)

= �m1m2�3

8

�

q1,q2

µ1,2(k)
(2�1v

(µ
1 ��)

� � vµ
1 v�

1k�)(2�1v
(�
1 ��)� � v�

1 v�
1 q�

2)

(�1 + i�)2
P��;��

[(q0
2 + i�)2 � q2

2]
v�
2 v�

2 ,

(6)

1 In principle we should also contract with Pµ�;�� for an outgo-
ing graviton line; however as the polarization tensors eµ�

+,� are
traceless we find it unnecessary.

= i
�µ(⇢��)⌫ �

1
2 �µ⌫�⇢�

(k0 + i� )2 � k2 ,

hzµ (!)z⌫ (�!)i =

2

µ,�

���1

k
q2 �

1

2

(a)

µ,�

�2�� k

q1 �

2

1

(b)

µ,�k
q1 �

q2 �

1

2

(c)

FIG. 1. The three diagrams contributing to the
Bremsstrahlung at 2PM order, where �i = k·vi by energy con-
servation at the worldline vertices. All three diagrams have
the integral measure in Eq. (16); in the rest frame of black
hole 1 diagram (a) does not contribute as soon as the outgo-
ing graviton is contracted with a purely spatial polarization
tensor.

these waveforms we furthermore reproduce Damour’s re-
cent result for the total radiated angular momentum [22]
at 2PM order. Our results also complement the recent
result of the total radiated momentum at leading order in
G (3PM) established with amplitude techniques [30]. We
comment on how to achieve this result from our methods.

Worldline Quantum Field Theory. — The classical
gravitational scattering of two massive objects mi mov-
ing on trajectories xµ

i (�i) = bµ
i +vµ

i �i+zµ
i (�i) is described

by the worldline quantum field theory (WQFT) with par-
tition function [29]

ZWQFT := const �
�

D[hµ� ]

� 2�

i=1

D[zi] e
i(SEH+Sgf ) (1)

exp
�
�i

2�

i=1

� �

��
d�i

mi

2
[�µ� + �hµ�(x)]ẋµ
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The energy � is also taken as outgoing. Finally, to quadratic order in zµ:
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The associated trivalent Feynman vertex is
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draw it above to distinguish it from its partner.

Given that an n-graviton vertex carries an overall m2�n
Pl , it might seem odd that

each of these z-vertices carries only a single power of m�1
Pl . To rectify this we might

try rescaling zµ � m�1
Pl z

µ, similar to how we write gµ� = �µ� + m�1
Pl hµ� for the

graviton. However, we find this operation to be undesirable as it also rescales the

propagator (4.7) to carry an overall m2
Pl. As we shall see, despite the higher-point

vertices carrying the same overall power of mPl, their appearance at low orders in

the PM expansion is ruled out by the combinatorics of which diagrams we can draw.
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An intriguing property of this vertex is that, should we set the energy on one of the

external zµ lines to zero, the resulting expression can also be obtained as a derivative

of its lower-point cousin with respect to the impact factor:
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This will be important when we return to the eikonal phase in Section 7.
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Figure B2.1.: Sketch of the non-spinning WQFT momentum space Feynman rules. The dotted line represents the unde-
flected world-line trajectories. There exist hzn vertices for all n.

also produce gravitational radiation, or gravitational Bremsstrahlung. The resulting waveform in the far field
at leading order in G was found (in the spinless case) with traditional techniques in the 1970s [21–24].
Bremsstrahlung events currently appear to be out of reach for GW wave detectors as the signal is not periodic
and typically less intensive [25–27]. Still, there is a debate in the field as to their detectability in the third
generation of GW detectors (see [28] for a summary) calling for accurate waveform models just as well. They
would be relevant for the understanding of dense stellar environments. Due to the lack of an orbital scale r in
the scattering case, the dynamics is organized in an expansion solely in G for arbitrary relative velocities of the
compact objects: the post-Minkowskian (PM) expansion. From a quantum field theorist’s perspective this is
the much more natural and e�cient expansion. It is a pure weak field expansion in powers of Newton’s constant
G and precisely the expansion one performs in a perturbative quantization of general relativity. It is exact in
velocities, subsuming the PN expansion, and maintains Lorentz invariance.

Together with my research team at Humboldt University Berlin and Dr. Jan Steinho� from the MPI for Gravita-
tional Physics in Potsdam, I very recently developed a novel and highly e�cient QFT based formalism to address
the gravitational two-body problem in the PM expansion: worldline quantum field theory (WQFT) [1]. The
WQFT starts out from the identical description as the “non-relativistic general relativity” worldline approach,
discussed above, which may also be used for the PM expansion [29, 30]. We model the black-holes or neutron
stars as (spinning) point-particles coupled to the gravitational field. Using an einbein e in a “Polyakov” type
action in order to linearize the graviton coupling to the world-line one has (in the spin-less case)
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where we exposed the first two finite size corrections with free Wilson-coe�cients cR and cV . It is convenient to
go to proper time gauge e = 1. The key di�erence to the worldline EFT approach in the PM expansion [29,30], is
that in WQFT one quantizes both the graviton field hµ⌫(x) and the fluctuations zµi (⌧i) about the bodies’ straight
worldline trajectories xµa (⌧) = bµi + v

µ
i ⌧i + zµi (⌧i). They are integrated out in the path integral
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in the classical (~ ! 0) limit. In the scattering scenario there are two key observables: The momentum
deflection, i.e. the change in momentum �pµi of the two compact objects undergoing the scatterings, and
the emitted gravitational waveform (“Bremsstrahlung”). These follow directly from the one-point correlation
functions [1, 31]
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This leads to a highly streamlined PM expansion wherein classical scattering observables arise only from sums
of tree-level Feynman diagrams. Hence, the usual expectancy of classical field theory = tree-level quantum
field theory is recovered. In figure B2.1 I sketch the Feynman rules and observables of WQFT.
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FIG. 1. The three diagrams contributing to the
Bremsstrahlung at 2PM order, where �i = k·vi by energy con-
servation at the worldline vertices. All three diagrams have
the integral measure in Eq. (16); in the rest frame of black
hole 1 diagram (a) does not contribute as soon as the outgo-
ing graviton is contracted with a purely spatial polarization
tensor.

these waveforms we furthermore reproduce Damour’s re-
cent result for the total radiated angular momentum [22]
at 2PM order. Our results also complement the recent
result of the total radiated momentum at leading order in
G (3PM) established with amplitude techniques [30]. We
comment on how to achieve this result from our methods.

Worldline Quantum Field Theory. — The classical
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ing on trajectories xµ
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with �2 = 32�G the gravitational coupling; we have sup-
pressed the ghost contributions in Eq. (1) as they are ir-
relevant in the classical setting. We work in mostly minus
signature, �µ� = diag(1, �1, �1, �1), and set c = � = 1.

Correlation functions in the WQFT �O(h, {xi})�WQFT

result from an insertion of the operator O in the path
integral and dividing by ZWQFT. Moving to momentum
space for the graviton hµ�(k) and energy space for the
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The energy � is also taken as outgoing. One also has the
standard bulk graviton vertices, of which we shall need
only the three-graviton vertex — see e.g. Ref. [31].

To determine the Bremsstrahlung of two travers-
ing black holes we compute the expectation value
k2�hµ�(k)�WQFT. At leading (2PM) order there are three
diagrams contributing, cp. Fig. 1. We integrate over the
momenta or energies of internal gravitons or fluctuations
respectively; lack of three-momentum conservation at the
worldline vertices leaves unresolved integrals for the tree-
level diagrams.
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The energy � is also taken as outgoing. Finally, to quadratic order in zµ:
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the PM expansion is ruled out by the combinatorics of which diagrams we can draw.
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An intriguing property of this vertex is that, should we set the energy on one of the

external zµ lines to zero, the resulting expression can also be obtained as a derivative

of its lower-point cousin with respect to the impact factor:
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This will be important when we return to the eikonal phase in Section 7.
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Figure B2.1.: Sketch of the non-spinning WQFT momentum space Feynman rules. The dotted line represents the unde-
flected world-line trajectories. There exist hzn vertices for all n.

also produce gravitational radiation, or gravitational Bremsstrahlung. The resulting waveform in the far field
at leading order in G was found (in the spinless case) with traditional techniques in the 1970s [21–24].
Bremsstrahlung events currently appear to be out of reach for GW wave detectors as the signal is not periodic
and typically less intensive [25–27]. Still, there is a debate in the field as to their detectability in the third
generation of GW detectors (see [28] for a summary) calling for accurate waveform models just as well. They
would be relevant for the understanding of dense stellar environments. Due to the lack of an orbital scale r in
the scattering case, the dynamics is organized in an expansion solely in G for arbitrary relative velocities of the
compact objects: the post-Minkowskian (PM) expansion. From a quantum field theorist’s perspective this is
the much more natural and e�cient expansion. It is a pure weak field expansion in powers of Newton’s constant
G and precisely the expansion one performs in a perturbative quantization of general relativity. It is exact in
velocities, subsuming the PN expansion, and maintains Lorentz invariance.

Together with my research team at Humboldt University Berlin and Dr. Jan Steinho� from the MPI for Gravita-
tional Physics in Potsdam, I very recently developed a novel and highly e�cient QFT based formalism to address
the gravitational two-body problem in the PM expansion: worldline quantum field theory (WQFT) [1]. The
WQFT starts out from the identical description as the “non-relativistic general relativity” worldline approach,
discussed above, which may also be used for the PM expansion [29, 30]. We model the black-holes or neutron
stars as (spinning) point-particles coupled to the gravitational field. Using an einbein e in a “Polyakov” type
action in order to linearize the graviton coupling to the world-line one has (in the spin-less case)
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where we exposed the first two finite size corrections with free Wilson-coe�cients cR and cV . It is convenient to
go to proper time gauge e = 1. The key di�erence to the worldline EFT approach in the PM expansion [29,30], is
that in WQFT one quantizes both the graviton field hµ⌫(x) and the fluctuations zµi (⌧i) about the bodies’ straight
worldline trajectories xµa (⌧) = bµi + v

µ
i ⌧i + zµi (⌧i). They are integrated out in the path integral

e
i
~ �[b,vi ] =

π
D[hµ⌫, z

µ
i ]e

i
~ (SEH+

Õ
i S

(i)
pm) . (B2.2)

in the classical (~ ! 0) limit. In the scattering scenario there are two key observables: The momentum
deflection, i.e. the change in momentum �pµi of the two compact objects undergoing the scatterings, and
the emitted gravitational waveform (“Bremsstrahlung”). These follow directly from the one-point correlation
functions [1, 31]
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This leads to a highly streamlined PM expansion wherein classical scattering observables arise only from sums
of tree-level Feynman diagrams. Hence, the usual expectancy of classical field theory = tree-level quantum
field theory is recovered. In figure B2.1 I sketch the Feynman rules and observables of WQFT.
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FIG. 1. The three diagrams contributing to the
Bremsstrahlung at 2PM order, where �i = k·vi by energy con-
servation at the worldline vertices. All three diagrams have
the integral measure in Eq. (16); in the rest frame of black
hole 1 diagram (a) does not contribute as soon as the outgo-
ing graviton is contracted with a purely spatial polarization
tensor.

these waveforms we furthermore reproduce Damour’s re-
cent result for the total radiated angular momentum [22]
at 2PM order. Our results also complement the recent
result of the total radiated momentum at leading order in
G (3PM) established with amplitude techniques [30]. We
comment on how to achieve this result from our methods.

Worldline Quantum Field Theory. — The classical
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ing on trajectories xµ
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with �2 = 32�G the gravitational coupling; we have sup-
pressed the ghost contributions in Eq. (1) as they are ir-
relevant in the classical setting. We work in mostly minus
signature, �µ� = diag(1, �1, �1, �1), and set c = � = 1.

Correlation functions in the WQFT �O(h, {xi})�WQFT

result from an insertion of the operator O in the path
integral and dividing by ZWQFT. Moving to momentum
space for the graviton hµ�(k) and energy space for the
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The energy � is also taken as outgoing. One also has the
standard bulk graviton vertices, of which we shall need
only the three-graviton vertex — see e.g. Ref. [31].

To determine the Bremsstrahlung of two travers-
ing black holes we compute the expectation value
k2�hµ�(k)�WQFT. At leading (2PM) order there are three
diagrams contributing, cp. Fig. 1. We integrate over the
momenta or energies of internal gravitons or fluctuations
respectively; lack of three-momentum conservation at the
worldline vertices leaves unresolved integrals for the tree-
level diagrams.
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The energy � is also taken as outgoing. Finally, to quadratic order in zµ:

Sint
pm

��
z2 =

m

2mPl

�

k,�1,�2

eik·b��(k · v + �1 + �2)hµ�(�k)z�1(��1)z
�2(��2)�

�
1

2
k�1k�2v

µv� + �1k�2v
(µ��)

�1
+ �2k�1v

(µ��)
�2

+ �1�2�
(µ
�1

��)
�2

�
.

(4.15)

The associated trivalent Feynman vertex is
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While of course the second worldline fluctuation still travels on the worldline, we

draw it above to distinguish it from its partner.
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An intriguing property of this vertex is that, should we set the energy on one of the

external zµ lines to zero, the resulting expression can also be obtained as a derivative

of its lower-point cousin with respect to the impact factor:

V WL,µ�
�1...�n+1

(k; �1, . . . , �n, 0) =
�

�b�n+1
V WL,µ�

�1...�n
(k; �1, . . . , �n) . (4.18)

This will be important when we return to the eikonal phase in Section 7.
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Figure B2.1.: Sketch of the non-spinning WQFT momentum space Feynman rules. The dotted line represents the unde-
flected world-line trajectories. There exist hzn vertices for all n.

also produce gravitational radiation, or gravitational Bremsstrahlung. The resulting waveform in the far field
at leading order in G was found (in the spinless case) with traditional techniques in the 1970s [21–24].
Bremsstrahlung events currently appear to be out of reach for GW wave detectors as the signal is not periodic
and typically less intensive [25–27]. Still, there is a debate in the field as to their detectability in the third
generation of GW detectors (see [28] for a summary) calling for accurate waveform models just as well. They
would be relevant for the understanding of dense stellar environments. Due to the lack of an orbital scale r in
the scattering case, the dynamics is organized in an expansion solely in G for arbitrary relative velocities of the
compact objects: the post-Minkowskian (PM) expansion. From a quantum field theorist’s perspective this is
the much more natural and e�cient expansion. It is a pure weak field expansion in powers of Newton’s constant
G and precisely the expansion one performs in a perturbative quantization of general relativity. It is exact in
velocities, subsuming the PN expansion, and maintains Lorentz invariance.

Together with my research team at Humboldt University Berlin and Dr. Jan Steinho� from the MPI for Gravita-
tional Physics in Potsdam, I very recently developed a novel and highly e�cient QFT based formalism to address
the gravitational two-body problem in the PM expansion: worldline quantum field theory (WQFT) [1]. The
WQFT starts out from the identical description as the “non-relativistic general relativity” worldline approach,
discussed above, which may also be used for the PM expansion [29, 30]. We model the black-holes or neutron
stars as (spinning) point-particles coupled to the gravitational field. Using an einbein e in a “Polyakov” type
action in order to linearize the graviton coupling to the world-line one has (in the spin-less case)

S(i)
pm = �mi

π
d⌧i

✓
1
2e

gµ⌫(xi) €x
µ
i €x

⌫
i +

e
2
+
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R(xi)gµ⌫(xi) €x
µ
i €x

⌫
i +

cV
e

Rµ⌫(xi) €x
µ
i €x

⌫
i + . . .

◆
, (B2.1)

where we exposed the first two finite size corrections with free Wilson-coe�cients cR and cV . It is convenient to
go to proper time gauge e = 1. The key di�erence to the worldline EFT approach in the PM expansion [29,30], is
that in WQFT one quantizes both the graviton field hµ⌫(x) and the fluctuations zµi (⌧i) about the bodies’ straight
worldline trajectories xµa (⌧) = bµi + v

µ
i ⌧i + zµi (⌧i). They are integrated out in the path integral

e
i
~ �[b,vi ] =

π
D[hµ⌫, z

µ
i ]e

i
~ (SEH+

Õ
i S

(i)
pm) . (B2.2)

in the classical (~ ! 0) limit. In the scattering scenario there are two key observables: The momentum
deflection, i.e. the change in momentum �pµi of the two compact objects undergoing the scatterings, and
the emitted gravitational waveform (“Bremsstrahlung”). These follow directly from the one-point correlation
functions [1, 31]

�pµ
(i)
= p(a)(⌧i = +1) � p(a)(⌧i = �1) = �mi !

2
hzµi i

���
!=0
, (B2.3)

lim
r!1

gµ⌫(x) = ⌘µ⌫ +
4G
r

π
d⌦ e�ik ·xk2

hhµ⌫(k)i
���
kµ=⌦(1, Æx

r )
+O(

1
r2 ) . (B2.4)

This leads to a highly streamlined PM expansion wherein classical scattering observables arise only from sums
of tree-level Feynman diagrams. Hence, the usual expectancy of classical field theory = tree-level quantum
field theory is recovered. In figure B2.1 I sketch the Feynman rules and observables of WQFT.
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Figure B2.1.: Sketch of the WQFT momentum space Feynman rules and observables. The dotted line represents the
undeflected world-line trajectories. There exist hzn vertices for all n.

actual state-of-the-art results for the Bremsstrahlung waveform1 [31] including spin up to quadratic order [33],
as well as for deflection of momenta and spin kicks of spinning bodies at the 3PM and quadratic spin order [34],
which were all published in PRL within the past year. Recent work on WQFT includes applications to light
bending [35], the state-of-the-art 2PM three-body potential [36] and on the double copy nature [37].

My WQFT approach is an extension of the traditional worldline EFT approach to the PM expansion [29, 30].
The latter only integrates out the graviton fluctuation hµ⌫ in the path-integral (B2.2). It computes the e�ective
action Se�(xi) whose equations of motion thereafter need to be solved perturbatively in G in a second step. The
WQFT procedure shortcuts this and directly leads to the observables. Still, the emerging e�ective potential
of the scattering problem carries valuable information that may be ported to the bound case. The group or R.
Porto (DESY) has computed the conservative e�ective action, i.e. neglecting radiation reaction contributions,
to 3PM [30] and 4PM [38] order, as well as spin [39] and tidal [40] e�ects at 2PM order, using the worldline
EFT approach.

The WQFT and EFT approaches are complementary to a recently blossoming QFT approach to the gravitational
two-body problem: applying the theory of scattering amplitudes [41–47]. Here, one uses massive scalar fields
as avatars of spinless black holes and studies their 2 ! 2 scattering amplitudes. Only thereafter one takes
the classical limit. The innovations of the scattering amplitude program for constructing tree and loop-level
amplitudes in perturbatively quantized GR allowed a quick advance to higher PM orders in the past three years.
The conservative e�ective potential has been established at 3PM [44–46] and recently at 4PM order [48] all
in the spin-less case, while the inclusion of radiation-reaction e�ects [49–52] needed to be done separately
and to date only exists for the 3PM result. However, the amplitude approach su�ers from three drawbacks:
(i) The need to take a classical limit. This limit is subtle due to the quantum nature of the mass: opposed to
WQFT here it is not equivalent to tree-level amplitudes, rather loop-level amplitudes contribute in parts to the
classical result. Certain super-classical contributions arise that mask the classical result and need to cancel
before one may retrieve the classical result. This implies that one actually needs to compute more than is needed

1See https://box.hu-berlin.de/f/94445439e1b54757b881 for a visualization of an equal mass encounter (plus
polarization) (B.Sc. thesis O. Babayemi, HU Berlin).
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to-leading order), EOB (E�ective-one-body formalism), PhD HU (Humboldt University funded student).

scattering of Kerr-BHs. WP3 is devoted to the resummation of non-spinning WQFT into Schwarzschild vertices.
First the next-to-leading order (NLO) self-force calculation will be addressed, then the NNLO. Depending on
the progress spin will be included in the second phase of WP3. The PM results of WP1 and the resummed
results of WP3 will be fed into the e�ective-one-body construction in the first phase of WP4. The final phase of
WP4 will be devoted to a derivation of the e�ective-one-body formalism from a first principles worldline QFT
analysis.

b.2. Methodology of the individual work-packages

WP1 Radiative e�ects: Retarded WQFT including spin, tidal and finite size e�ects

In WP1 we will include spin degrees of freedom of the BHs or NSs via the anti-commuting world-line vectors
 a
i (⌧) that expresses the spin tensor as a composite operator Sµ⌫ = eµae⌫b ̄

a
i  

b
i . Up to spin-squared terms this

augments the world-line action (B2.1) by the spin-terms
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where CE,i is a finite-size Wilson coe�cient that vanishes in the Kerr-BH case. The linear in curvature finite size
e�ects in (B2.1) may be removed via a field redefinition. The leading order tidal-e�ects appear quadratically in
the Riemann tensor and are given by
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with the tidal Wilson coe�cients (related to the so-called Love numbers) CE2/B2 . They parametrize the neutron
star’s tidal response to an external gravitational field. These additional terms yield new Feynman vertices
augmenting the ones sketched in figure B2.1. The observables of the unbound system of the momentum
deflection, spin kick and gravitational wave are given by the Feynman diagrams sketched in figure B2.1
augmented by the new contributions of these additional terms. In order to evaluate them the following pipeline
will be used. (1) Generate the graphs: We use a recursive Berends-Giele type procedure pictorially expressed
as (here the spin-less and tidal free case) with o�-shell open legswhich is implicitly symmetrized on (µ1, �1) and (µ2, �2).
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In ref. [?] (the non-spinning case) the first relationship was generalized
to n points:
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In words: a vertex with (n + 1) external zµ particles, and �n+1 = 0, is
given by a derivative with respect to the impact parameter bµ of the cor-
responding n-point vertex. We claim this continues to hold when spin is
included, and that eq. (1.1) generalizes similarly, regardless of what other
external lines are present on the vertex. In the non-spinning case we con-
firmed this recursive property using an analytic expression for the worldline
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FIG. 1: Berends-Giele type recursion relation to construct hZµ
i (!)i and hhµ⌫(k)i perturbatively. The causality flow is always

from the Zi and h blobs to the outgoing line. These relations may alternatively be read as the PM expanded geodesic and
Einstein equations in momentum space.

FIG. 2: List of all test-body graph topologies with mass dependence mim
4
ī featuring in the 4PM calculation. The dotted

lines represent the two worldlines with backgrounds {bi, vi, i}. For the observables �pi and � i one needs to attach an
out-going world-line to any world-line node and apply the causality flow accordingly.

Integrand generation. — The 4PM impulse integrand
is generated recursively via the Berends-Giele type rela-
tions for the WQFT. Introducing the one-point function
for the world-line “super-fields” Zi = {zi, 0

i} associated
to the world-line i = 1, 2 and the graviton

hZi(!)i =
!, n
!

Zi , hhµ⌫(k)i =
!

k
h (9)

we may set up their recursive definition as depicted in
figure 1. Spelling this out systematically to order G4 al-
lows for an algorithmic construction of the integrand. In-
serting the Feynman rules into the generated tree-graphs
results in extensive index contractions which was auto-
mated with a Form [58] script. Using these tools the inte-
grand is automatically generated to any desired order in
G for all WQFT one-point functions. The resulting num-
ber of graphs for �p1 is 83 in the non-spinning sector,
201 linear S1 and 253 linear in S2.

Reduction to scalar integrals. — A generic 4PM inte-
gral after performing the world-line energy integrals via
the ��-functions in eq. (7) takes the form

Z

q
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(10)

where the Di are either linear or massless retarded prop-
agators depending on the loop-momenta li, vi and q.
The numerators num[li] are polynomial in loop-momenta.
The only dimensionful quantity in the 3-loop li integral
is the momentum transfer qµ. Hence, |q| =

p
�q2 may

be scaled out and the Fourier transform over q factor-
izes. Due to q̂ · vi = 0 the 3-loop integrals to be solved
depend on a single parameter � = v1 · v2 – the Lorentz
factor. The three ��-functions in the 3-loop integral deter-
mines its mass dependence to be m1m2mi1mi2mi3 . This
groups the diagrams into the test-body contributions
with mass dependence m1m4

2
and m2m4

1
(see fig. 2) and

the comparable-mass contributionsm2

1
m3

2
andm2

2
m3

1
(see

fig. 3). The tensor reduction of num[li] is performed by

expanding the loop momenta on a basis wµ
1,2 =

�vµ
2,1�vµ

1,2

�2�1
,

qµ and the (D � 3)-transverse directions as in the 3PM
case [41]
[Gustav: talk about CDR] [Jan: What is CDR?]
Integral families and reduction to masters. — Do-

ing this one finds three integral families that need to be
reduced to master integrals. The first two families are
(i = 1, 2)
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with the propagators (j = 1, 2, 3 and k = 1, 2, v is an
arbitrary time-like vector):

Dj = lj · vij + i0+�j (11b)

D4 = �(l1 + l2 + l3 + q)2 � i0+�4v · (l1 + l2 + l3)

D5 = �(l1 + l2 + q)2 � i0+�5v · (l1 + l2)

D5+k = �(lk + l3)
2
� i0+�6+kv · (lk + l3)

D7+j = �l2j , D10+k = �(lk + q)2 .

The I [1] integrals contribute exclusively to the test-body
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FIG. 1: Berends-Giele type recursion relation to construct hZµ
i (!)i and hhµ⌫(k)i perturbatively. The causality flow is always

from the Zi and h blobs to the outgoing line. These relations may alternatively be read as the PM expanded geodesic and
Einstein equations in momentum space.

FIG. 2: List of all test-body graph topologies with mass dependence mim
4
ī featuring in the 4PM calculation. The dotted

lines represent the two worldlines with backgrounds {bi, vi, i}. For the observables �pi and � i one needs to attach an
out-going world-line to any world-line node and apply the causality flow accordingly.

Integrand generation. — The 4PM impulse integrand
is generated recursively via the Berends-Giele type rela-
tions for the WQFT. Introducing the one-point function
for the world-line “super-fields” Zi = {zi, 0

i} associated
to the world-line i = 1, 2 and the graviton

hZi(!)i =
!, n
!

Zi , hhµ⌫(k)i =
!

k
h (9)

we may set up their recursive definition as depicted in
figure 1. Spelling this out systematically to order G4 al-
lows for an algorithmic construction of the integrand. In-
serting the Feynman rules into the generated tree-graphs
results in extensive index contractions which was auto-
mated with a Form [58] script. Using these tools the inte-
grand is automatically generated to any desired order in
G for all WQFT one-point functions. The resulting num-
ber of graphs for �p1 is 83 in the non-spinning sector,
201 linear S1 and 253 linear in S2.

Reduction to scalar integrals. — A generic 4PM inte-
gral after performing the world-line energy integrals via
the ��-functions in eq. (7) takes the form

Z

q
e�q·b��(q · v1)�

�(q · v2)⇥

⇥

Z

l1,l2,l3

num[li]

D1 . . . D12

��(l1 · vi1)�
�(l1 · vi2)�

�(l3 · vi3)

(10)

where the Di are either linear or massless retarded prop-
agators depending on the loop-momenta li, vi and q.
The numerators num[li] are polynomial in loop-momenta.
The only dimensionful quantity in the 3-loop li integral
is the momentum transfer qµ. Hence, |q| =

p
�q2 may

be scaled out and the Fourier transform over q factor-
izes. Due to q̂ · vi = 0 the 3-loop integrals to be solved
depend on a single parameter � = v1 · v2 – the Lorentz
factor. The three ��-functions in the 3-loop integral deter-
mines its mass dependence to be m1m2mi1mi2mi3 . This
groups the diagrams into the test-body contributions
with mass dependence m1m4

2
and m2m4

1
(see fig. 2) and

the comparable-mass contributionsm2

1
m3

2
andm2

2
m3

1
(see

fig. 3). The tensor reduction of num[li] is performed by

expanding the loop momenta on a basis wµ
1,2 =

�vµ
2,1�vµ

1,2

�2�1
,

qµ and the (D � 3)-transverse directions as in the 3PM
case [41]
[Gustav: talk about CDR] [Jan: What is CDR?]
Integral families and reduction to masters. — Do-

ing this one finds three integral families that need to be
reduced to master integrals. The first two families are
(i = 1, 2)

I [i](�1,�2,...,�8)
n1,n2,...,n12

=

Z

l1,l2,l3

��(l1 · v1)��(l2 · v1)��(l3 · vi)

Dn1
1
Dn2

2
...Dn12

12

(11a)

with the propagators (j = 1, 2, 3 and k = 1, 2, v is an
arbitrary time-like vector):

Dj = lj · vij + i0+�j (11b)

D4 = �(l1 + l2 + l3 + q)2 � i0+�4v · (l1 + l2 + l3)

D5 = �(l1 + l2 + q)2 � i0+�5v · (l1 + l2)

D5+k = �(lk + l3)
2
� i0+�6+kv · (lk + l3)

D7+j = �l2j , D10+k = �(lk + q)2 .

The I [1] integrals contribute exclusively to the test-body
sector as is evident from the ��-function structure. The
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FIG. 1: Berends-Giele type recursion relation to construct hZµ
i (!)i and hhµ⌫(k)i perturbatively. The causality flow is always

from the Zi and h blobs to the outgoing line. They are equivalent to the PM-expanded geodesic and Einstein equations.

where we have Fourier transformed to momentum space.
Both observables are given as the sum of all diagrams at a
given PM order with one outgoing Zµ

i line with vanishing
energy. The spin kick is subsequently derived from the
kick of the Grassmann variable as in Ref. [42].

Integrand generation. — The 4PM impulse and spin-
kick integrands are generated recursively via Berends-
Giele type relations. The one-point functions for the
worldline “super-fields” Zi = {zi, 0

i} and for the gravi-
ton are represented as

hZi(!)i =
!
!

Zi
, hhµ⌫(k)i =

!

k
h . (8)

Their recursive definitions follow from the Schwinger-
Dyson equations and are depicted in Fig. 1. Spelling
this out systematically to order G4 allows for an algo-
rithmic construction of the integrand: in our case, we ef-
ficiently inserted Feynman rules into the generated trees
using FORM [102]. There are 201 graphs contributing to
the 4PM impulse in the non-spinning case, 529 with spin
and 253 contributing to the 4PM spin kick.

Reduction to scalar integrals. — A generic 4PM dia-
gram after performing the worldline energy integrals via
the �-functions in Eq. (6) takes the form

Z

q
e�iq·b�(q · v1)�(q · v2)⇥ (9)

Z

`1,`2,`3

num[`i]

D1 · · ·D12

�(`1 · vi1)�(`2 · vi2)�(`3 · vi3) ,

where the Di are either linear or massless propagators
depending on the loop momenta `i, velocities vi and mo-
mentum transfer q. The numerators num[`i] are polyno-
mial in loop momenta. Tensor reduction of num[`i] to
scalar integrals is performed by expanding the loop mo-
menta on a basis dual to vµi and qµ, as demonstrated in
the 3PM case [74]. The only dimensionful quantity in the
3-loop `i integral is the momentum transfer qµ. Hence,
|q| =

p
�q2 may be scaled out, and the remaining 3-loop

integrals depend only on the Lorentz factor �.
The specific choice of three �(`k · vik) functions in

Eq. (10) follows the mass dependence of a given diagram,

which scales as m1m2mi1mi2mi3 . Diagrams are thereby
grouped into two categories: test-body contributions
with mass dependence m4

1
m2 or m1m4

2
and comparable-

mass contributions m3

1
m2

2
, m2

1
m3

2
— see Fig. 2. For the

conservative impulse we can easily reconstruct the m1m4

2

and m2

1
m3

2
components using �pµ

1,cons = ��pµ
2,cons, the

impulse on the second body being given simply by rela-
beling the two worldlines. When computing � µ

1,cons no
similar relation exists; however, the integrals in opposing
mass sectors are also related by a trivial relabeling.
Integral families and reduction to masters. — There

are three integral families that need to be reduced to
master integrals. The first 4PM family is (i = 1, 2)

I [i](�1,�2,�3)
n1,n2,...,n12

=

Z

`1,`2,`3

�(`1 · vi)�(`2 · v1)�(`3 · v1)

Dn1
1
Dn2

2
...Dn12

12

(10a)

with the propagators (j = 1, 2, 3 and k = 1, 2):

D1 = `1 · vı̄ + �1i0
+ , D1+k = `1+k · v2 + �1+ki0

+ ,

D4 = (`1 + `2 + `3 + q)2 , D5 = (`1 + `2 + q)2 , (10b)

D5+k= (`k + `3)
2 , D7+j = `2j , D10+k= (`k + q)2 ,

and 1̄ = 2, 2̄ = 1. The I [1] and I [2] families contribute to
the test-body and comparable-mass regimes respectively.
The other 4PM family is given by

J (�1,�2,�3)
n1,n2,...,n12

:=

Z

`1,`2,`3

�(`1 · v1)�(`2 · v1)�(`3 · v2)

Dn1
1
Dn2

2
...Dn12

12

(11a)

with (j = 1, 2, 3, k = 1, 2)

Dk = `k · v2 + �ki0
+ , D3 = `3 · v1 + �3i0

+ ,

D3+k = (`k � `3)
2 , D6 = (`1 � `2)

2 , (11b)

D6+j = `2j , D9+j = (`j + q)2 .

Each family splits into two branches: even (b-type) or
odd (v-type) in the number of worldline propagators.
In the non-spinning impulse, these integrals multiply
terms proportional to bµ, vµi respectively (24). Using
integration-by-parts (IBP) relations [103–106] we reduce
the families to 23 master integrals for the I-b and I-v
types each as well as 64 of J-b type and 66 of J-v type.
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where we have Fourier transformed to momentum space.
Both observables are given as the sum of all diagrams at a
given PM order with one outgoing Zµ

i line with vanishing
energy. The spin kick is subsequently derived from the
kick of the Grassmann variable as in Ref. [42].

Integrand generation. — The 4PM impulse and spin-
kick integrands are generated recursively via Berends-
Giele type relations. The one-point functions for the
worldline “super-fields” Zi = {zi, 0

i} and for the gravi-
ton are represented as

hZi(!)i =
!
!

Zi
, hhµ⌫(k)i =

!

k
h . (8)

Their recursive definitions follow from the Schwinger-
Dyson equations and are depicted in Fig. 1. Spelling
this out systematically to order G4 allows for an algo-
rithmic construction of the integrand: in our case, we ef-
ficiently inserted Feynman rules into the generated trees
using FORM [102]. There are 201 graphs contributing to
the 4PM impulse in the non-spinning case, 529 with spin
and 253 contributing to the 4PM spin kick.

Reduction to scalar integrals. — A generic 4PM dia-
gram after performing the worldline energy integrals via
the �-functions in Eq. (6) takes the form

Z

q
e�iq·b�(q · v1)�(q · v2)⇥ (9)

Z

`1,`2,`3

num[`i]

D1 · · ·D12

�(`1 · vi1)�(`2 · vi2)�(`3 · vi3) ,

where the Di are either linear or massless propagators
depending on the loop momenta `i, velocities vi and mo-
mentum transfer q. The numerators num[`i] are polyno-
mial in loop momenta. Tensor reduction of num[`i] to
scalar integrals is performed by expanding the loop mo-
menta on a basis dual to vµi and qµ, as demonstrated in
the 3PM case [74]. The only dimensionful quantity in the
3-loop `i integral is the momentum transfer qµ. Hence,
|q| =

p
�q2 may be scaled out, and the remaining 3-loop

integrals depend only on the Lorentz factor �.
The specific choice of three �(`k · vik) functions in

Eq. (10) follows the mass dependence of a given diagram,

which scales as m1m2mi1mi2mi3 . Diagrams are thereby
grouped into two categories: test-body contributions
with mass dependence m4
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and comparable-

mass contributions m3
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conservative impulse we can easily reconstruct the m1m4
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components using �pµ

1,cons = ��pµ
2,cons, the

impulse on the second body being given simply by rela-
beling the two worldlines. When computing � µ

1,cons no
similar relation exists; however, the integrals in opposing
mass sectors are also related by a trivial relabeling.
Integral families and reduction to masters. — There

are three integral families that need to be reduced to
master integrals. The first 4PM family is (i = 1, 2)

I [i](�1,�2,�3)
n1,n2,...,n12

=
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with the propagators (j = 1, 2, 3 and k = 1, 2):

D1 = `1 · vı̄ + �1i0
+ , D1+k = `1+k · v2 + �1+ki0

+ ,

D4 = (`1 + `2 + `3 + q)2 , D5 = (`1 + `2 + q)2 , (10b)

D5+k= (`k + `3)
2 , D7+j = `2j , D10+k= (`k + q)2 ,

and 1̄ = 2, 2̄ = 1. The I [1] and I [2] families contribute to
the test-body and comparable-mass regimes respectively.
The other 4PM family is given by
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:=
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with (j = 1, 2, 3, k = 1, 2)

Dk = `k · v2 + �ki0
+ , D3 = `3 · v1 + �3i0

+ ,

D3+k = (`k � `3)
2 , D6 = (`1 � `2)

2 , (11b)

D6+j = `2j , D9+j = (`j + q)2 .

Each family splits into two branches: even (b-type) or
odd (v-type) in the number of worldline propagators.
In the non-spinning impulse, these integrals multiply
terms proportional to bµ, vµi respectively (24). Using
integration-by-parts (IBP) relations [103–106] we reduce
the families to 23 master integrals for the I-b and I-v
types each as well as 64 of J-b type and 66 of J-v type.
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scattering of Kerr-BHs. WP3 is devoted to the resummation of non-spinning WQFT into Schwarzschild vertices.
First the next-to-leading order (NLO) self-force calculation will be addressed, then the NNLO. Depending on
the progress spin will be included in the second phase of WP3. The PM results of WP1 and the resummed
results of WP3 will be fed into the e�ective-one-body construction in the first phase of WP4. The final phase of
WP4 will be devoted to a derivation of the e�ective-one-body formalism from a first principles worldline QFT
analysis.

b.2. Methodology of the individual work-packages

WP1 Radiative e�ects: Retarded WQFT including spin, tidal and finite size e�ects

In WP1 we will include spin degrees of freedom of the BHs or NSs via the anti-commuting world-line vectors
 a
i (⌧) that expresses the spin tensor as a composite operator Sµ⌫ = eµae⌫b ̄

a
i  

b
i . Up to spin-squared terms this

augments the world-line action (B2.1) by the spin-terms

S(i)
spin = �mi

π
d⌧


i ̄i,a

D a
i

D⌧
+

1
2

Rabcd ̄
a
i  

b
i  ̄

c
i  

d
i + CE,iRaµb⌫ €x

µ
i €x⌫i  ̄

a
i  

b
i  ̄i ·  i

�
+ . . . , (B2.5)

where CE,i is a finite-size Wilson coe�cient that vanishes in the Kerr-BH case. The linear in curvature finite size
e�ects in (B2.1) may be removed via a field redefinition. The leading order tidal-e�ects appear quadratically in
the Riemann tensor and are given by

S(i)
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⇤
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µ
i €x⌫i , Bµ⌫ = R⇤

µ↵⌫� €x
µ
i €x⌫i (B2.6)

with the tidal Wilson coe�cients (related to the so-called Love numbers) CE2/B2 . They parametrize the neutron
star’s tidal response to an external gravitational field. These additional terms yield new Feynman vertices
augmenting the ones sketched in figure B2.1. The observables of the unbound system of the momentum
deflection, spin kick and gravitational wave are given by the Feynman diagrams sketched in figure B2.1
augmented by the new contributions of these additional terms. In order to evaluate them the following pipeline
will be used. (1) Generate the graphs: We use a recursive Berends-Giele type procedure pictorially expressed
as (here the spin-less and tidal free case) with o�-shell open legswhich is implicitly symmetrized on (µ1, �1) and (µ2, �2).
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1.1 Recursive properties
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In ref. [?] (the non-spinning case) the first relationship was generalized
to n points:
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In words: a vertex with (n + 1) external zµ particles, and �n+1 = 0, is
given by a derivative with respect to the impact parameter bµ of the cor-
responding n-point vertex. We claim this continues to hold when spin is
included, and that eq. (1.1) generalizes similarly, regardless of what other
external lines are present on the vertex. In the non-spinning case we con-
firmed this recursive property using an analytic expression for the worldline
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STRUCTURE OF WQFT INTEGRALS:  IMPULSE & SPIN KICK

Order n-PM :  Single scale (n-1)-loop integral

Retarded propagators   are worldline    or quadratic  Di(li, q, v*) (li ⋅ v*)(1,2) (li + q)2
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v⇤ 2 {v1, v2}

As   scale   factors out, left with single parameter integral  v2
* = 1 q γ = v1 ⋅ v2

1PM: Trivial - pure Fourier transform

It is most easily computed in the orthogonal subspace to vµi and its dependence on |b| is
determined on dimensional grounds. We inserted the projector (P12 · b)� = b� explicitly to
remind ourselves of the definition of the impact parameter (2.50b).

We have now identified the generic structure of the momentum integrals appearing in the
post-Minkowskian expansion of the worldline observables. Their computation to O(G2) will
be considered in the next section 3.3.3 and at the third post-Minkowskian order in Ch. 4.

3.3.3 Worldline Observables at O(G2, S2) and In-In from In-Out

The second post-Minkowskian order requires one-loop integration and is from that perspec-
tive the first non-trivial order in the perturbative expansion. In the spinless case the 2PM
results were first published by Westpfahl in 1985 Ref. [75]. With the recent application of
quantum field theory to the classical post-Minkowskian expansion, the 2PM results have
been rederived in numerous works and with additional properties of the bodies. In fact, the
inclusion of O(S2) e↵ects does not add any significant complexity to the relevant integrals.
The O(G2, S2) computations presented here are based on Ref. [3]. They serve as a non-trivial
example of the WQFT framework.

We will focus on the computation of the WQFT in-out eikonal �in�out to O(G2, S2). In
fact all worldline observables �pµ, � µ and the spin kick can be derived from the eikonal to
this order. This includes both the in-out and in-in versions of the observables. The relation
of the in-out observables to �in�out was given in Eqs. (3.82) and we will discuss how the in-in
observables consequently are derived below.

(1)

z

(2)

 

(3) (4) (5)

Figure 3.5: Graphs contributing to the eikonal, �in�out, to O(G2, S2). The first graph is the
leading order contribution and the four subsequent graphs together with their mirrored ones
constitute the subleading order.

The relevant graphs for the eikonal, �in�out to O(G2, S2) are shown in Fig. 3.5. In that
figure, there is one graph (1) at leading 1PM order and four graphs (2) - (5) at subleading
2PM order. In addition to the four 2PM graphs shown there we must add additional four
graphs obtained by particle exchange symmetry. In total, then, there are 1 + 4 + 4 graphs
with mass and G scalings Gm1m2, G2m1m2

2
and G2m2

1
m2 respectively. The first two mass

and G scalings are the ones shown in Fig. 3.5.
We start by considering the tree level contribution which comes from graph (1) of Fig. 3.5.

We label the exchanged graviton momentum by qµ and the integration on that momentum is
a Fourier transform due to the two Fourier factors from each worldline vertex rule. Insertion

72
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Worldline observables in d dimensions at 1PM are derived by simple di↵erentiation:

�p(1)µi,in�in
= �p(1)µi,in�out

= �
@�(1)

in�out

@bi,µ
, (3.100a)

�S(1)µ⌫
i,in�in

= �S(1)µ⌫
i,in�out

=
4

mi
S [µ
i,↵

@�(1)

in�out

@Si,⌫]↵
. (3.100b)

At the 1PM order there is no distinction between the in-in and in-out boundary condi-
tions. That is so because the only propagator present (that is 1/q2) is not sensitive to its
i✏-prescription. When di↵erentiations with respect to the background parameters are carried
out care has to be taken with respect to their constraints. One may instead use the uncon-
strained variables as discussed in Secs. 2.2.2 and 2.3.1. Thus, one may rewrite the eikonal
and observables in terms of unconstrained variables and it is then straightforward to carry
out di↵erentiations.

The 2PM contribution comes from graphs (2) - (5) of Fig. 3.5 and their mirrored graphs.
We label the two internal graviton momenta connected to the second worldline by lµ and
(qµ + lµ). The worldline energy of the excitations in graphs (2)-(3) become l · v1 and the
third graviton momentum of graph (5) is qµ. The contribution from graphs (2) - (5) then
take the schematic form,

Z

q

��(q · v1)�
�(q · v2)e

�iq·b
X

n1,n2,n3

Z

l

��(l · v2)
Nn1,n2,n3

Dn1
1
Dn2

2
Dn3

3

, (3.101)

where the numeratorsNn1,n2,n3 depend on external data (including qµ) and the loop momenta
lµ. The denominators are:

D1 = l · v1 ± i✏ , (3.102)

D2 = l2 ,

D3 = (l + q)2 .

Power counting of the vertex rules tell us that there will be at most (2 + s) internal mo-
menta in Nn1,n2,n3 with s the spin order. The computation of the numerators only requires
simple contractions of the vertex rules. Some of the vertex rules, however, such as the three
point graviton vertex are rather lengthy. We will not discuss the explicit derivation of the
numerators Nn1,n2,n3 here.

The relevant loop integrals at this order is thus di↵erent powers of the denominators Di

with factors of lµ in the numerator. Advanced integration techniques will be discussed in
more detail in Ch. 4 including tensor reduction with which loop momenta in the numerator
may be eliminated. As an example of such a rule, a single factor of lµ in the numerator is
removed with the following relation:

Z

l

��(l · v2)
lµ

Dn1
1
Dn2

2
Dn3

3

=

Z

l

��(l · v2)
1

Dn1
1
Dn2

2
Dn3

3


D3 �D2 � q2

2q2
qµ �D1

vµ
1
� �vµ

2

�2 � 1

�
. (3.103)
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1) Test body diagrams (geodesic motion in Schwarzschild background):

(a) (b) (c) (d) (e) (f)

Figure 5: The six diagrams contributing to the m1m3

2
component of �p(3)µ

1
in the absence

of tidal corrections. The upper worldline is one continuous fluctuation and hence we have

test-body motion.

Both expressions include

T
✏��⇠

⇢1...⇢n =

 
nY

i=1

q⇢i

!
v
✏
v
�
v
�
v
⇠ + 4

nX

i=1

!i

 
nY

j 6=i

q⇢j

!
v
(✏
v
�
v
�
�
⇠)

⇢i

+ 24
nX

i<j

!i!j

 
nY

k 6=i,j

q⇢k

!
v
(✏
v
�
�
�

⇢i
�
⇠)

⇢j
+ 24

nX

i<j<k

!i!j!k

 
nY

l 6=i,j,k

q⇢l

!
v
(✏
�
�

⇢i
�
�

⇢j
�
⇠)

⇢k

+ 24
nX

i<j<k<l

!i!j!k!l

 
nY

m 6=i,j,k,l

q⇢m

!
�
(✏

⇢i
�
�

⇢j
�
�

⇢k
�
⇠)

⇢l
, (4.4)

where q
µ =

P
i
k
µ

i
is the total momentum of all emitted gravitons and

R
(n)

↵�⇢�,µ1⌫1...µn⌫n :=
�
n
R

(n)
↵�⇢�

�hµ1⌫1 · · · �hµn⌫n
. (4.5)

R
(n)

↵�⇢� is given by the n’th order of  =
p
32⇡G in a PM expansion of the curvature

tensor where we replace the graviton field by its Fourier transform hµ⌫(x) ! hµ⌫(�k),

and similarly for the dual of the curvature tensor. The complete set of Feynman rules

also includes bulk interactions arising from theD-dimensional Einstein-Hilbert action

and gauge-fixing term:

SEH = �
2

2

Z
dD

x
p
�g R , Sgf =

Z
dD

x
�
@⌫h

µ⌫
�

1

2
@
µ
h
⌫
⌫

�2
, (4.6)

where the gauge-fixing constraint is @⌫h
µ⌫ = 1

2
@
µ
h
⌫
⌫ . Expressions for the retarded

graviton and worldline propagators were provided in eqs. (2.24) and (2.25).

4.1 Impulse

Our main goal is to calculate the impulse (deflection) on the first body, including

radiation-reaction e↵ects. This is recovered from the WQFT using:

�p
µ

1
= �m1!

2
hz

µ

1
(!)i|!=0 , (4.7)

where the expectation value was discussed in eq. (2.29) and �p
µ

i
=
P

n
G

n�p
(n)µ

i
in

the PM expansion. As the results for �p
(1)µ

i
and �p

(2)µ

i
are well-established — tidal

24
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2) Comparable mass diagrams (i0 prescription relevant for red propagators):

(a) (b) (c) (d)

Figure 6: The four types of diagrams contributing to the test-body m1m3

2
components

of �p(3)µ
1

linear in tidal coe�cients.

(a) (b) (c) (d) (e) (f) (g)

(h) (i) (j) (k) (l) (m) (n)

Figure 7: The 14 types of diagrams contributing to the m2

1
m2

2
components of the 3PM

gravitational impulse �p(3)µ
1

without tidal corrections. All diagrams except the last, (n),

are associated with the comparable-mass family I(�1;�2;�3)
n1,n2,...,n7 (3.1); diagrams (l)–(n) are as-

sociated with K(�1;�2;�3)
n1,n2,...,n5 family (3.25).

(a) (b) (c) (d) (e) (f) (g)

(h) (i) (j) (k) (l) (m) (n)

Figure 8: The 14 types of diagrams contributing to the m2

1
m2

2
comparable-mass compo-

nents of �p(3)µ
1

linear in tidal coe�cients.

e↵ects beginning at 2PM order [38, 105–107] — we focus here on the 3PM compo-

nent �p
(3)µ

i
. This will allow us to use the retarded integrals derived in section 3.

Results for �p
(1)µ

i
and �p

(2)µ

i
are included in the ancillary file attached to the arXiv

submission of this paper.

We proceed by drawing all diagrams with a single (cut) outgoing z
µ

1
line. There

are four categories of diagrams, displayed in Figs. 5–8. All retarded propagators,

both in the bulk and on the worldlines, point towards the outgoing line: from cause

to e↵ect. In particular: Figs. 5 and 6 contain the contributions to �p
(3)µ

i
in the

test-body limit m1 ⌧ m2, with and without the tidal corrections respectively. These

involve the integral family J
(�1;�2)
n1,n2,...,n7 , consisting only of potential modes. Figs. 7 and

8 contain the comparable-mass diagrams. These latter contributions are modified

25
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(1) (2) (3)

(4) (5) (6)

Figure 4.1: The six top sectors relevant to the worldline observables at the third post-
Minkowskian order. All diagrams contributing to the worldline observables (given in Figs. 3.2
and 3.1) can be derived from these by insertion of an external line, particle exchange sym-
metry and/or pinching (and possibly insertion of a trivial graviton propagator).

the graphs. They are shown in Fig. 4.1 where solid lines denote any worldline fluctuation
and wiggly lines gravitons.

All diagrams for the WQFT eikonal can be derived from the top sectors by pinching
internal lines and all diagrams for the worldline observables are then subsequently derived
by adding an external worldline leg in all possible manners. As an example graph (5) of
Fig. 3.2 can be obtained from either of the top sectors (4) or (5) by pinching a worldline
propagator or graviton respectively and adding an external line. A pinched propagator is
simply shrunk into a point. In a few cases a graviton propagator without dependence on the
loop momenta has to be introduced. This is the case with graphs (5) and (6) of Fig. 3.1 which
both belong to the top sector (2) of Fig. 4.1. The top sectors (1) and (2) describe diagrams
with mass scaling m1m3

2
which are the the probe limit graphs Fig. 3.1. The remaining top

sectors (3) - (6) describe comparable mass graphs Fig. 3.2 with mass scaling m2

1
m2

2
.

With one small exception, all integrals relevant to the six top sectors are included in the
following general integral family:

I
(i1,i2)�1�2�3
n1,n2,n3,n4,n5,n6,n7

(|qµ|, �, d) =

Z

l1l2

��(l1 · vı̄1)�
�(l2 · vı̄2)Q

7

j=1
D

nj

j

, (4.3)

D1 = l1 · vi1 + �1i0 , D2 = l2 · vi2 + �2i0 , D3 = (k0 + �3i0)
2
� k2 ,

D4 = l2
1
, D5 = l2

2
,

D6 = (l1 + q)2 , D7 = (l2 + q)2 .

The indices ij take on the values 1 or 2 corresponding to the two particles. The bar on
the subscript |̄ of i|̄ swaps the particle indices: 1̄ = 2 and 2̄ = 1. The momentum kµ is
defined by kµ = lµ

1
+ lµ

2
+ qµ. The variables �j label the i0-prescription of the first three

denominators and take on the values ±. The i0-prescription of those denominators is either
retarded or advance according to the signs + or � respectively. Advanced propagators
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Two integral families:
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3

data of eq. (2) symbolized by dots in the Feynman rules.
We see that only energy is conserved on the world-line.
The bulk graviton vertices are generic. We automatised
the construction of the vertices with Mathematica. At
4PM order we need the worldline vertices Vn|m above
for {n = 1, . . . , 4;m = 0, . . . , 5 � n}, as well as the bulk
graviton vertices up to multiplicity 5.

Momentum impulse and spin kick. — The two observ-
ables of the momentum impulse �pµi := [pµi ]

⌧=+1
⌧=�1 and

change in spin �Sµ⌫
i — the “spin kick” – follow from the

one-point functions

�pµi = mi

Z 1

�1
d⌧

⌧
d2xµ

i (⌧)

d⌧2

�
= �mi!

2
hzµi (!)i|!=0

,

� µ
i =

Z 1

�1
d⌧

⌧
d µ

i (⌧)

d⌧

�
= �i! h 0µ

i (!)i
��
!=0

, (8)

where we have Fourier transformed to energy-momentum
space in the last steps. Both observables follow from
the sum of all diagrams at a given PM order with one
outgoing Zµ

i line with vanishing energy. The work-flow
of our computation proceeds as follows:

Integrand generation. — The 4PM impulse and spin-
kick integrands are generated recursively via Berends-
Giele type relations. The one-point functions for the
world-line “super-fields” Zi = {zi, 0

i} and for the gravi-
ton are represented as

hZi(!)i =
!, n
!

Zi , hhµ⌫(k)i =
!

k
h (9)

Their recursive definition follows from the Schwinger-
Dyson equations and is depicted in figure 1. Spelling this
out systematically to order G4 allows for an algorithmic
construction of the integrand. Inserting the Feynman
rules into the generated tree-graphs is done with FORM

[91]. Using these tools the integrand is automatically
generated to any desired order in G for all WQFT one-
point functions. The resulting number of graphs for �p1
is 83 in the non-spinning sector, 201 linear S1 and 253
linear in S2.

Reduction to scalar integrals. — A generic 4PM inte-
gral after performing the world-line energy integrals via
the ��-functions in eq. (7) takes the form

Z

q
e�q·b��(q · v1)�

�(q · v2)⇥

⇥

Z

`1,`2,`3

num[`i]

D1 . . . D12

��(`1 · vi1)�
�(`1 · vi2)�

�(`3 · vi3)

(10)

where the Di are either linear or massless propagators
depending on the loop-momenta li, velocities vi and mo-
mentum transfer q. The numerators num[li] are polyno-
mial in loop-momenta. The only dimensionful quantity
in the 3-loop li integral is the momentum transfer qµ.
Hence, |q| =

p
�q2 may be scaled out and the Fourier

transform over q factorizes. The 3-loop integrals to be
performed depend on a single parameter � = v1 · v2

– the Lorentz factor. The three ��(ln · vil)-functions in
eq. (10) are connected to the mass dependence of this
contribution which is m1m2mi1mi2mi3 . This groups the
diagrams into two categories: the test-body contribu-
tions with mass dependence mim4

ī (see fig. 2) and the
comparable-mass contributions m2

im
3

ī (see fig. 3)1. The
test-body contributions to the scattering angle are known
from geodesic motion in a Kerr background [92]. The ten-
sor reduction of num[li] is performed by expanding the

loop momenta on a basis wµ
1,2 =

�vµ
2,1�vµ

1,2

�2�1
, qµ and the

(D � 3)-transverse directions as in the 3PM case [70]
[Gustav: talk about CDR] [Jan: What is CDR?]
Integral families and reduction to masters. — We find

three integral families that need to be reduced to master
integrals. The first 4PM family is (i = 1, 2)

I [i](�1,�2,...,�8)
n1,n2,...,n12

=

Z

l1,l2,l3

��(l1 · v1)��(l2 · v1)��(l3 · vi)

Dn1
1
Dn2

2
...Dn12

12

(11a)

with the propagators (j = 1, 2, 3 and k = 1, 2; v is an
arbitrary time-like vector):

Dj = lj · vij + i0+�j (11b)

D4 = �(l1 + l2 + l3 + q)2 � i0+�4v · (l1 + l2 + l3)

D5 = �(l1 + l2 + q)2 � i0+�5v · (l1 + l2)

D5+k = �(lk + l3)
2
� i0+�6+kv · (lk + l3)

D7+j = �l2j , D10+k = �(lk + q)2 .

The I [1] family contributes exclusively to the test-body
sector as is evident from the ��-function structure. The
second 4PM family is given by

J (�1,�2,...,�5)
n1,n2,...,n12

:=

Z

`1,`2,`3

��(`1 · v1)��(`2 · v1)��(`3 · v2)

Dn1
1
Dn2

2
...Dn12

12

(12a)

with (j = 1, 2, 3)

Dj = `j · vi + i0+�j (12b)

D4 = �(`1 � `3)
2
� i0+�4v · (`1 � `3)

D5 = �(`2 � `3)
2
� i0+�5v · (`2 � `3)

D6 = �(`1 � `2)
2 , D6+j = �`2j , D9+j = �(`j + q)2

Each family splits into a branch of being even (b-type)
or odd (v-type) in the number of world-line propagators.
Using integration-by-parts (IBP) techniques we reduce
the families to 23 master intgrals for the I-b and I-v types
each as well as 64 of J-b type and 66 of J-v type. The soft-
ware packages FIRE [93], and KIRA [94, 95] are employed
– with necessary adaptions in the symmetry relations as
these assume Feynman propagators. The total task for
the impulse computation results in 38k integrals in the
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of our computation proceeds as follows:
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FIG. 3: Examples of 4PM comparable-mass graph topologies with mass dependence m
2
1m

3
2 contributing to the 4PM

calculation. Again one needs to attach an out-going world-line to any world-line node and apply the resulting causality flow.
The corresponding integrals feature as the top-sectors in the di↵erential equation analysis.
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The coe�cient function c, d, d̄ in these expansions are
simple polynomials in � except for denominators in in-
teger powers of

p
�2 � 1. We have a total of n such

polynomials which are given in the ancillary file of the
arXiv.org submission. The first line comprises the test-
body contributions which only contain weight 0 functions

Similar results follow for the spin kick.

Display scattering angle ✓4,1 (spin-orbit)
�p as function of ✓4,1

Linear response?. —
Conclusions. —
Outlook (spin-spin, radiative terms, relevance (corre-

sponds to 4.5PN order)
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FIG. 1: Berends-Giele type recursion relation to construct hZµ
i (!)i and hhµ⌫(k)i perturbatively. The causality flow is always

from the Zi and h blobs to the outgoing line. These relations may alternatively be read as the PM expanded geodesic and
Einstein equations in momentum space.

FIG. 2: List of all test-body graph topologies with mass dependence mim
4
ī featuring in the 4PM calculation. The dotted

lines represent the two worldlines with backgrounds {bi, vi, i}. For the observables �pi and � i one needs to attach an
out-going world-line to any world-line node and apply the causality flow accordingly.

Di↵erential equations. — To solve for the master in-
tegrals we employ the method of canonical di↵erential
equations (DE) [34]. Grouping our four master integral
families into a vector ~I ordered according to the number
of active propagators the DE in x = � �

p
�2 � 1 reads

d
dx

~I = M(✏, x) ~I with a lower-triangular matrix M(✏, x).
Finding a transformation matrix T that brings us to a

canonical basis with an ✏ factorized DE d
dx

~̃I = ✏A(x) ~̃I is
a highly involved procedure in which we employ INITIAL

[96] and epsilon [97]. The resulting symbol alphabet is
{x, 1 + x, 1� x, 1 + x2

} yet we also encounter elliptic in-
tegrals in the J-v subsector [76, 96]. Importantly, this
solution to the DE is insensitive to the retarded i0+ pre-
scription.

Fixing boundary conditions . — The boundary con-
ditions are determined in the static � ! 1 (v ! 0) limit
using the method of regions [56, 75, 98, 99] to expand the
integrand in v. Regions in the static limit are character-
ized by the potential (P) or radidative (R) scalings of the
bulk graviton loop momenta

`Pi = (`0i , `i) ⇠ (v, 1) , `Ri = (`0i , `i) ⇠ (v, v) . (13)

As there are at most two gravitons that may go on-shell
we encounter four regions: (PP), (RR), (PR) and (RP).
The (PR) and (RP) regions are purely disspative, the
(PP) is purely conservative while the (RR) region car-
ries both conservative and dissipative contributions. As
mentioned above, the conservative contributions may be
singled out by using Feynman propagators for the bulk
gravitons and taking the real part of the result. Magi-
cally, all necessary boundary integrals reduce to the test-
body type topologies depicted in fig. figure 2.

Results. — The final result for for the 4PM linear
in spin impulse �pµ

cons,i may be expanded in the basis
vectors and spin-structures (of b or v-type)
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|b|
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|b|

L̂µ

)
.

(14)

The function space at 4PM is spanned by the weight -1
functions (�± := � ± 1)

F (�1) =

⇢
arccosh[�], log[�], log[�±], E
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(15)
including the elliptics and the weight -2 functions

F (�2) =
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�
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�
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r
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�+

��
. (16)

The impulse �pµ
cons,i contains functions up

to weight -2. We group them into the list
F = {1, F (�1), F (�1)F (�1), F (�2)

}. [Jan: We could
be more specific here towards what products
F (�1)F (�1) really appear, maybe list them] Using
these bases one may write the final result for the 4PM
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Number of master integrals: I-type 23+23,  J-type  64+66  (even & odd # worldline propagators)
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Find same set of Master integrals for spin and tidal effects@ 3PM
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Figure B2.3.: Project plan, time-line and personnel. Acronyms: PM (post-Minkowskian), LO (Leading order), NLO (Next-
to-leading order), EOB (E�ective-one-body formalism), PhD HU (Humboldt University funded student).

scattering of Kerr-BHs. WP3 is devoted to the resummation of non-spinning WQFT into Schwarzschild vertices.
First the next-to-leading order (NLO) self-force calculation will be addressed, then the NNLO. Depending on
the progress spin will be included in the second phase of WP3. The PM results of WP1 and the resummed
results of WP3 will be fed into the e�ective-one-body construction in the first phase of WP4. The final phase of
WP4 will be devoted to a derivation of the e�ective-one-body formalism from a first principles worldline QFT
analysis.

b.2. Methodology of the individual work-packages

WP1 Radiative e�ects: Retarded WQFT including spin, tidal and finite size e�ects

In WP1 we will include spin degrees of freedom of the BHs or NSs via the anti-commuting world-line vectors
 a
i (⌧) that expresses the spin tensor as a composite operator Sµ⌫ = eµae⌫b ̄

a
i  

b
i . Up to spin-squared terms this

augments the world-line action (B2.1) by the spin-terms
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where CE,i is a finite-size Wilson coe�cient that vanishes in the Kerr-BH case. The linear in curvature finite size
e�ects in (B2.1) may be removed via a field redefinition. The leading order tidal-e�ects appear quadratically in
the Riemann tensor and are given by

S(i)
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π
d⌧

⇥
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µ
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µ
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with the tidal Wilson coe�cients (related to the so-called Love numbers) CE2/B2 . They parametrize the neutron
star’s tidal response to an external gravitational field. These additional terms yield new Feynman vertices
augmenting the ones sketched in figure B2.1. The observables of the unbound system of the momentum
deflection, spin kick and gravitational wave are given by the Feynman diagrams sketched in figure B2.1
augmented by the new contributions of these additional terms. In order to evaluate them the following pipeline
will be used. (1) Generate the graphs: We use a recursive Berends-Giele type procedure pictorially expressed
as (here the spin-less and tidal free case) with o�-shell open legswhich is implicitly symmetrized on (µ1, �1) and (µ2, �2).

z =

h

+

h

z

h

+
1

2

h

z

z

h

+. . .

NR 2

h = +

z

+
1

2

z

z

+ . . .

1.1 Recursive properties

z =
�

�b�

hµ�(k)

,

hµ�(k)

���(0)

=
�

�b�

hµ�(k)

,

hµ�(k)

���(0)

=
�

���

hµ�(k)

.

In ref. [?] (the non-spinning case) the first relationship was generalized
to n points:
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In words: a vertex with (n + 1) external zµ particles, and �n+1 = 0, is
given by a derivative with respect to the impact parameter bµ of the cor-
responding n-point vertex. We claim this continues to hold when spin is
included, and that eq. (1.1) generalizes similarly, regardless of what other
external lines are present on the vertex. In the non-spinning case we con-
firmed this recursive property using an analytic expression for the worldline
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by the inclusion of radiative e↵ects, and involve the integral families I(�1;�2;�3)
n1,n2,...,n7 and

K
(�1;�2;�3)
n1,n2,...,n5 discussed in section 3. There is also a third category of diagrams (not

drawn) relevant in the other test-body limit m1 � m2; however, as these are related

by symmetry to those in Figs. 5 and 6 we do not need to calculate them explicitly.
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where qµ is the total momentum exchanged via gravitons between the two worldlines.

To bring the diagrams into this form, we need to resolve four-dimensional delta

functions in the bulk and integrate over the energies !i of worldline propagators. As

explained in ref. [49], any leftover components of `µ
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After reducing to the master integrals given in section 3.5, our last step is to perform

the q-Fourier transform.

Our final result for �p
µ

1
up to 3PM order is given in the ancillary file. It takes

the generic form [32]:
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where the center-of-mass momentum is p1 = µ

p
�2 � 1/�, µ = M⌫ = m1m2/M ,

M = m1+m2 and � = E/M =
p
1 + 2⌫(� � 1). All terms proportional to the impact

parameter b
µ, both conservative and radiative, arise from the real integrals (3.30);

terms proportional to v
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, come from the imaginary integrals (3.31).
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The entire dynamics is therefore encoded by ✓ and P
µ

rad
, which we present below.
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where ✓ = ✓cons + ✓rad has a finite high-energy � ! 1 limit:
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This is the well-known result of Amati, Ciafaloni and Veneziano [108], the radia-

tive correction ✓rad being required in order to cancel a logarithmic divergence that

otherwise appears in this limit [73]. With the inclusion of tidal e↵ects, only the con-

servative part of the angle is modified up to 3PM order, i.e. ✓tidal = ✓tidal,cons+O(G4):
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by the inclusion of radiative e↵ects, and involve the integral families I(�1;�2;�3)
n1,n2,...,n7 and

K
(�1;�2;�3)
n1,n2,...,n5 discussed in section 3. There is also a third category of diagrams (not

drawn) relevant in the other test-body limit m1 � m2; however, as these are related

by symmetry to those in Figs. 5 and 6 we do not need to calculate them explicitly.

All integrands can be expressed as a Fourier transform over integrals of the kind

discussed in section 3:
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where qµ is the total momentum exchanged via gravitons between the two worldlines.

To bring the diagrams into this form, we need to resolve four-dimensional delta

functions in the bulk and integrate over the energies !i of worldline propagators. As

explained in ref. [49], any leftover components of `µ
i
may be conveniently resolved on

a basis of wµ

i
and q

µ, where w
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i
are the dual velocities satisfying vi · wj = �ij:
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After reducing to the master integrals given in section 3.5, our last step is to perform

the q-Fourier transform.

Our final result for �p
µ

1
up to 3PM order is given in the ancillary file. It takes

the generic form [32]:
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where the center-of-mass momentum is p1 = µ

p
�2 � 1/�, µ = M⌫ = m1m2/M ,

M = m1+m2 and � = E/M =
p
1 + 2⌫(� � 1). All terms proportional to the impact

parameter b
µ, both conservative and radiative, arise from the real integrals (3.30);

terms proportional to v
µ

i
, including P

µ

rad
, come from the imaginary integrals (3.31).

Here ✓ is the scattering angle in the center-of-mass frame, and P
µ
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is the radiated

four-momentum:
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The entire dynamics is therefore encoded by ✓ and P
µ

rad
, which we present below.
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Radiated 4-momentum:

where the dimensionless parameters E2/B2 account for the mass dependence of the

Love numbers c(a)
E2/B2 .

The absence of a radiative part of the tidal correction to the scattering angle at

3PM order is explained using the linear response relation [73, 109, 110]:
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This predicts the radiative part of the scattering angle ✓rad given knowledge of the

radiated energy Erad and angular momentum Jrad. As Erad = P
0

rad
(in the center-of-

mass frame) begins at 3PM order, to deduce the 3PM contribution to ✓rad we need

only Jrad at 2PM order. As we shall see in section 4.4, the absence of a wave memory

in the tidal correction to the 2PM waveform guarantees that Jtidal,rad = O(G3), hence

✓tidal,rad = O(G4).
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FIG. 3: Examples of 4PM comparable-mass graph topologies with mass dependence m
2
1m

3
2 contributing to the 4PM

calculation. Again one needs to attach an out-going world-line to any world-line node and apply the resulting causality flow.
The corresponding integrals feature as the top-sectors in the di↵erential equation analysis.
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The coe�cient function c, d, d̄ in these expansions are
simple polynomials in � except for denominators in in-
teger powers of

p
�2 � 1. We have a total of n such

polynomials which are given in the ancillary file of the
arXiv.org submission. The first line comprises the test-
body contributions which only contain weight 0 functions

Similar results follow for the spin kick.

Display scattering angle ✓4,1 (spin-orbit)
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where the test-body contributions (second line) agree
with the geodesic motion in a Kerr background [113].
Here we use the mass parameters ⌫ = m1m2/M2 and
� = (m2�m1)/M and we have defined s± = �(a1±a2)·L̂.
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↵ (�) are given in the sup-
plementary material (21). We have checked this result
against the corresponding N3LO PN [114, 115] literature,
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to the 3PM radiated energy E(3)
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where J = p1|b| is the initial angular momentum. This
equation follows the pattern derived in Ref. [116] and
constitutes another non-trivial check of our results. All
of our results are included in an ancillary file attached to
the arXiv submission of this Letter.
Outlook. — Having produced a complete set of

4PM linear-in-spin conservative scattering observables —
and successfully compared them with N3LO spin-orbit
PN [114, 115]— our next step will be upgrading them to
include dissipative e↵ects, as has already been done in the
non-spinning case [80, 81]. This will require two changes
to our setup: retarded graviton propagators in place of
time-symmetric Feynman (see Ref. [75]) and incorpora-
tion of the (PR+RP) regions when fixing boundary con-
ditions on master integrals. Notwithstanding the added
complexity, quadratic-in-spin order is also an achievable
target — corresponding N3LO quadratic-in-spin PN re-
sults are already available [117, 118]. In the near future
we also seek to use these results to describe bound or-
bits, the main obstacle being the aforementioned tail ef-
fect [65, 79]. Recent Numerical Relativity simulations of
spinning black holes on hyperbolic-like orbits [119] also
o↵er us future numerical comparisons of the scattering
angle ✓.
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Kim, Zhengwen Liu, Raj Patil, Chia-Hsien Shen and
Jan Steinho↵ for enlightening discussions and Peter
Uwer for help with high-performance computing. This
work is funded by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) Projektnummer
417533893/GRK2575 “Rethinking Quantum Field The-
ory”.

5

contained in the 16 functions F (b)
↵ (�) with �± = � ± 1:

F (b)
↵ (�) = {1, arccosh[�], log[�], log

h�±
2

i
,

arccosh2[�], arccosh[�] log
h�±
2

i
, log

h�+
2

i
log

h��
2

i
,

log2
h�+
2

i
,Li2


±
��
�+

�
, Li2

r
��
�+

�
, (17)

K2


��
�+

�
,E2


��
�+

�
,K


��
�+

�
E


��
�+

�
} ,

and the much simpler set F (v)
↵ = {1, arccosh[�]}. The

first line of Eq. (17) includes transcendental weight-1
functions, the second and third lines weight-2 functions
and the final line quadratic combinations of elliptic func-
tions of the first and second kind. The barred coe�cients
c̄(�)l and d̄�l may be obtained from the unbarred ones by

relabeling using �p(4)µ
cons,1 = ��p(4)µ

cons,2.

The G4 component of the spin kick �S(4)µ
i,cons admits

a similar decomposition, involving the same functions

F (b,v)
↵ but a di↵erent set of basis vectors and spin struc-

tures — see the supplementary material for details. As
checks on these two observables we have confirmed: (i)
the cancellation of all 1/✏ poles occurring between the
(PP) and (RR) regions; (ii) conservation of p2i , S

2

i and
the N = 1 global supercharge Qi = pi · i. While the first

two only check the simpler terms carrying F (v)
↵ , the latter

also compares F (b)
↵ terms between �p(4)µi,cons and � (4)µ

i,cons,

and thus �S(4)µ
i,cons.

We also define the total scattering angle ✓ for generic
spin configurations as

sin
✓

2
=

|�pµi,cons|

2p1
, ✓ =

E

M

X

n,m

✓
GM

|b|

◆n ✓(n,m)

|b|m
, (18)

with p1 = m1m2

p
�2 � 1/E, total energy E = |pµ

1
+ pµ

2
|

and total mass M = m1 + m2, n and m counting PM
and spin orders respectively. The 4PM spin-orbit contri-
bution is

✓(4,1)
cons

=
16X

↵=1

⇡⌫

✓
s+h

(+)

↵ (�) + � s�h
(�)

↵ (�)

◆
F (b)
↵ (�)

�
21⇡�

�
33�4 � 30�2 + 5

�
(13s+ � 3�s�)

32 (�2 � 1)5/2
,

(19)

where the test-body contributions (second line) agree
with the geodesic motion in a Kerr background [113].
Here we use the mass parameters ⌫ = m1m2/M2 and
� = (m2�m1)/M and we have defined s± = �(a1±a2)·L̂.

The 32 polynomial functions h(±)

↵ (�) are given in the sup-
plementary material (21). We have checked this result
against the corresponding N3LO PN [114, 115] literature,
and found agreement by taking the PN expansion. The

tail term P (4)

✓ (�) of the scattering angle is simply related

to the 3PM radiated energy E(3)

rad
as follows:

P (4)

✓ (�) = E
@E(3)

rad

@J
, (20)

where J = p1|b| is the initial angular momentum. This
equation follows the pattern derived in Ref. [116] and
constitutes another non-trivial check of our results. All
of our results are included in an ancillary file attached to
the arXiv submission of this Letter.
Outlook. — Having produced a complete set of

4PM linear-in-spin conservative scattering observables —
and successfully compared them with N3LO spin-orbit
PN [114, 115]— our next step will be upgrading them to
include dissipative e↵ects, as has already been done in the
non-spinning case [80, 81]. This will require two changes
to our setup: retarded graviton propagators in place of
time-symmetric Feynman (see Ref. [75]) and incorpora-
tion of the (PR+RP) regions when fixing boundary con-
ditions on master integrals. Notwithstanding the added
complexity, quadratic-in-spin order is also an achievable
target — corresponding N3LO quadratic-in-spin PN re-
sults are already available [117, 118]. In the near future
we also seek to use these results to describe bound or-
bits, the main obstacle being the aforementioned tail ef-
fect [65, 79]. Recent Numerical Relativity simulations of
spinning black holes on hyperbolic-like orbits [119] also
o↵er us future numerical comparisons of the scattering
angle ✓.
Acknowledgments. — We thank Alessandra Buo-

nanno, Christoph Dlapa, Gregor Kälin, Jung-Wook
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o↵er us future numerical comparisons of the scattering
angle ✓.
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Here the (±) upper indices label the coupling to the spin-orbit components s± = (a1 ± a2) · L̂ via s+ to h(+)

↵ and

� s� to h(�)

↵ . The indices ↵ = 1, . . . , 16 correspond to the entries of the function space vector F (b)
↵ , i.e.

F (b)
↵ (�) = {1, arccosh[�], log[�], log

h�+
2

i
, log

h��
2

i
, arccosh2[�], arccosh[�] log

h�+
2

i
, arccosh[�] log

h��
2

i
, (22)

log
h�+
2

i
log

h��
2

i
, log2

h�+
2

i
,Li2


��
�+

�
,Li2


�
��
�+

�
,Li2

r
��
�+

�
,K2


��
�+

�
,E2


��
�+

�
,K


��
�+

�
E


��
�+

�
} ,

which provides a precise ordering for the list in Eq. (17).
Spin kick. — The spin kick may be expanded in terms of the basis vectors

⇢̃(b)µ =

⇢
b̂µa1 · v2, b̂ · a1 v

µ
1
, b̂ · a1 v

µ
2

�
, ⇢̃(v)µ =

⇢
b̂ · a1 b̂

µ, b̂ · a2 b̂
µ, a1 · v2 v

µ
2

�
, (23)

and takes the schematic form

�S(4)µ
cons,1 =

m2

1
m2

2

|b|4

X

l,�

⇢̃(�)µl

⇣m2

2

m1

e(�)l (�) +
m2

1

m2

ē(�)l (�)
⌘
+
X

↵

F (�)
↵ (�)

⇣
m2f

(�)
↵,l (�) +m1f̄

(�)
↵,l (�)

⌘�
. (24)

Here e(�)l (�) and f (�)
↵,l (�) and their barred counterparts are rational functions (again, up to integer powers of

p
�2 � 1).

For the full expression we refer the reader to the ancillary file.
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SUPPLEMENTARY MATERIAL

Scattering angle. — The 32 rational functions h±
↵ (�) (up to integer powers of

p
�2 � 1) appearing in the spin-orbit

contribution to the scattering angle (19) take the explicit form

h
(+)
1 =
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FIG. 1. The three diagrams contributing to the
Bremsstrahlung at 2PM order, where !i = k·vi by energy con-
servation at the worldline vertices. All three diagrams have
the integral measure in Eq. (16); in the rest frame of black
hole 1 diagram (a) does not contribute as soon as the outgo-
ing graviton is contracted with a purely spatial polarization
tensor.

these waveforms we furthermore reproduce Damour’s re-
cent result for the total radiated angular momentum [22]
at 2PM order. Our results also complement the recent
result of the total radiated momentum at leading order in
G (3PM) established with amplitude techniques [30]. We
comment on how to achieve this result from our methods.
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with 2 = 32⇡G the gravitational coupling; we have sup-
pressed the ghost contributions in Eq. (1) as they are ir-
relevant in the classical setting. We work in mostly minus
signature, ⌘µ⌫ = diag(1, �1, �1, �1), and set c = ~ = 1.

Correlation functions in the WQFT hO(h, {xi})iWQFT

result from an insertion of the operator O in the path
integral and dividing by ZWQFT. Moving to momentum
space for the graviton hµ⌫(k) and energy space for the
fluctuations zµ(!) we have the retarded propagators

k

µ⌫ ⇢�
= i

Pµ⌫;⇢�

(k0 + i✏)2 � k2
, (3a)

!

µ ⌫ = �i
⌘µ⌫

m (! + i✏)2
, (3b)

with Pµ⌫;⇢� := ⌘µ(⇢⌘�)⌫ �
1

2
⌘µ⌫⌘⇢�. The relevant vertices

for the emission of a graviton o↵ the worldline read

hµ⌫(k)

= �i
m

2
eik·b��(k · v)vµv⌫ , (4)

with k outgoing, ��(!) := (2⇡)�(!) and

hµ⌫(k)

z⇢(!)
=

m

2
eik·b��(k · v + !) (5)

⇥

⇣
2!v(µ�⌫)

⇢ + vµv⌫k⇢

⌘
.

The energy ! is also taken as outgoing. One also has the
standard bulk graviton vertices, of which we shall need
only the three-graviton vertex — see e.g. Ref. [31].

To determine the Bremsstrahlung of two travers-
ing black holes we compute the expectation value
k2

hhµ⌫(k)iWQFT. At leading (2PM) order there are three
diagrams contributing, cp. Fig. 1. We integrate over the
momenta or energies of internal gravitons or fluctuations
respectively; lack of three-momentum conservation at the
worldline vertices leaves unresolved integrals for the tree-
level diagrams.

Diagram (a) of Fig. 1 then takes the form1
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ing graviton line; however as the polarization tensors eµ⌫

+,⇥ are
traceless we find it unnecessary.
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i ẋ⌫
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with 2 = 32⇡G the gravitational coupling; we have sup-
pressed the ghost contributions in Eq. (1) as they are ir-
relevant in the classical setting. We work in mostly minus
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The energy ! is also taken as outgoing. One also has the
standard bulk graviton vertices, of which we shall need
only the three-graviton vertex — see e.g. Ref. [31].

To determine the Bremsstrahlung of two travers-
ing black holes we compute the expectation value
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hhµ⌫(k)iWQFT. At leading (2PM) order there are three
diagrams contributing, cp. Fig. 1. We integrate over the
momenta or energies of internal gravitons or fluctuations
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relevant in the classical setting. We work in mostly minus
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The energy ! is also taken as outgoing. One also has the
standard bulk graviton vertices, of which we shall need
only the three-graviton vertex — see e.g. Ref. [31].

To determine the Bremsstrahlung of two travers-
ing black holes we compute the expectation value
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diagrams contributing, cp. Fig. 1. We integrate over the
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relevant in the classical setting. We work in mostly minus
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G (3PM) established with amplitude techniques [30]. We
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i ẋ⌫
i

i
,

where SEH+Sgf is the gauge-fixed Einstein-Hilbert action

SEH + Sgf =

Z
d4x

�
�

2

2

p
�gR + (@⌫hµ⌫

�
1

2
@µh⌫

⌫)2
�

,

(2)

with 2 = 32⇡G the gravitational coupling; we have sup-
pressed the ghost contributions in Eq. (1) as they are ir-
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signature, ⌘µ⌫ = diag(1, �1, �1, �1), and set c = ~ = 1.

Correlation functions in the WQFT hO(h, {xi})iWQFT

result from an insertion of the operator O in the path
integral and dividing by ZWQFT. Moving to momentum
space for the graviton hµ⌫(k) and energy space for the
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The energy ! is also taken as outgoing. One also has the
standard bulk graviton vertices, of which we shall need
only the three-graviton vertex — see e.g. Ref. [31].

To determine the Bremsstrahlung of two travers-
ing black holes we compute the expectation value
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hhµ⌫(k)iWQFT. At leading (2PM) order there are three
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these waveforms we furthermore reproduce Damour’s re-
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these waveforms we furthermore reproduce Damour’s re-
cent result for the total radiated angular momentum [22]
at 2PM order. Our results also complement the recent
result of the total radiated momentum at leading order in
G (3PM) established with amplitude techniques [30]. We
comment on how to achieve this result from our methods.
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with 2 = 32⇡G the gravitational coupling; we have sup-
pressed the ghost contributions in Eq. (1) as they are ir-
relevant in the classical setting. We work in mostly minus
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only the three-graviton vertex — see e.g. Ref. [31].
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The energy ! is also taken as outgoing. One also has the
standard bulk graviton vertices, of which we shall need
only the three-graviton vertex — see e.g. Ref. [31].

To determine the Bremsstrahlung of two travers-
ing black holes we compute the expectation value
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hhµ⌫(k)iWQFT. At leading (2PM) order there are three
diagrams contributing, cp. Fig. 1. We integrate over the
momenta or energies of internal gravitons or fluctuations
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pressed the ghost contributions in Eq. (1) as they are ir-
relevant in the classical setting. We work in mostly minus
signature, ⌘µ⌫ = diag(1, �1, �1, �1), and set c = ~ = 1.
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The energy ! is also taken as outgoing. One also has the
standard bulk graviton vertices, of which we shall need
only the three-graviton vertex — see e.g. Ref. [31].

To determine the Bremsstrahlung of two travers-
ing black holes we compute the expectation value
k2

hhµ⌫(k)iWQFT. At leading (2PM) order there are three
diagrams contributing, cp. Fig. 1. We integrate over the
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N (q) and M(q) have a uniform power counting in q for
each spin order:

N (q) = Nµqµ + Nµ⌫qµq⌫ + Nµ⌫⇢q
µq⌫q⇢ , (19)

M(q) = Mµ⌫qµq⌫ + Mµ⌫⇢q
µq⌫q⇢ + Mµ⌫⇢�qµq⌫q⇢q� ,

and the non-spinning result involves only Nµ and Mµ⌫ .
We present full expressions for N and M in the ancillary
file attached to the arXiv submission of this Letter.

To lowest order in qµ, the first integral in eq. (18) is
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where Pµ⌫
i := ⌘µ⌫

�vµ
i v⌫

i is a projector into the rest frame
of the i’th body, |b| = �

p
bµbµ (the impact parameter is
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are the lengths of the shifted impact parameter b̃µ (16)
in the two rest frames. The second integral in eq. (18) is
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where we have introduced the symmetric tensor

Kµ⌫
i := Pµ⌫

i |b̃|
2
i + (Pi · b̃)µ(Pi · b̃)⌫ , (23)

with the property that Kµ⌫
i vi,⌫ = Kµ⌫

i b̃⌫ = 0. Both
integrals are derived in the Supplementary Material; one
generalizes to higher powers of qµ in the numerators by
taking derivatives with respect to b̃µ.

Results. — The 2PM waveform takes the schematic
form
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where the coe�cients ↵(s)
i , �(s)

i , provided in the ancillary
file, are associated with the N - and M-type contribu-
tions in Eq. (18) respectively; they are functions of ui,
bµ, vµ

i , ⇢µ, and S
µ⌫
i and bi-linear in ✏µ. The waveform f

is invariant under the SUSY transformations in Eq. (8)
to quadratic order in spin regardless of the values of CE,i.
To see this we expand the waveform at all PM orders in
powers of spin:
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i are associated with the
N - and M-type contributions in Eq. (18) respectively;
they are functions of b, ui, vi, ⇢ and Si and bi-linear
in ✏. In the Kerr-BH case (CE,i = 0) the waveform f
is invariant under the SUSY transformations in Eq. (8):
For this we expand the waveform at any PM order in
powers of spin
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i +
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To illustrate the waveform we consider the gravita-
tional wave memory �f(x̂) := f(+1, x̂) � f(�1, x̂).

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

0.96

0.98

1.00

1.02

1.04

1.06

1.08

1.10

Angle[a3,b]

Jxy / Jxy(a3=0)

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
0.00

0.02

0.04

0.06

0.08

Angle[a3,b]

| Jzx / Jxy(a3=0) |

�������

-1.5-1.0-0.5 0.0 0.5 1.0 1.5
0.00

0.02

0.04

0.06

0.08

Angle[a3,b]

| Jzx / Jxy |

v=0.2

a3/b=
0.00

0.02

0.05

0.07

0.10

0.12

0.15

0.17

FIG. 2. Total radiated angular momenta for the scattering of
two Kerr-BHs with v = 0.2 as a function of the angle between
the total initial spins a3 = a1 + a2 and b (with ai · vi =
0) for a range of ratios |a3|/|b|. We show the normalized
ratio of angular momenta emitted orthogonal to the b,v plane
(left plot) and in the b direction (right plot), normalization
is w.r.t. angular momentum emitted in the spin-less.
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2 ) the result is the same as

the non-spinning; we observe this also when the spins are
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the waveform consisting of single-graviton emission from
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f (1)(x̂) =
2m1

⇢ · v1
(✏ · v1)

2 +
2m2

⇢ · v2
(✏ · v2)

2 . (28)

At 1PM order there is manifestly no dependence on either
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i or impact parameters bµ

i , so the SUSY
identities in Eq. (26) are trivially satisfied.

Finally, the wave memory and 1PM part of the wave-
form contribute to the total radiated angular momentum
J rad

ij . Using three-dimensional Cartesian basis vectors êi,
we choose a frame of reference with the initial velocities
vµ

i restricted to the t–x plane; b = b ê2 is orthogonal to
these. Then we find two non-zero components of J rad

ij :
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two Kerr-BHs with v = 0.2 as a function of the angle between
the total initial spins a3 = a1 + a2 and b (with ai · vi =
0) for a range of ratios |a3|/|b|. We show the normalized
ratio of angular momenta emitted orthogonal to the b,v plane
(left plot) and in the b direction (right plot), normalization
is w.r.t. angular momentum emitted in the spinless case.
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identities in Eq. (26) are trivially satisfied.

Finally, the wave memory and 1PM part of the wave-
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To illustrate the waveform we consider the gravita-
tional wave memory �f(x̂) := f(+1, x̂) � f(�1, x̂).
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FIG. 2. Total radiated angular momenta for the scattering of
two Kerr-BHs with v = 0.2 as a function of the angle between
the total initial spins a3 = a1 + a2 and b (with ai · vi =
0) for a range of ratios |a3|/|b|. We show the normalized
ratio of angular momenta emitted orthogonal to the b,v plane
(left plot) and in the b direction (right plot), normalization
is w.r.t. angular momentum emitted in the spin-less.
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where we have introduced aµ
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2 with length

|a3|. For two Kerr black holes (CE,i = 0) with equal-
and-opposite spins (aµ

1 = �aµ
2 ) the result is the same as

the non-spinning; we observe this also when the spins are
mis-aligned to the plane of scattering.

There is also a 1PM (non-radiating) contribution to
the waveform consisting of single-graviton emission from
either massive body:

f (1)(x̂) =
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At 1PM order there is manifestly no dependence on either
the spins S

µ⌫
i or impact parameters bµ

i , so the SUSY
identities in Eq. (26) are trivially satisfied.

Finally, the wave memory and 1PM part of the wave-
form contribute to the total radiated angular momentum
J rad

ij . Using three-dimensional Cartesian basis vectors êi,
we choose a frame of reference with the initial velocities
vµ

i restricted to the t–x plane; b = b ê2 is orthogonal to
these. Then we find two non-zero components of J rad

ij :

FIG. 2. Total radiated angular momenta for the scattering of
two Kerr-BHs with v = 0.2 as a function of the angle between
the total initial spins a3 = a1 + a2 and b (with ai · vi =
0) for a range of ratios |a3|/|b|. We show the normalized
ratio of angular momenta emitted orthogonal to the b,v plane
(left plot) and in the b direction (right plot), normalization
is w.r.t. angular momentum emitted in the spinless case.
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To illustrate the waveform we consider the gravita-
tional wave memory �f(x̂) := f(+1, x̂) � f(�1, x̂).
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FIG. 2. Total radiated angular momenta for the scattering of
two Kerr-BHs with v = 0.2 as a function of the angle between
the total initial spins a3 = a1 + a2 and b (with ai · vi =
0) for a range of ratios |a3|/|b|. We show the normalized
ratio of angular momenta emitted orthogonal to the b,v plane
(left plot) and in the b direction (right plot), normalization
is w.r.t. angular momentum emitted in the spin-less.

The constant spin tensors are decomposed in terms of
the Pauli-Lubanski vectors aµ

i as S
µ⌫
i = ✏µ⌫

⇢�v⇢
i a�

i ; they
satisfy ai · vi = 0. In the aligned-spin case where
ai · b = ai · vj = 0, i.e. the spin vectors are orthogo-

nal to the plane of scattering. Writing li =
p

�a2
i the

wave memory is proportional to the non-spinning result:
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where we have introduced aµ
3 = aµ

1 + aµ
2 with length

|a3|. For two Kerr black holes (CE,i = 0) with equal-
and-opposite spins (aµ

1 = �aµ
2 ) the result is the same as

the non-spinning; we observe this also when the spins are
mis-aligned to the plane of scattering.

There is also a 1PM (non-radiating) contribution to
the waveform consisting of single-graviton emission from
either massive body:

f (1)(x̂) =
2m1

⇢ · v1
(✏ · v1)

2 +
2m2

⇢ · v2
(✏ · v2)

2 . (28)

At 1PM order there is manifestly no dependence on either
the spins S

µ⌫
i or impact parameters bµ

i , so the SUSY
identities in Eq. (26) are trivially satisfied.

Finally, the wave memory and 1PM part of the wave-
form contribute to the total radiated angular momentum
J rad

ij . Using three-dimensional Cartesian basis vectors êi,
we choose a frame of reference with the initial velocities
vµ

i restricted to the t–x plane; b = b ê2 is orthogonal to
these. Then we find two non-zero components of J rad

ij :

FIG. 2. Total radiated angular momenta for the scattering of
two Kerr-BHs with v = 0.2 as a function of the angle between
the total initial spins a3 = a1 + a2 and b (with ai · vi =
0) for a range of ratios |a3|/|b|. We show the normalized
ratio of angular momenta emitted orthogonal to the b,v plane
(left plot) and in the b direction (right plot), normalization
is w.r.t. angular momentum emitted in the spinless case.

where fµ⌫
i and fµ⌫;⇢�

ij are defined modulo terms that van-
ish on support of vi,µS
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i = 0. The SUSY links higher-

spin to lower-spin terms:
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and these identities are satisfied by the waveform (24).
To illustrate the waveform we consider the gravita-

tional wave memory �f(x̂) := f(+1, x̂) � f(�1, x̂).
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At 1PM order there is manifestly no dependence on either
the spins S
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i , so the SUSY
identities in Eq. (26) are trivially satisfied.

Finally, the wave memory and 1PM part of the wave-
form contribute to the total radiated angular momentum
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FIG. 1. The four diagram topologies contributing to the 2PM
Bremsstrahlung up to O(S2), where !i = k ·vi by energy con-
servation at the worldline vertices. For diagrams (b)–(d) we
also include the corresponding flipped topologies with massive
bodies 1$2; for diagram (d) (which includes the propagating
fermion  0µ

2 ) we also include the graph with the arrow re-
versed.

where ��(!) := (2⇡)�(!) and we have used S
µ⌫ =

�2i ̄[µ ⌫]. The other worldline-based vertices required
for the 2PM Bremsstrahlung all appear in Fig. 1: the
two-point interaction between a graviton and a single zµ

mode in (b), the two-graviton emission vertex in (c), and
the two-point interaction between a graviton and  0µ in
(d). Full expressions for these vertices are provided in
the Supplementary Material.

Waveform from WQFT. — To describe the
Bremsstrahlung at 2PM order including spin e↵ects we
compute the expectation value k2

hhµ⌫(k)iWQFT. This
requires us to compute four kinds of Feynman graphs,
illustrated in Fig. 1. Explicit expressions for the first
two graphs (a) and (b) were given in the non-spinning
case [16]; these are now modified by terms up to O(S2).
Graphs (c) and (d) are unique to the spinning case — for
the latter we sum over both routings of the fermion line.

From this result we seek to obtain the waveform in
spacetime in the wave zone, where the distance to the
observer |x| = r is large compared to all other lengths.
Following Ref. [16] the gauge-invariant frequency-domain
waveform 4G Sij(kµ = ⌦ (1, x̂)) is extracted from the
WQFT via

Sµ⌫(k) =
2


k2

hhµ⌫(k)iWQFT , (12)

where ⌦ is the GW frequency and x̂ = x/r points to-
wards the observer. However, it is advantageous to study
the time-domain waveform f(u, x̂) which is given by a
Fourier transform:

✏µ⌫hµ⌫ =
f(u, x̂)

r
=

4G

r

Z

⌦
e�ik·x ✏µ⌫ Sµ⌫(k)

���
kµ=⌦ ⇢µ

,

(13)

where we have contracted with a polarization tensor
✏µ⌫ = 1

2✏
µ✏⌫ ,

R
⌦ :=

R 1
�1

d⌦
2⇡ , ⇢µ = (1, x̂) and, in a PM

decomposition f =
P

n Gnf (n), we seek the 2PM compo-
nent f (2). Note that k · x = ⌦(t � r) yields the retarded
time u = t � r, and ✏ · ✏ = ✏ · ⇢ = 0.

Integration. — Our integration procedure follows
closely that used for the non-spinning calculation in
Ref. [16], the main di↵erence being that we maintain
four-dimensional Lorentz covariance. Each diagram con-
tributing to k2

hhµ⌫(k)iWQFT carries the overall factor

µ1,2(k) = ei(q1·b1+q2·b2)��(q1 · v1)�
�(q2 · v2)�

�(k � q1 � q2) .
(14)

We integrate over qi, the momentum emitted from each
worldline (see Fig. 1). When we also integrate over ⌦ —
as in Eq. (13) — the full integration measure becomes

Z

⌦,q1,q2

µ1,2(k)e�ik·x =
1

⇢ · v2

Z

q1

��(q1 · v1)e
�iq1·b̃ , (15)

where
R

qi
:=

R d4qi

(2⇡)4 ; the delta function constraints give

⌦ = q1·v2

⇢·v2

and q2 = k�q1. The shifted impact parameter

b̃µ is

b̃µ = b̃µ
2 � b̃µ

1 , b̃µ
i = bµ

i + uiv
µ
i , (16)

which extends the original impact parameter bµ = bµ
2 �

bµ
1 along the undeflected trajectories of the two bodies.

Finally, ui is the retarded time in the i’th rest frame:

ui =
⇢ · (x � bi)

⇢ · vi
, (17)

This implies ⇢ · b̃i = ⇢ · x = u, so ⇢ · b̃ = 0.
Rewriting the integral measure as in Eq. (15) is con-

venient for performing the integrals of diagrams (b)–(d),
in the rest frame of body 1. The mirrored counterparts
to these diagrams are easily recovered after integration
using the 1 $ 2 symmetry of the waveform. To inte-
grate diagram (a) we insert the partial-fraction identity
q�2
1 q�2

2 = �q�2
1 (2k ·q1)�1

�q�2
2 (2k ·q2)�1 (which is valid

for k on-shell) and focus on the first term.
The full 2PM waveform is then written schematically

as (dropping the subscript on q1)GM: fix margin
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,

+ (1 $ 2) , (18)

the N - and M-contributions corresponding to diagrams
(b)–(d) and (a) in Fig. 1 respectively. The numerators
N (q) and M(q) have a uniform power counting in q for
each spin order:

N (q) = Nµqµ + Nµ⌫qµq⌫ + Nµ⌫⇢q
µq⌫q⇢ , (19)

M(q) = Mµ⌫qµq⌫ + Mµ⌫⇢q
µq⌫q⇢ + Mµ⌫⇢�qµq⌫q⇢q� ,

FIG. 1. The four diagram topologies contributing to the 2PM
Bremsstrahlung up to O(S2), where !i = k ·vi by energy con-
servation at the worldline vertices. For diagrams (b)–(d) we
also include the corresponding flipped topologies with massive
bodies 1$2; for diagram (d) (which includes the propagating
fermion  0µ

2 ) we also include the graph with the arrow re-
versed.

Next we consider the worldline vertices. The simplest
of these is the single-graviton emission vertex:
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where ��(!) := (2⇡)�(!) and we have used S
µ⌫ =

�2i ̄[µ ⌫]. The other worldline-based vertices required
for the 2PM Bremsstrahlung all appear in Fig. 1: the
two-point interaction between a graviton and a single zµ

mode in (b), the two-graviton emission vertex in (c), and
the two-point interaction between a graviton and  0µ in
(d). Full expressions for these vertices are provided in
the Supplementary Material.

Waveform from WQFT. — To describe the
Bremsstrahlung at 2PM order including spin e↵ects we
compute the expectation value k2

hhµ⌫(k)iWQFT. This
requires us to compute four kinds of Feynman graphs,
illustrated in Fig. 1. Explicit expressions for the first
two graphs (a) and (b) were given in the non-spinning
case [16]; these are now modified by terms up to O(S2).
Graphs (c) and (d) are unique to the spinning case — for
the latter we sum over both routings of the fermion line.

From this result we seek to obtain the waveform in
spacetime in the wave zone, where the distance to the
observer |x| = r is large compared to all other lengths.
Following Ref. [16] the gauge-invariant frequency-domain
waveform 4G ✏µ⌫Sµ⌫(kµ = ⌦ (1, x̂)) is extracted from the
WQFT via

Sµ⌫(k) =
2


k2

hhµ⌫(k)iWQFT , (12)

where ⌦ is the GW frequency and x̂ = x/r points to-
wards the observer. However, it is advantageous to study
the time-domain waveform f(u, x̂) which is given by a
Fourier transform:

✏µ⌫hµ⌫ =
f(u, x̂)

r
=

4G

r

Z

⌦
e�ik·x ✏µ⌫ Sµ⌫(k)

���
kµ=⌦ ⇢µ

.

(13)
We have contracted with a polarization tensor ✏µ⌫ =
1
2✏

µ✏⌫ ,
R
⌦ :=

R 1
�1

d⌦
2⇡ , and ⇢µ = (1, x̂); in a PM decom-
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n Gnf (n) we seek the 2PM component
f (2). Note that k · x = ⌦(t � r) yields the retarded time
u = t � r, and ✏ · ✏ = ✏ · ⇢ = 0.

Integration. — Our integration procedure follows
closely that used for the non-spinning calculation in
Ref. [16], the main di↵erence being that we maintain
four-dimensional Lorentz covariance. Each diagram con-
tributing to k2

hhµ⌫(k)iWQFT carries the overall factor

µ1,2(k) = ei(q1·b1+q2·b2)��(q1 · v1)�
�(q2 · v2)�

�(k � q1 � q2) .
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We integrate over qi, the momentum emitted from each
worldline (see Fig. 1). When we also integrate over ⌦ —
as in Eq. (13) — the full integration measure becomes
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(2⇡)4 ; the delta function constraints give
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and q2 = k�q1. The shifted impact parameter,

b̃µ = b̃µ
2 � b̃µ

1 , b̃µ
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i + uiv
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extends the original impact parameter bµ = bµ
2 �bµ

1 along
the undeflected trajectories of the two bodies. Finally, ui

is the retarded time in the i’th rest frame:

ui =
⇢ · (x � bi)

⇢ · vi
, (17)

This implies ⇢ · b̃i = ⇢ · x = u, so ⇢ · b̃ = 0.
Rewriting the integral measure as in Eq. (15) is con-

venient for performing the integrals of diagrams (b)–(d),
in the rest frame of body 1. The mirrored counterparts
to these diagrams are easily recovered after integration
using the 1 $ 2 symmetry of the waveform. To inte-
grate diagram (a) we insert the partial-fraction identity
q�2
1 q�2

2 = �q�2
1 (2k ·q1)�1

�q�2
2 (2k ·q2)�1 (which is valid

for k on-shell) and focus on the first term.
The full 2PM waveform is then written schematically

as (dropping the subscript on q1)
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the N - and M-contributions corresponding to diagrams
(b)–(d) and (a) in Fig. 1 respectively. The numerators

4

N (q) and M(q) have a uniform power counting in q for
each spin order:

N (q) = Nµqµ + Nµ⌫qµq⌫ + Nµ⌫⇢q
µq⌫q⇢ , (19)

M(q) = Mµ⌫qµq⌫ + Mµ⌫⇢q
µq⌫q⇢ + Mµ⌫⇢�qµq⌫q⇢q� ,

and the non-spinning result involves only Nµ and Mµ⌫ .
We present full expressions for N and M in the ancillary
file attached to the arXiv submission of this Letter.

To lowest order in qµ, the first integral in eq. (18) is
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where Pµ⌫
i := ⌘µ⌫

�vµ
i v⌫

i is a projector into the rest frame
of the i’th body, |b| = �

p
bµbµ (the impact parameter is

spacelike) and
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q

�b̃µPµ⌫
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are the lengths of the shifted impact parameter b̃µ (16)
in the two rest frames. The second integral in eq. (18) is
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where we have introduced the symmetric tensor

Kµ⌫
i := Pµ⌫

i |b̃|
2
i + (Pi · b̃)µ(Pi · b̃)⌫ , (23)

with the property that Kµ⌫
i vi,⌫ = Kµ⌫

i b̃⌫ = 0. Both
integrals are derived in the Supplementary Material; one
generalizes to higher powers of qµ in the numerators by
taking derivatives with respect to b̃µ.

Results. — The 2PM waveform takes the schematic
form
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where the coe�cients ↵(s)
i , �(s)

i , provided in the ancillary
file, are associated with the N - and M-type contribu-
tions in Eq. (18) respectively; they are functions of ui,
bµ, vµ

i , ⇢µ, and S
µ⌫
i and bi-linear in ✏µ. The waveform f

is invariant under the SUSY transformations in Eq. (8)
to quadratic order in spin regardless of the values of CE,i.
To see this we expand the waveform at all PM orders in
powers of spin:
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where the non-spinning result involves only Nµ and Mµ⌫ .
We present full expressions for N and M in the ancillary
file attached to the arXiv submission of this Letter.
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i + (Pi · b̃)µ(Pi · b̃)⌫ , (23)

with the property that Kµ⌫
i vi,⌫ = Kµ⌫

i b̃⌫ = 0. Both inte-
grals are derived in the Supplementary Material; versions
with higher powers of qµ in the numerators are derived
by taking derivatives with respect to b̃µ.

Results. — The 2PM waveform takes the schematic
form
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where the coe�cients ↵(s)
i , �(s)

i are associated with the
N - and M-type contributions in Eq. (18) respectively;
they are functions of b, ui, vi, ⇢ and Si and bi-linear
in ✏. In the Kerr-BH case (CE,i = 0) the waveform f
is invariant under the SUSY transformations in Eq. (8):
For this we expand the waveform at any PM order in
powers of spin
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i +
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where SUSY links higher-spin terms to lower ones
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To illustrate the waveform we consider the gravita-
tional wave memory �f(x̂) := f(+1, x̂) � f(�1, x̂).
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FIG. 2. Total radiated angular momenta for the scattering of
two Kerr-BHs with v = 0.2 as a function of the angle between
the total initial spins a3 = a1 + a2 and b (with ai · vi =
0) for a range of ratios |a3|/|b|. We show the normalized
ratio of angular momenta emitted orthogonal to the b,v plane
(left plot) and in the b direction (right plot), normalization
is w.r.t. angular momentum emitted in the spin-less.

The constant spin tensors are decomposed in terms of
the Pauli-Lubanski vectors aµ

i as S
µ⌫
i = ✏µ⌫

⇢�v⇢
i a�

i ; they
satisfy ai · vi = 0. In the aligned-spin case where
ai · b = ai · vj = 0, i.e. the spin vectors are orthogo-

nal to the plane of scattering. Writing li =
p

�a2
i the

wave memory is proportional to the non-spinning result:
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where we have introduced aµ
3 = aµ

1 + aµ
2 with length

|a3|. For two Kerr black holes (CE,i = 0) with equal-
and-opposite spins (aµ

1 = �aµ
2 ) the result is the same as

the non-spinning; we observe this also when the spins are
mis-aligned to the plane of scattering.

There is also a 1PM (non-radiating) contribution to
the waveform consisting of single-graviton emission from
either massive body:

f (1)(x̂) =
2m1

⇢ · v1
(✏ · v1)

2 +
2m2

⇢ · v2
(✏ · v2)

2 . (28)

At 1PM order there is manifestly no dependence on either
the spins S

µ⌫
i or impact parameters bµ

i , so the SUSY
identities in Eq. (26) are trivially satisfied.

Finally, the wave memory and 1PM part of the wave-
form contribute to the total radiated angular momentum
J rad

ij . Using three-dimensional Cartesian basis vectors êi,
we choose a frame of reference with the initial velocities
vµ

i restricted to the t–x plane; b = b ê2 is orthogonal to
these. Then we find two non-zero components of J rad

ij :

FIG. 2. Total radiated angular momenta for the scattering of
two Kerr-BHs with v = 0.2 as a function of the angle between
the total initial spins a3 = a1 + a2 and b (with ai · vi =
0) for a range of ratios |a3|/|b|. We show the normalized
ratio of angular momenta emitted orthogonal to the b,v plane
(left plot) and in the b direction (right plot), normalization
is w.r.t. angular momentum emitted in the spinless case.

where fµ⌫
i and fµ⌫;⇢�
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and these identities are satisfied by the waveform (24).
To illustrate the waveform we consider the gravita-

tional wave memory �f(x̂) := f(+1, x̂) � f(�1, x̂).
The constant spin tensors are decomposed in terms of
the Pauli-Lubanski vectors aµ
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2 ) we see that
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are mis-aligned to the plane of scattering.
There is also a 1PM (non-radiating) contribution to

the waveform consisting of single-graviton emission from
either massive body:

f (1)(x̂) =
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(✏ · v1)

2 +
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At 1PM order there is manifestly no dependence on either
the spins S
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i or impact parameters bµ

i , so the SUSY
identities in Eq. (26) are trivially satisfied.

Finally, the wave memory and 1PM part of the wave-
form contribute to the total radiated angular momentum

5

FIG. 2. Plots of the wave memories �f+,⇥ for v = 0.2. For a
visualisation of the complete waveforms as they evolve with
retarded time u see f+(u, ✓, �)|v=0.2 and f⇥(u, ✓, �)|v=0.2.

beauty of our result (26) lies in the fact that the memo-
ries only receive contributions from the second term, and
read

�f+,⇥ = �2G2m1m2

bi
N

i
+,⇥

b2
+ O(G3) . (28)

Diagrammatically they exclusively emerge from diagram
(b) of Fig. 1. So they are manifestly insensitive to grav-
itational self-interactions — this was also pointed out in
Ref. [22].

Radiated Energy and Angular Momentum. — One
may now use our result for the waveform (26) to com-
pute the total radiated momentum and angular momen-
tum. Expressions for these quantities in terms of the
asymptotic waveform are given in Refs. [22, 33]:

Pµ
rad

=
1

32⇡G

Z
dud�[ḟij ]

2⇢µ , (29)

J rad

ij =
1

8⇡G

Z
dud�

✓
fk[iḟj]k �

1

2
x[i@j]fklḟkl

◆
, (30)

where ḟij := @ufij and d� = sin ✓d✓d� is the unit sphere
measure.

We first concentrate on J rad

ij as it contributes at lead-
ing order O(G2) and was recently obtained in the center-

of-mass frame [22]. The static nature of f (1)

ij (27) allows
one to trivially perform the u-integration and express the
radiated angular momentum in terms of the wave mem-
ories �f+,⇥. Inserting the basis of polarization tensors

(15) (and using f (1)

⇥ = 0) gives

J rad

xy =
1

8⇡

Z
d�

h sin �

sin ✓
f (1)

+
�f⇥ �

1

2
cos � @✓f

(1)

+
�f+

i

+ O(G3) . (31)

The spherical integral is elementary and yields

J rad

xy

J init
xy

=
4G2m1m2

b2

(2�2
� 1)p

�2 � 1
I(v) + O(G3) , (32a)

I(v) = �
8

3
+

1

v2
+

(3v2
� 1)

v3
arctanh(v) , (32b)

where we have normalized our result with respect to the
initial angular momentum in the rest frame of black hole

1: J init

xy = m2|v2||b| = m2�vb. We find perfect agree-
ment with Ref. [22].3

Similarly, Pµ
rad

of Eq. (29) should reproduce the recent
result of Ref. [30] contributing at O(G3). So far we have
only been able to perform the integral in the PN expan-
sion recovering the result of Ref. [30] to order v6. Yet it is
straightforward to obtain di↵erential quantities derived
from the integrand of Eq. (29). The di↵erential power
spectrum (total energy radiated per unit frequency) as
well as the total energy radiated per unit solid angle are
collected in the supplementary material to this letter.
These results go well beyond Kovacs and Thorne [4] and
may be expanded to any desired order in v.

Conclusions. — Searching for GWs from scattering
events over the full range of impact velocities requires
precision predictions in the PM approximation. While
the potential and radiation of bound systems was calcu-
lated to high PN order [34] (see Refs. [35] for spinning
bodies), a resummation of PN results in the strong-field
and fast-motion regimes is essential for building accu-
rate waveform models [8]. The PM resummation is one
promising recent attempt [21, 36, 37].

Our results provide a stepping stone for higher-order
calculations, where a repertoire of advanced integration
techniques can be put to use [17, 24, 30, 38]. In fact the
3PM integrand has essentially been presented in Ref. [29].
The present challenge lies in the multi-scale integrals,
which despite their tree-level structure are of higher loop
three-momentum type as the worldline only preserves en-
ergy. Generalizations to spin and finite-size e↵ects are
possible and lead to the same families of integrations at
2PM. Also the extensions to bound systems using map-
pings between bound and unbound orbits [24, 39] would
be of great utility.
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SUPPLEMENTAL MATERIAL

Integrals. — We begin with the simpler integral in
Eq. (22), corresponding to diagram (b) in Fig. 1. Work-
ing in Cartesian components with b = (b1, b2, b3) (in the

main text we replace b ! eb) and q = (q1, q2, q3) it is
su�cient to show

Z

q
eiq·b q2

q2(q1 � i✏)
= �

b2

4⇡(b2 � b2

1
)

✓
1 +

b1

|b|

◆
. (33)

3 As the two frames are related by a boost in the x direction this
implies that Jrad

0y = 0 in both frames.

Our NLO result reproduces [Kovacs,Thorne ’75] obtained with traditional
GR techniques in 4 long papers
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FIG. 1. The four diagram topologies contributing to the 2PM
Bremsstrahlung up to O(S2), where !i = k ·vi by energy con-
servation at the worldline vertices. For diagrams (b)–(d) we
also include the corresponding flipped topologies with massive
bodies 1$2; for diagram (d) (which includes the propagating
fermion  0µ

2 ) we also include the graph with the arrow re-
versed.

where ��(!) := (2⇡)�(!) and we have used S
µ⌫ =

�2i ̄[µ ⌫]. The other worldline-based vertices required
for the 2PM Bremsstrahlung all appear in Fig. 1: the
two-point interaction between a graviton and a single zµ

mode in (b), the two-graviton emission vertex in (c), and
the two-point interaction between a graviton and  0µ in
(d). Full expressions for these vertices are provided in
the Supplementary Material.

Waveform from WQFT. — To describe the
Bremsstrahlung at 2PM order including spin e↵ects we
compute the expectation value k2

hhµ⌫(k)iWQFT. This
requires us to compute four kinds of Feynman graphs,
illustrated in Fig. 1. Explicit expressions for the first
two graphs (a) and (b) were given in the non-spinning
case [16]; these are now modified by terms up to O(S2).
Graphs (c) and (d) are unique to the spinning case — for
the latter we sum over both routings of the fermion line.

From this result we seek to obtain the waveform in
spacetime in the wave zone, where the distance to the
observer |x| = r is large compared to all other lengths.
Following Ref. [16] the gauge-invariant frequency-domain
waveform 4G Sij(kµ = ⌦ (1, x̂)) is extracted from the
WQFT via

Sµ⌫(k) =
2


k2

hhµ⌫(k)iWQFT , (12)

where ⌦ is the GW frequency and x̂ = x/r points to-
wards the observer. However, it is advantageous to study
the time-domain waveform f(u, x̂) which is given by a
Fourier transform:

✏µ⌫hµ⌫ =
f(u, x̂)

r
=

4G

r

Z

⌦
e�ik·x ✏µ⌫ Sµ⌫(k)

���
kµ=⌦ ⇢µ

,

(13)

where we have contracted with a polarization tensor
✏µ⌫ = 1

2✏
µ✏⌫ ,

R
⌦ :=

R 1
�1

d⌦
2⇡ , ⇢µ = (1, x̂) and, in a PM

decomposition f =
P

n Gnf (n), we seek the 2PM compo-
nent f (2). Note that k · x = ⌦(t � r) yields the retarded
time u = t � r, and ✏ · ✏ = ✏ · ⇢ = 0.

Integration. — Our integration procedure follows
closely that used for the non-spinning calculation in
Ref. [16], the main di↵erence being that we maintain
four-dimensional Lorentz covariance. Each diagram con-
tributing to k2

hhµ⌫(k)iWQFT carries the overall factor

µ1,2(k) = ei(q1·b1+q2·b2)��(q1 · v1)�
�(q2 · v2)�

�(k � q1 � q2) .
(14)

We integrate over qi, the momentum emitted from each
worldline (see Fig. 1). When we also integrate over ⌦ —
as in Eq. (13) — the full integration measure becomes

Z

⌦,q1,q2

µ1,2(k)e�ik·x =
1

⇢ · v2

Z

q1

��(q1 · v1)e
�iq1·b̃ , (15)

where
R

qi
:=

R d4qi

(2⇡)4 ; the delta function constraints give

⌦ = q1·v2

⇢·v2

and q2 = k�q1. The shifted impact parameter

b̃µ is

b̃µ = b̃µ
2 � b̃µ

1 , b̃µ
i = bµ

i + uiv
µ
i , (16)

which extends the original impact parameter bµ = bµ
2 �

bµ
1 along the undeflected trajectories of the two bodies.

Finally, ui is the retarded time in the i’th rest frame:

ui =
⇢ · (x � bi)

⇢ · vi
, (17)

This implies ⇢ · b̃i = ⇢ · x = u, so ⇢ · b̃ = 0.
Rewriting the integral measure as in Eq. (15) is con-

venient for performing the integrals of diagrams (b)–(d),
in the rest frame of body 1. The mirrored counterparts
to these diagrams are easily recovered after integration
using the 1 $ 2 symmetry of the waveform. To inte-
grate diagram (a) we insert the partial-fraction identity
q�2
1 q�2

2 = �q�2
1 (2k ·q1)�1

�q�2
2 (2k ·q2)�1 (which is valid

for k on-shell) and focus on the first term.
The full 2PM waveform is then written schematically

as (dropping the subscript on q1)GM: fix margin
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+ (1 $ 2) , (18)

the N - and M-contributions corresponding to diagrams
(b)–(d) and (a) in Fig. 1 respectively. The numerators
N (q) and M(q) have a uniform power counting in q for
each spin order:

N (q) = Nµqµ + Nµ⌫qµq⌫ + Nµ⌫⇢q
µq⌫q⇢ , (19)

M(q) = Mµ⌫qµq⌫ + Mµ⌫⇢q
µq⌫q⇢ + Mµ⌫⇢�qµq⌫q⇢q� ,

FIG. 1. The four diagram topologies contributing to the 2PM
Bremsstrahlung up to O(S2), where !i = k ·vi by energy con-
servation at the worldline vertices. For diagrams (b)–(d) we
also include the corresponding flipped topologies with massive
bodies 1$2; for diagram (d) (which includes the propagating
fermion  0µ

2 ) we also include the graph with the arrow re-
versed.

Next we consider the worldline vertices. The simplest
of these is the single-graviton emission vertex:
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(11)

where ��(!) := (2⇡)�(!) and we have used S
µ⌫ =

�2i ̄[µ ⌫]. The other worldline-based vertices required
for the 2PM Bremsstrahlung all appear in Fig. 1: the
two-point interaction between a graviton and a single zµ

mode in (b), the two-graviton emission vertex in (c), and
the two-point interaction between a graviton and  0µ in
(d). Full expressions for these vertices are provided in
the Supplementary Material.

Waveform from WQFT. — To describe the
Bremsstrahlung at 2PM order including spin e↵ects we
compute the expectation value k2

hhµ⌫(k)iWQFT. This
requires us to compute four kinds of Feynman graphs,
illustrated in Fig. 1. Explicit expressions for the first
two graphs (a) and (b) were given in the non-spinning
case [16]; these are now modified by terms up to O(S2).
Graphs (c) and (d) are unique to the spinning case — for
the latter we sum over both routings of the fermion line.

From this result we seek to obtain the waveform in
spacetime in the wave zone, where the distance to the
observer |x| = r is large compared to all other lengths.
Following Ref. [16] the gauge-invariant frequency-domain
waveform 4G ✏µ⌫Sµ⌫(kµ = ⌦ (1, x̂)) is extracted from the
WQFT via

Sµ⌫(k) =
2


k2

hhµ⌫(k)iWQFT , (12)

where ⌦ is the GW frequency and x̂ = x/r points to-
wards the observer. However, it is advantageous to study
the time-domain waveform f(u, x̂) which is given by a
Fourier transform:

✏µ⌫hµ⌫ =
f(u, x̂)

r
=
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We have contracted with a polarization tensor ✏µ⌫ =
1
2✏

µ✏⌫ ,
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⌦ :=

R 1
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2⇡ , and ⇢µ = (1, x̂); in a PM decom-

position f =
P

n Gnf (n) we seek the 2PM component
f (2). Note that k · x = ⌦(t � r) yields the retarded time
u = t � r, and ✏ · ✏ = ✏ · ⇢ = 0.

Integration. — Our integration procedure follows
closely that used for the non-spinning calculation in
Ref. [16], the main di↵erence being that we maintain
four-dimensional Lorentz covariance. Each diagram con-
tributing to k2

hhµ⌫(k)iWQFT carries the overall factor

µ1,2(k) = ei(q1·b1+q2·b2)��(q1 · v1)�
�(q2 · v2)�

�(k � q1 � q2) .
(14)

We integrate over qi, the momentum emitted from each
worldline (see Fig. 1). When we also integrate over ⌦ —
as in Eq. (13) — the full integration measure becomes
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where
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(2⇡)4 ; the delta function constraints give

⌦ = q1·v2

⇢·v2

and q2 = k�q1. The shifted impact parameter,
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1 , b̃µ
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extends the original impact parameter bµ = bµ
2 �bµ

1 along
the undeflected trajectories of the two bodies. Finally, ui

is the retarded time in the i’th rest frame:

ui =
⇢ · (x � bi)

⇢ · vi
, (17)

This implies ⇢ · b̃i = ⇢ · x = u, so ⇢ · b̃ = 0.
Rewriting the integral measure as in Eq. (15) is con-

venient for performing the integrals of diagrams (b)–(d),
in the rest frame of body 1. The mirrored counterparts
to these diagrams are easily recovered after integration
using the 1 $ 2 symmetry of the waveform. To inte-
grate diagram (a) we insert the partial-fraction identity
q�2
1 q�2

2 = �q�2
1 (2k ·q1)�1

�q�2
2 (2k ·q2)�1 (which is valid

for k on-shell) and focus on the first term.
The full 2PM waveform is then written schematically

as (dropping the subscript on q1)
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FIG. 1. The four diagram topologies contributing to the 2PM
Bremsstrahlung up to O(S

2
), where !i = k ·vi by energy con-

servation at the worldline vertices. For diagrams (b)–(d) we
also include the corresponding flipped topologies with massive
bodies 1$2; for diagram (d) (which includes the propagating
fermion  

0µ
2 ) we also include the graph with the arrow re-

versed.

where ��(!) := (2⇡)�(!) and we have used Sµ⌫ =
�2i ̄[µ ⌫]. The other worldline-based vertices required
for the 2PM Bremsstrahlung all appear in Fig. 1: the
two-point interaction between a graviton and a single zµ

mode in (b), the two-graviton emission vertex in (c), and
the two-point interaction between a graviton and  0µ

in
(d). Full expressions for these vertices are provided in
the Supplementary Material.

Waveform from WQFT. — To describe the
Bremsstrahlung at 2PM order including spin e↵ects we
compute the expectation value k2hhµ⌫(k)iWQFT. This
requires us to compute four kinds of Feynman graphs,
illustrated in Fig. 1. Explicit expressions for the first
two graphs (a) and (b) were given in the non-spinning
case [16]; these are now modified by terms up to O(S2).
Graphs (c) and (d) are unique to the spinning case — for
the latter we sum over both routings of the fermion line.

From this result we seek to obtain the waveform in
spacetime in the wave zone, where the distance to the
observer |x| = r is large compared to all other lengths.
Following Ref. [16] the gauge-invariant frequency-domain
waveform 4G Sij(kµ = ⌦ (1, x̂)) is extracted from the
WQFT via

Sµ⌫(k) =
2


k

2
hhµ⌫(k)iWQFT , (12)

where ⌦ is the GW frequency and x̂ = x/r points to-
wards the observer. However, it is advantageous to study
the time-domain waveform f(u, x̂) which is given by a
Fourier transform:

✏
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f(u, x̂)
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where we have contracted with a polarization tensor
✏µ⌫ =

1
2✏µ✏⌫ ,
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2⇡ , ⇢µ = (1, x̂) and, in a PM

decomposition f =
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n Gnf (n), we seek the 2PM compo-
nent f (2). Note that k · x = ⌦(t � r) yields the retarded
time u = t � r, and ✏ · ✏ = ✏ · ⇢ = 0.

Integration. — Our integration procedure follows
closely that used for the non-spinning calculation in
Ref. [16], the main di↵erence being that we maintain
four-dimensional Lorentz covariance. Each diagram con-
tributing to k2hhµ⌫(k)iWQFT carries the overall factor

µ1,2(k) = e
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(14)
We integrate over qi, the momentum emitted from each
worldline (see Fig. 1). When we also integrate over ⌦ —
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This implies ⇢ · b̃i = ⇢ · x = u, so ⇢ · b̃ = 0.
Rewriting the integral measure as in Eq. (15) is con-

venient for performing the integrals of diagrams (b)–(d),
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servation at the worldline vertices. All three diagrams have
the integral measure in Eq. (16); in the rest frame of black
hole 1 diagram (a) does not contribute as soon as the outgo-
ing graviton is contracted with a purely spatial polarization
tensor.

these waveforms we furthermore reproduce Damour’s re-
cent result for the total radiated angular momentum [22]
at 2PM order. Our results also complement the recent
result of the total radiated momentum at leading order in
G (3PM) established with amplitude techniques [30]. We
comment on how to achieve this result from our methods.

Worldline Quantum Field Theory. — The classical
gravitational scattering of two massive objects mi mov-
ing on trajectories xµ
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with 2 = 32⇡G the gravitational coupling; we have sup-
pressed the ghost contributions in Eq. (1) as they are ir-
relevant in the classical setting. We work in mostly minus
signature, ⌘µ⌫ = diag(1, �1, �1, �1), and set c = ~ = 1.

Correlation functions in the WQFT hO(h, {xi})iWQFT

result from an insertion of the operator O in the path
integral and dividing by ZWQFT. Moving to momentum
space for the graviton hµ⌫(k) and energy space for the
fluctuations zµ(!) we have the retarded propagators
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The energy ! is also taken as outgoing. One also has the
standard bulk graviton vertices, of which we shall need
only the three-graviton vertex — see e.g. Ref. [31].

To determine the Bremsstrahlung of two travers-
ing black holes we compute the expectation value
k2

hhµ⌫(k)iWQFT. At leading (2PM) order there are three
diagrams contributing, cp. Fig. 1. We integrate over the
momenta or energies of internal gravitons or fluctuations
respectively; lack of three-momentum conservation at the
worldline vertices leaves unresolved integrals for the tree-
level diagrams.

Diagram (a) of Fig. 1 then takes the form1
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+,⇥ are
traceless we find it unnecessary.
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these waveforms we furthermore reproduce Damour’s re-
cent result for the total radiated angular momentum [22]
at 2PM order. Our results also complement the recent
result of the total radiated momentum at leading order in
G (3PM) established with amplitude techniques [30]. We
comment on how to achieve this result from our methods.
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The energy ! is also taken as outgoing. One also has the
standard bulk graviton vertices, of which we shall need
only the three-graviton vertex — see e.g. Ref. [31].

To determine the Bremsstrahlung of two travers-
ing black holes we compute the expectation value
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i ẋ⌫
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The energy ! is also taken as outgoing. One also has the
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The energy ! is also taken as outgoing. One also has the
standard bulk graviton vertices, of which we shall need
only the three-graviton vertex — see e.g. Ref. [31].

To determine the Bremsstrahlung of two travers-
ing black holes we compute the expectation value
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hhµ⌫(k)iWQFT. At leading (2PM) order there are three
diagrams contributing, cp. Fig. 1. We integrate over the
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respectively; lack of three-momentum conservation at the
worldline vertices leaves unresolved integrals for the tree-
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FIG. 1. The three diagrams contributing to the
Bremsstrahlung at 2PM order, where !i = k·vi by energy con-
servation at the worldline vertices. All three diagrams have
the integral measure in Eq. (16); in the rest frame of black
hole 1 diagram (a) does not contribute as soon as the outgo-
ing graviton is contracted with a purely spatial polarization
tensor.

these waveforms we furthermore reproduce Damour’s re-
cent result for the total radiated angular momentum [22]
at 2PM order. Our results also complement the recent
result of the total radiated momentum at leading order in
G (3PM) established with amplitude techniques [30]. We
comment on how to achieve this result from our methods.
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with 2 = 32⇡G the gravitational coupling; we have sup-
pressed the ghost contributions in Eq. (1) as they are ir-
relevant in the classical setting. We work in mostly minus
signature, ⌘µ⌫ = diag(1, �1, �1, �1), and set c = ~ = 1.
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The energy ! is also taken as outgoing. One also has the
standard bulk graviton vertices, of which we shall need
only the three-graviton vertex — see e.g. Ref. [31].

To determine the Bremsstrahlung of two travers-
ing black holes we compute the expectation value
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hhµ⌫(k)iWQFT. At leading (2PM) order there are three
diagrams contributing, cp. Fig. 1. We integrate over the
momenta or energies of internal gravitons or fluctuations
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relevant in the classical setting. We work in mostly minus
signature, ⌘µ⌫ = diag(1, �1, �1, �1), and set c = ~ = 1.

Correlation functions in the WQFT hO(h, {xi})iWQFT

result from an insertion of the operator O in the path
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The energy ! is also taken as outgoing. One also has the
standard bulk graviton vertices, of which we shall need
only the three-graviton vertex — see e.g. Ref. [31].

To determine the Bremsstrahlung of two travers-
ing black holes we compute the expectation value
k2

hhµ⌫(k)iWQFT. At leading (2PM) order there are three
diagrams contributing, cp. Fig. 1. We integrate over the
momenta or energies of internal gravitons or fluctuations
respectively; lack of three-momentum conservation at the
worldline vertices leaves unresolved integrals for the tree-
level diagrams.
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ing graviton line; however as the polarization tensors eµ⌫

+,⇥ are
traceless we find it unnecessary.
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N (q) and M(q) have a uniform power counting in q for
each spin order:

N (q) = Nµqµ + Nµ⌫qµq⌫ + Nµ⌫⇢q
µq⌫q⇢ , (19)

M(q) = Mµ⌫qµq⌫ + Mµ⌫⇢q
µq⌫q⇢ + Mµ⌫⇢�qµq⌫q⇢q� ,

and the non-spinning result involves only Nµ and Mµ⌫ .
We present full expressions for N and M in the ancillary
file attached to the arXiv submission of this Letter.

To lowest order in qµ, the first integral in eq. (18) is
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where Pµ⌫
i := ⌘µ⌫

�vµ
i v⌫

i is a projector into the rest frame
of the i’th body, |b| = �

p
bµbµ (the impact parameter is

spacelike) and

|b̃|1,2 :=
q

�b̃µPµ⌫
1,2 b̃⌫ =

q
|b|2 + (�2 � 1)u2
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are the lengths of the shifted impact parameter b̃µ (16)
in the two rest frames. The second integral in eq. (18) is
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(22)

where we have introduced the symmetric tensor

Kµ⌫
i := Pµ⌫

i |b̃|
2
i + (Pi · b̃)µ(Pi · b̃)⌫ , (23)

with the property that Kµ⌫
i vi,⌫ = Kµ⌫

i b̃⌫ = 0. Both
integrals are derived in the Supplementary Material; one
generalizes to higher powers of qµ in the numerators by
taking derivatives with respect to b̃µ.

Results. — The 2PM waveform takes the schematic
form
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where the coe�cients ↵(s)
i , �(s)

i , provided in the ancillary
file, are associated with the N - and M-type contribu-
tions in Eq. (18) respectively; they are functions of ui,
bµ, vµ

i , ⇢µ, and S
µ⌫
i and bi-linear in ✏µ. The waveform f

is invariant under the SUSY transformations in Eq. (8)
to quadratic order in spin regardless of the values of CE,i.
To see this we expand the waveform at all PM orders in
powers of spin:

f = f0+
2X

i=1

Si,µ⌫fµ⌫
i +

2X

i,j=1

Si,µ⌫Sj,⇢�fµ⌫;⇢�
ij + O(S3) ,

(25)
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where the coe�cients ↵(s)
i , �(s)

i are associated with the
N - and M-type contributions in Eq. (18) respectively;
they are functions of b, ui, vi, ⇢ and Si and bi-linear
in ✏. In the Kerr-BH case (CE,i = 0) the waveform f
is invariant under the SUSY transformations in Eq. (8):
For this we expand the waveform at any PM order in
powers of spin

f = f0+
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Si,µ⌫fµ⌫
i +
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where SUSY links higher-spin terms to lower ones

1
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@f0
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= vi,µ f [µ⌫]

i ,
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4

@fµ⌫
i

@bj,⇢
= vj,� fµ⌫;[⇢�]

ij . (26)

To illustrate the waveform we consider the gravita-
tional wave memory �f(x̂) := f(+1, x̂) � f(�1, x̂).
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FIG. 2. Total radiated angular momenta for the scattering of
two Kerr-BHs with v = 0.2 as a function of the angle between
the total initial spins a3 = a1 + a2 and b (with ai · vi =
0) for a range of ratios |a3|/|b|. We show the normalized
ratio of angular momenta emitted orthogonal to the b,v plane
(left plot) and in the b direction (right plot), normalization
is w.r.t. angular momentum emitted in the spin-less.

The constant spin tensors are decomposed in terms of
the Pauli-Lubanski vectors aµ

i as S
µ⌫
i = ✏µ⌫

⇢�v⇢
i a�

i ; they
satisfy ai · vi = 0. In the aligned-spin case where
ai · b = ai · vj = 0, i.e. the spin vectors are orthogo-

nal to the plane of scattering. Writing li =
p

�a2
i the

wave memory is proportional to the non-spinning result:
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where we have introduced aµ
3 = aµ

1 + aµ
2 with length

|a3|. For two Kerr black holes (CE,i = 0) with equal-
and-opposite spins (aµ

1 = �aµ
2 ) the result is the same as

the non-spinning; we observe this also when the spins are
mis-aligned to the plane of scattering.

There is also a 1PM (non-radiating) contribution to
the waveform consisting of single-graviton emission from
either massive body:

f (1)(x̂) =
2m1

⇢ · v1
(✏ · v1)

2 +
2m2

⇢ · v2
(✏ · v2)

2 . (28)

At 1PM order there is manifestly no dependence on either
the spins S

µ⌫
i or impact parameters bµ

i , so the SUSY
identities in Eq. (26) are trivially satisfied.

Finally, the wave memory and 1PM part of the wave-
form contribute to the total radiated angular momentum
J rad

ij . Using three-dimensional Cartesian basis vectors êi,
we choose a frame of reference with the initial velocities
vµ

i restricted to the t–x plane; b = b ê2 is orthogonal to
these. Then we find two non-zero components of J rad

ij :

FIG. 2. Total radiated angular momenta for the scattering of
two Kerr-BHs with v = 0.2 as a function of the angle between
the total initial spins a3 = a1 + a2 and b (with ai · vi =
0) for a range of ratios |a3|/|b|. We show the normalized
ratio of angular momenta emitted orthogonal to the b,v plane
(left plot) and in the b direction (right plot), normalization
is w.r.t. angular momentum emitted in the spinless case.
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and these identities are satisfied by the waveform (24).
To illustrate the waveform we consider the gravita-

tional wave memory �f(x̂) := f(+1, x̂) � f(�1, x̂).
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Finally, the wave memory and 1PM part of the wave-
form contribute to the total radiated angular momentum
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file attached to the arXiv submission of this Letter.
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where SUSY links higher-spin terms to lower ones
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To illustrate the waveform we consider the gravita-
tional wave memory �f(x̂) := f(+1, x̂) � f(�1, x̂).
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FIG. 2. Total radiated angular momenta for the scattering of
two Kerr-BHs with v = 0.2 as a function of the angle between
the total initial spins a3 = a1 + a2 and b (with ai · vi =
0) for a range of ratios |a3|/|b|. We show the normalized
ratio of angular momenta emitted orthogonal to the b,v plane
(left plot) and in the b direction (right plot), normalization
is w.r.t. angular momentum emitted in the spin-less.
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where we have introduced aµ
3 = aµ

1 + aµ
2 with length

|a3|. For two Kerr black holes (CE,i = 0) with equal-
and-opposite spins (aµ

1 = �aµ
2 ) the result is the same as

the non-spinning; we observe this also when the spins are
mis-aligned to the plane of scattering.

There is also a 1PM (non-radiating) contribution to
the waveform consisting of single-graviton emission from
either massive body:

f (1)(x̂) =
2m1

⇢ · v1
(✏ · v1)

2 +
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⇢ · v2
(✏ · v2)

2 . (28)

At 1PM order there is manifestly no dependence on either
the spins S

µ⌫
i or impact parameters bµ

i , so the SUSY
identities in Eq. (26) are trivially satisfied.

Finally, the wave memory and 1PM part of the wave-
form contribute to the total radiated angular momentum
J rad

ij . Using three-dimensional Cartesian basis vectors êi,
we choose a frame of reference with the initial velocities
vµ

i restricted to the t–x plane; b = b ê2 is orthogonal to
these. Then we find two non-zero components of J rad

ij :
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0) for a range of ratios |a3|/|b|. We show the normalized
ratio of angular momenta emitted orthogonal to the b,v plane
(left plot) and in the b direction (right plot), normalization
is w.r.t. angular momentum emitted in the spinless case.
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and these identities are satisfied by the waveform (24).
To illustrate the waveform we consider the gravita-

tional wave memory �f(x̂) := f(+1, x̂) � f(�1, x̂).
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identities in Eq. (26) are trivially satisfied.
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µq⌫q⇢ + Mµ⌫⇢�qµq⌫q⇢q� ,
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To lowest order in qµ, the first integral in eq. (18) is

4⇡

Z

q
��(q · v1)

e�iq·b̃

q2

qµ

q · v2 + i✏

=
Pµ⌫

1 v2,⌫

(�2 � 1)|b̃|1

�
bµ

|b|2

 
1p

�2 � 1
+

u2

|b̃|1

!
,

(20)

where Pµ⌫
i := ⌘µ⌫

�vµ
i v⌫

i is a projector into the rest frame
of the i’th body, |b| = �

p
bµbµ (the impact parameter is

spacelike) and

|b̃|1,2 :=
q

�b̃µPµ⌫
1,2 b̃⌫ =

q
|b|2 + (�2 � 1)u2

2,1 (21)

are the lengths of the shifted impact parameter b̃µ (16)
in the two rest frames. The second integral in eq. (18) is

4⇡

Z

q
��(q · v1)

e�iq·b̃

q2

qµq⌫

q · v2 q · ⇢

=
Kµ⌫

1 v2 · K1 · ⇢ � 2(v2 · K1)(µ(⇢ · K1)⌫)

(�2 � 1) (⇢ · v1)2 |b|2 |b̃|2 |b̃|1

,

(22)

where we have introduced the symmetric tensor

Kµ⌫
i := Pµ⌫

i |b̃|
2
i + (Pi · b̃)µ(Pi · b̃)⌫ , (23)

with the property that Kµ⌫
i vi,⌫ = Kµ⌫

i b̃⌫ = 0. Both
integrals are derived in the Supplementary Material; one
generalizes to higher powers of qµ in the numerators by
taking derivatives with respect to b̃µ.

Results. — The 2PM waveform takes the schematic
form

f (2)

m1m2
=

2X

s=0

1

|b̃|
2s+1
1

"
↵(s)

1 +
�(s)

1

|b̃|2s+2

#
+ (1 $ 2) , (24)

where the coe�cients ↵(s)
i , �(s)

i , provided in the ancillary
file, are associated with the N - and M-type contribu-
tions in Eq. (18) respectively; they are functions of ui,
bµ, vµ

i , ⇢µ, and S
µ⌫
i and bi-linear in ✏µ. The waveform f

is invariant under the SUSY transformations in Eq. (8)
to quadratic order in spin regardless of the values of CE,i.
To see this we expand the waveform at all PM orders in
powers of spin:

f = f0+
2X

i=1

Si,µ⌫fµ⌫
i +

2X

i,j=1

Si,µ⌫Sj,⇢�fµ⌫;⇢�
ij + O(S3) ,

(25)

4

where the non-spinning result involves only Nµ and Mµ⌫ .
We present full expressions for N and M in the ancillary
file attached to the arXiv submission of this Letter.

To lowest order in qµ, the first integral in eq. (18) is

4⇡

Z

q
��(q · v1)

e�iq·b̃

q2

qµ

q · v2 + i✏

=
Pµ⌫

1 v2,⌫

(�2 � 1)|b̃|1

�
bµ

b2

 
1p

�2 � 1
+

u2

|b̃|1

!
,

(20)

where Pµ⌫
i := ⌘µ⌫

� vµ
i v⌫

i is a projector into the rest
frame of the i’th body; b2 = |b|2 = �bµbµ (the impact
parameter is spacelike) and

|b̃|1,2 :=
q

�b̃µPµ⌫
1,2 b̃⌫ =

q
b2 + (�2 � 1)u2

2,1 (21)

are the lengths of the shifted impact parameter b̃µ (16)
in the two rest frames. The second integral in eq. (18) is

4⇡

Z

q
��(q · v1)

e�iq·b̃

q2

qµq⌫

q · v2 q · ⇢

=
Kµ⌫

1 v2 · K1 · ⇢ � 2(v2 · K1)(µ(⇢ · K1)⌫)

(�2 � 1) (⇢ · v1)2 b2 |b̃|2 |b̃|1

,

(22)

where we have introduced the symmetric tensor

Kµ⌫
i := Pµ⌫

i |b̃|
2
i + (Pi · b̃)µ(Pi · b̃)⌫ , (23)

with the property that Kµ⌫
i vi,⌫ = Kµ⌫

i b̃⌫ = 0. Both inte-
grals are derived in the Supplementary Material; versions
with higher powers of qµ in the numerators are derived
by taking derivatives with respect to b̃µ.

Results. — The 2PM waveform takes the schematic
form

f (2)

m1m2
=

2X

s=0

1

|b̃|
2s+1
1

"
↵(s)

1 +
�(s)

1

|b̃|2s+2

#
+ (1 $ 2) , (24)
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i are associated with the
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they are functions of b, ui, vi, ⇢ and Si and bi-linear
in ✏. In the Kerr-BH case (CE,i = 0) the waveform f
is invariant under the SUSY transformations in Eq. (8):
For this we expand the waveform at any PM order in
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To illustrate the waveform we consider the gravita-
tional wave memory �f(x̂) := f(+1, x̂) � f(�1, x̂).
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FIG. 2. Total radiated angular momenta for the scattering of
two Kerr-BHs with v = 0.2 as a function of the angle between
the total initial spins a3 = a1 + a2 and b (with ai · vi =
0) for a range of ratios |a3|/|b|. We show the normalized
ratio of angular momenta emitted orthogonal to the b,v plane
(left plot) and in the b direction (right plot), normalization
is w.r.t. angular momentum emitted in the spin-less.
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|a3|. For two Kerr black holes (CE,i = 0) with equal-
and-opposite spins (aµ
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2 ) the result is the same as

the non-spinning; we observe this also when the spins are
mis-aligned to the plane of scattering.

There is also a 1PM (non-radiating) contribution to
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At 1PM order there is manifestly no dependence on either
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Finally, the wave memory and 1PM part of the wave-
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To illustrate the waveform we consider the gravita-

tional wave memory �f(x̂) := f(+1, x̂) � f(�1, x̂).
The constant spin tensors are decomposed in terms of
the Pauli-Lubanski vectors aµ

i as S
µ⌫
i = ✏µ⌫

⇢�v⇢
i a�

i , the
latter satisfying ai · vi = 0. In the aligned-spin case
ai · b = ai · vj = 0, i.e. the spin vectors are orthogo-

nal to the plane of scattering. Writing |ai| =
p

�a2
i the

wave memory is then proportional to the non-spinning
result:

�f (2) =
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2v|a3|

b(1 + v2)
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|a3|
2

|b|2
�
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m1m2
=
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|b|2
p

�2 � 1(⇢ · v1)2
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where aµ
3 = aµ

1 +aµ
2 . For two Kerr black holes (CE,i = 0)

with equal-and-opposite spins (aµ
1 = �aµ

2 ) we see that

�f (2) = �f (2)
S=0, which we observe also when the spins

are mis-aligned to the plane of scattering.
There is also a 1PM (non-radiating) contribution to

the waveform consisting of single-graviton emission from
either massive body:

f (1)(x̂) =
2m1

⇢ · v1
(✏ · v1)

2 +
2m2

⇢ · v2
(✏ · v2)

2 . (28)

At 1PM order there is manifestly no dependence on either
the spins S

µ⌫
i or impact parameters bµ

i , so the SUSY
identities in Eq. (26) are trivially satisfied.

Finally, the wave memory and 1PM part of the wave-
form contribute to the total radiated angular momentum
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FIG. 1. The four diagram topologies contributing to the 2PM
Bremsstrahlung up to O(S2), where !i = k ·vi by energy con-
servation at the worldline vertices. For diagrams (b)–(d) we
also include the corresponding flipped topologies with massive
bodies 1$2; for diagram (d) (which includes the propagating
fermion  0µ

2 ) we also include the graph with the arrow re-
versed.

where ��(!) := (2⇡)�(!) and we have used S
µ⌫ =

�2i ̄[µ ⌫]. The other worldline-based vertices required
for the 2PM Bremsstrahlung all appear in Fig. 1: the
two-point interaction between a graviton and a single zµ

mode in (b), the two-graviton emission vertex in (c), and
the two-point interaction between a graviton and  0µ in
(d). Full expressions for these vertices are provided in
the Supplementary Material.

Waveform from WQFT. — To describe the
Bremsstrahlung at 2PM order including spin e↵ects we
compute the expectation value k2

hhµ⌫(k)iWQFT. This
requires us to compute four kinds of Feynman graphs,
illustrated in Fig. 1. Explicit expressions for the first
two graphs (a) and (b) were given in the non-spinning
case [16]; these are now modified by terms up to O(S2).
Graphs (c) and (d) are unique to the spinning case — for
the latter we sum over both routings of the fermion line.

From this result we seek to obtain the waveform in
spacetime in the wave zone, where the distance to the
observer |x| = r is large compared to all other lengths.
Following Ref. [16] the gauge-invariant frequency-domain
waveform 4G Sij(kµ = ⌦ (1, x̂)) is extracted from the
WQFT via

Sµ⌫(k) =
2


k2

hhµ⌫(k)iWQFT , (12)

where ⌦ is the GW frequency and x̂ = x/r points to-
wards the observer. However, it is advantageous to study
the time-domain waveform f(u, x̂) which is given by a
Fourier transform:

✏µ⌫hµ⌫ =
f(u, x̂)

r
=

4G

r

Z

⌦
e�ik·x ✏µ⌫ Sµ⌫(k)

���
kµ=⌦ ⇢µ

,

(13)

where we have contracted with a polarization tensor
✏µ⌫ = 1

2✏
µ✏⌫ ,

R
⌦ :=

R 1
�1

d⌦
2⇡ , ⇢µ = (1, x̂) and, in a PM

decomposition f =
P

n Gnf (n), we seek the 2PM compo-
nent f (2). Note that k · x = ⌦(t � r) yields the retarded
time u = t � r, and ✏ · ✏ = ✏ · ⇢ = 0.

Integration. — Our integration procedure follows
closely that used for the non-spinning calculation in
Ref. [16], the main di↵erence being that we maintain
four-dimensional Lorentz covariance. Each diagram con-
tributing to k2

hhµ⌫(k)iWQFT carries the overall factor

µ1,2(k) = ei(q1·b1+q2·b2)��(q1 · v1)�
�(q2 · v2)�

�(k � q1 � q2) .
(14)

We integrate over qi, the momentum emitted from each
worldline (see Fig. 1). When we also integrate over ⌦ —
as in Eq. (13) — the full integration measure becomes

Z

⌦,q1,q2

µ1,2(k)e�ik·x =
1

⇢ · v2

Z

q1

��(q1 · v1)e
�iq1·b̃ , (15)

where
R

qi
:=

R d4qi

(2⇡)4 ; the delta function constraints give

⌦ = q1·v2

⇢·v2

and q2 = k�q1. The shifted impact parameter

b̃µ is

b̃µ = b̃µ
2 � b̃µ

1 , b̃µ
i = bµ

i + uiv
µ
i , (16)

which extends the original impact parameter bµ = bµ
2 �

bµ
1 along the undeflected trajectories of the two bodies.

Finally, ui is the retarded time in the i’th rest frame:

ui =
⇢ · (x � bi)

⇢ · vi
, (17)

This implies ⇢ · b̃i = ⇢ · x = u, so ⇢ · b̃ = 0.
Rewriting the integral measure as in Eq. (15) is con-

venient for performing the integrals of diagrams (b)–(d),
in the rest frame of body 1. The mirrored counterparts
to these diagrams are easily recovered after integration
using the 1 $ 2 symmetry of the waveform. To inte-
grate diagram (a) we insert the partial-fraction identity
q�2
1 q�2

2 = �q�2
1 (2k ·q1)�1

�q�2
2 (2k ·q2)�1 (which is valid

for k on-shell) and focus on the first term.
The full 2PM waveform is then written schematically

as (dropping the subscript on q1)GM: fix margin
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m1m2
= 4⇡

Z

q
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e�iq·b̃

q2

✓
N (q)

q · v2 + i✏
+

M(q)

(q · v2)(q · ⇢)

◆
,

+ (1 $ 2) , (18)

the N - and M-contributions corresponding to diagrams
(b)–(d) and (a) in Fig. 1 respectively. The numerators
N (q) and M(q) have a uniform power counting in q for
each spin order:

N (q) = Nµqµ + Nµ⌫qµq⌫ + Nµ⌫⇢q
µq⌫q⇢ , (19)

M(q) = Mµ⌫qµq⌫ + Mµ⌫⇢q
µq⌫q⇢ + Mµ⌫⇢�qµq⌫q⇢q� ,

FIG. 1. The four diagram topologies contributing to the 2PM
Bremsstrahlung up to O(S2), where !i = k ·vi by energy con-
servation at the worldline vertices. For diagrams (b)–(d) we
also include the corresponding flipped topologies with massive
bodies 1$2; for diagram (d) (which includes the propagating
fermion  0µ

2 ) we also include the graph with the arrow re-
versed.

Next we consider the worldline vertices. The simplest
of these is the single-graviton emission vertex:
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2
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(11)

where ��(!) := (2⇡)�(!) and we have used S
µ⌫ =

�2i ̄[µ ⌫]. The other worldline-based vertices required
for the 2PM Bremsstrahlung all appear in Fig. 1: the
two-point interaction between a graviton and a single zµ

mode in (b), the two-graviton emission vertex in (c), and
the two-point interaction between a graviton and  0µ in
(d). Full expressions for these vertices are provided in
the Supplementary Material.

Waveform from WQFT. — To describe the
Bremsstrahlung at 2PM order including spin e↵ects we
compute the expectation value k2

hhµ⌫(k)iWQFT. This
requires us to compute four kinds of Feynman graphs,
illustrated in Fig. 1. Explicit expressions for the first
two graphs (a) and (b) were given in the non-spinning
case [16]; these are now modified by terms up to O(S2).
Graphs (c) and (d) are unique to the spinning case — for
the latter we sum over both routings of the fermion line.

From this result we seek to obtain the waveform in
spacetime in the wave zone, where the distance to the
observer |x| = r is large compared to all other lengths.
Following Ref. [16] the gauge-invariant frequency-domain
waveform 4G ✏µ⌫Sµ⌫(kµ = ⌦ (1, x̂)) is extracted from the
WQFT via

Sµ⌫(k) =
2


k2

hhµ⌫(k)iWQFT , (12)

where ⌦ is the GW frequency and x̂ = x/r points to-
wards the observer. However, it is advantageous to study
the time-domain waveform f(u, x̂) which is given by a
Fourier transform:

✏µ⌫hµ⌫ =
f(u, x̂)

r
=

4G
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e�ik·x ✏µ⌫ Sµ⌫(k)
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We have contracted with a polarization tensor ✏µ⌫ =
1
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⌦ :=

R 1
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2⇡ , and ⇢µ = (1, x̂); in a PM decom-

position f =
P

n Gnf (n) we seek the 2PM component
f (2). Note that k · x = ⌦(t � r) yields the retarded time
u = t � r, and ✏ · ✏ = ✏ · ⇢ = 0.

Integration. — Our integration procedure follows
closely that used for the non-spinning calculation in
Ref. [16], the main di↵erence being that we maintain
four-dimensional Lorentz covariance. Each diagram con-
tributing to k2

hhµ⌫(k)iWQFT carries the overall factor

µ1,2(k) = ei(q1·b1+q2·b2)��(q1 · v1)�
�(q2 · v2)�

�(k � q1 � q2) .
(14)

We integrate over qi, the momentum emitted from each
worldline (see Fig. 1). When we also integrate over ⌦ —
as in Eq. (13) — the full integration measure becomes
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1
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where
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:=

R d4qi

(2⇡)4 ; the delta function constraints give

⌦ = q1·v2

⇢·v2

and q2 = k�q1. The shifted impact parameter,

b̃µ = b̃µ
2 � b̃µ

1 , b̃µ
i = bµ

i + uiv
µ
i , (16)

extends the original impact parameter bµ = bµ
2 �bµ

1 along
the undeflected trajectories of the two bodies. Finally, ui

is the retarded time in the i’th rest frame:

ui =
⇢ · (x � bi)

⇢ · vi
, (17)

This implies ⇢ · b̃i = ⇢ · x = u, so ⇢ · b̃ = 0.
Rewriting the integral measure as in Eq. (15) is con-

venient for performing the integrals of diagrams (b)–(d),
in the rest frame of body 1. The mirrored counterparts
to these diagrams are easily recovered after integration
using the 1 $ 2 symmetry of the waveform. To inte-
grate diagram (a) we insert the partial-fraction identity
q�2
1 q�2

2 = �q�2
1 (2k ·q1)�1

�q�2
2 (2k ·q2)�1 (which is valid

for k on-shell) and focus on the first term.
The full 2PM waveform is then written schematically

as (dropping the subscript on q1)
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m1m2
= 4⇡
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q · v2 + i✏
+

M(q)

(q · v2)(q · ⇢)
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+ (1 $ 2) , (18)

the N - and M-contributions corresponding to diagrams
(b)–(d) and (a) in Fig. 1 respectively. The numerators

4

N (q) and M(q) have a uniform power counting in q for
each spin order:

N (q) = Nµqµ + Nµ⌫qµq⌫ + Nµ⌫⇢q
µq⌫q⇢ , (19)

M(q) = Mµ⌫qµq⌫ + Mµ⌫⇢q
µq⌫q⇢ + Mµ⌫⇢�qµq⌫q⇢q� ,

and the non-spinning result involves only Nµ and Mµ⌫ .
We present full expressions for N and M in the ancillary
file attached to the arXiv submission of this Letter.

To lowest order in qµ, the first integral in eq. (18) is

4⇡

Z

q
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e�iq·b̃
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u2

|b̃|1

!
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(20)

where Pµ⌫
i := ⌘µ⌫

�vµ
i v⌫

i is a projector into the rest frame
of the i’th body, |b| = �

p
bµbµ (the impact parameter is

spacelike) and

|b̃|1,2 :=
q

�b̃µPµ⌫
1,2 b̃⌫ =

q
|b|2 + (�2 � 1)u2

2,1 (21)

are the lengths of the shifted impact parameter b̃µ (16)
in the two rest frames. The second integral in eq. (18) is

4⇡
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q
��(q · v1)

e�iq·b̃

q2

qµq⌫

q · v2 q · ⇢
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1 v2 · K1 · ⇢ � 2(v2 · K1)(µ(⇢ · K1)⌫)

(�2 � 1) (⇢ · v1)2 |b|2 |b̃|2 |b̃|1

,

(22)

where we have introduced the symmetric tensor

Kµ⌫
i := Pµ⌫

i |b̃|
2
i + (Pi · b̃)µ(Pi · b̃)⌫ , (23)

with the property that Kµ⌫
i vi,⌫ = Kµ⌫

i b̃⌫ = 0. Both
integrals are derived in the Supplementary Material; one
generalizes to higher powers of qµ in the numerators by
taking derivatives with respect to b̃µ.

Results. — The 2PM waveform takes the schematic
form
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m1m2
=
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2s+1
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"
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1 +
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#
+ (1 $ 2) , (24)

where the coe�cients ↵(s)
i , �(s)

i , provided in the ancillary
file, are associated with the N - and M-type contribu-
tions in Eq. (18) respectively; they are functions of ui,
bµ, vµ

i , ⇢µ, and S
µ⌫
i and bi-linear in ✏µ. The waveform f

is invariant under the SUSY transformations in Eq. (8)
to quadratic order in spin regardless of the values of CE,i.
To see this we expand the waveform at all PM orders in
powers of spin:

f = f0+
2X

i=1

Si,µ⌫fµ⌫
i +

2X

i,j=1

Si,µ⌫Sj,⇢�fµ⌫;⇢�
ij + O(S3) ,

(25)
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where the non-spinning result involves only Nµ and Mµ⌫ .
We present full expressions for N and M in the ancillary
file attached to the arXiv submission of this Letter.

To lowest order in qµ, the first integral in eq. (18) is
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where Pµ⌫
i := ⌘µ⌫

� vµ
i v⌫

i is a projector into the rest
frame of the i’th body; b2 = |b|2 = �bµbµ (the impact
parameter is spacelike) and
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1,2 b̃⌫ =
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are the lengths of the shifted impact parameter b̃µ (16)
in the two rest frames. The second integral in eq. (18) is
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where we have introduced the symmetric tensor

Kµ⌫
i := Pµ⌫

i |b̃|
2
i + (Pi · b̃)µ(Pi · b̃)⌫ , (23)

with the property that Kµ⌫
i vi,⌫ = Kµ⌫

i b̃⌫ = 0. Both inte-
grals are derived in the Supplementary Material; versions
with higher powers of qµ in the numerators are derived
by taking derivatives with respect to b̃µ.

Results. — The 2PM waveform takes the schematic
form
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where the coe�cients ↵(s)
i , �(s)

i are associated with the
N - and M-type contributions in Eq. (18) respectively;
they are functions of b, ui, vi, ⇢ and Si and bi-linear
in ✏. In the Kerr-BH case (CE,i = 0) the waveform f
is invariant under the SUSY transformations in Eq. (8):
For this we expand the waveform at any PM order in
powers of spin

f = f0+
2X

i=1

Si,µ⌫fµ⌫
i +

2X

i,j=1

Si,µ⌫Sj,⇢� + O(S3) (25)

where SUSY links higher-spin terms to lower ones
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= vi,µ f [µ⌫]

i ,
1

4

@fµ⌫
i

@bj,⇢
= vj,� fµ⌫;[⇢�]

ij . (26)

To illustrate the waveform we consider the gravita-
tional wave memory �f(x̂) := f(+1, x̂) � f(�1, x̂).
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FIG. 2. Total radiated angular momenta for the scattering of
two Kerr-BHs with v = 0.2 as a function of the angle between
the total initial spins a3 = a1 + a2 and b (with ai · vi =
0) for a range of ratios |a3|/|b|. We show the normalized
ratio of angular momenta emitted orthogonal to the b,v plane
(left plot) and in the b direction (right plot), normalization
is w.r.t. angular momentum emitted in the spin-less.

The constant spin tensors are decomposed in terms of
the Pauli-Lubanski vectors aµ

i as S
µ⌫
i = ✏µ⌫

⇢�v⇢
i a�

i ; they
satisfy ai · vi = 0. In the aligned-spin case where
ai · b = ai · vj = 0, i.e. the spin vectors are orthogo-

nal to the plane of scattering. Writing li =
p

�a2
i the

wave memory is proportional to the non-spinning result:
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where we have introduced aµ
3 = aµ

1 + aµ
2 with length

|a3|. For two Kerr black holes (CE,i = 0) with equal-
and-opposite spins (aµ

1 = �aµ
2 ) the result is the same as

the non-spinning; we observe this also when the spins are
mis-aligned to the plane of scattering.

There is also a 1PM (non-radiating) contribution to
the waveform consisting of single-graviton emission from
either massive body:

f (1)(x̂) =
2m1

⇢ · v1
(✏ · v1)

2 +
2m2

⇢ · v2
(✏ · v2)

2 . (28)

At 1PM order there is manifestly no dependence on either
the spins S

µ⌫
i or impact parameters bµ

i , so the SUSY
identities in Eq. (26) are trivially satisfied.

Finally, the wave memory and 1PM part of the wave-
form contribute to the total radiated angular momentum
J rad

ij . Using three-dimensional Cartesian basis vectors êi,
we choose a frame of reference with the initial velocities
vµ

i restricted to the t–x plane; b = b ê2 is orthogonal to
these. Then we find two non-zero components of J rad

ij :

FIG. 2. Total radiated angular momenta for the scattering of
two Kerr-BHs with v = 0.2 as a function of the angle between
the total initial spins a3 = a1 + a2 and b (with ai · vi =
0) for a range of ratios |a3|/|b|. We show the normalized
ratio of angular momenta emitted orthogonal to the b,v plane
(left plot) and in the b direction (right plot), normalization
is w.r.t. angular momentum emitted in the spinless case.

where fµ⌫
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and these identities are satisfied by the waveform (24).
To illustrate the waveform we consider the gravita-

tional wave memory �f(x̂) := f(+1, x̂) � f(�1, x̂).
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result:

�f (2) =

 
1 +

2v|a3|

b(1 + v2)
+

|a3|
2

|b|2
�

2X

i=1

CE,i|ai|
2

|b|2

!
�f (2)

S=0,

�f (2)
S=0

m1m2
=

4(2�2
� 1)✏ · v1(2b · ✏ ⇢ · v1 � b · ⇢ ✏ · v1)

|b|2
p

�2 � 1(⇢ · v1)2

+ (1 $ 2) , (27)

where aµ
3 = aµ

1 +aµ
2 . For two Kerr black holes (CE,i = 0)

with equal-and-opposite spins (aµ
1 = �aµ

2 ) we see that

�f (2) = �f (2)
S=0, which we observe also when the spins

are mis-aligned to the plane of scattering.
There is also a 1PM (non-radiating) contribution to

the waveform consisting of single-graviton emission from
either massive body:

f (1)(x̂) =
2m1

⇢ · v1
(✏ · v1)

2 +
2m2

⇢ · v2
(✏ · v2)

2 . (28)

At 1PM order there is manifestly no dependence on either
the spins S

µ⌫
i or impact parameters bµ

i , so the SUSY
identities in Eq. (26) are trivially satisfied.

Finally, the wave memory and 1PM part of the wave-
form contribute to the total radiated angular momentum

5

FIG. 2. Plots of the wave memories �f+,⇥ for v = 0.2. For a
visualisation of the complete waveforms as they evolve with
retarded time u see f+(u, ✓, �)|v=0.2 and f⇥(u, ✓, �)|v=0.2.

beauty of our result (26) lies in the fact that the memo-
ries only receive contributions from the second term, and
read

�f+,⇥ = �2G2m1m2

bi
N

i
+,⇥

b2
+ O(G3) . (28)

Diagrammatically they exclusively emerge from diagram
(b) of Fig. 1. So they are manifestly insensitive to grav-
itational self-interactions — this was also pointed out in
Ref. [22].

Radiated Energy and Angular Momentum. — One
may now use our result for the waveform (26) to com-
pute the total radiated momentum and angular momen-
tum. Expressions for these quantities in terms of the
asymptotic waveform are given in Refs. [22, 33]:

Pµ
rad

=
1

32⇡G

Z
dud�[ḟij ]

2⇢µ , (29)

J rad

ij =
1

8⇡G

Z
dud�

✓
fk[iḟj]k �

1

2
x[i@j]fklḟkl

◆
, (30)

where ḟij := @ufij and d� = sin ✓d✓d� is the unit sphere
measure.

We first concentrate on J rad

ij as it contributes at lead-
ing order O(G2) and was recently obtained in the center-

of-mass frame [22]. The static nature of f (1)

ij (27) allows
one to trivially perform the u-integration and express the
radiated angular momentum in terms of the wave mem-
ories �f+,⇥. Inserting the basis of polarization tensors

(15) (and using f (1)

⇥ = 0) gives

J rad

xy =
1

8⇡

Z
d�

h sin �

sin ✓
f (1)

+
�f⇥ �

1

2
cos � @✓f

(1)

+
�f+

i

+ O(G3) . (31)

The spherical integral is elementary and yields

J rad

xy

J init
xy

=
4G2m1m2

b2

(2�2
� 1)p

�2 � 1
I(v) + O(G3) , (32a)

I(v) = �
8

3
+

1

v2
+

(3v2
� 1)

v3
arctanh(v) , (32b)

where we have normalized our result with respect to the
initial angular momentum in the rest frame of black hole

1: J init

xy = m2|v2||b| = m2�vb. We find perfect agree-
ment with Ref. [22].3

Similarly, Pµ
rad

of Eq. (29) should reproduce the recent
result of Ref. [30] contributing at O(G3). So far we have
only been able to perform the integral in the PN expan-
sion recovering the result of Ref. [30] to order v6. Yet it is
straightforward to obtain di↵erential quantities derived
from the integrand of Eq. (29). The di↵erential power
spectrum (total energy radiated per unit frequency) as
well as the total energy radiated per unit solid angle are
collected in the supplementary material to this letter.
These results go well beyond Kovacs and Thorne [4] and
may be expanded to any desired order in v.

Conclusions. — Searching for GWs from scattering
events over the full range of impact velocities requires
precision predictions in the PM approximation. While
the potential and radiation of bound systems was calcu-
lated to high PN order [34] (see Refs. [35] for spinning
bodies), a resummation of PN results in the strong-field
and fast-motion regimes is essential for building accu-
rate waveform models [8]. The PM resummation is one
promising recent attempt [21, 36, 37].

Our results provide a stepping stone for higher-order
calculations, where a repertoire of advanced integration
techniques can be put to use [17, 24, 30, 38]. In fact the
3PM integrand has essentially been presented in Ref. [29].
The present challenge lies in the multi-scale integrals,
which despite their tree-level structure are of higher loop
three-momentum type as the worldline only preserves en-
ergy. Generalizations to spin and finite-size e↵ects are
possible and lead to the same families of integrations at
2PM. Also the extensions to bound systems using map-
pings between bound and unbound orbits [24, 39] would
be of great utility.
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SUPPLEMENTAL MATERIAL

Integrals. — We begin with the simpler integral in
Eq. (22), corresponding to diagram (b) in Fig. 1. Work-
ing in Cartesian components with b = (b1, b2, b3) (in the

main text we replace b ! eb) and q = (q1, q2, q3) it is
su�cient to show

Z

q
eiq·b q2

q2(q1 � i✏)
= �

b2

4⇡(b2 � b2

1
)

✓
1 +

b1

|b|

◆
. (33)

3 As the two frames are related by a boost in the x direction this
implies that Jrad

0y = 0 in both frames.

Our NLO result reproduces [Kovacs,Thorne ’75] obtained with traditional
GR techniques in 4 long papers
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FIG. 1. The four diagram topologies contributing to the 2PM
Bremsstrahlung up to O(S2), where !i = k ·vi by energy con-
servation at the worldline vertices. For diagrams (b)–(d) we
also include the corresponding flipped topologies with massive
bodies 1$2; for diagram (d) (which includes the propagating
fermion  0µ

2 ) we also include the graph with the arrow re-
versed.

where ��(!) := (2⇡)�(!) and we have used S
µ⌫ =

�2i ̄[µ ⌫]. The other worldline-based vertices required
for the 2PM Bremsstrahlung all appear in Fig. 1: the
two-point interaction between a graviton and a single zµ

mode in (b), the two-graviton emission vertex in (c), and
the two-point interaction between a graviton and  0µ in
(d). Full expressions for these vertices are provided in
the Supplementary Material.

Waveform from WQFT. — To describe the
Bremsstrahlung at 2PM order including spin e↵ects we
compute the expectation value k2

hhµ⌫(k)iWQFT. This
requires us to compute four kinds of Feynman graphs,
illustrated in Fig. 1. Explicit expressions for the first
two graphs (a) and (b) were given in the non-spinning
case [16]; these are now modified by terms up to O(S2).
Graphs (c) and (d) are unique to the spinning case — for
the latter we sum over both routings of the fermion line.

From this result we seek to obtain the waveform in
spacetime in the wave zone, where the distance to the
observer |x| = r is large compared to all other lengths.
Following Ref. [16] the gauge-invariant frequency-domain
waveform 4G Sij(kµ = ⌦ (1, x̂)) is extracted from the
WQFT via

Sµ⌫(k) =
2


k2

hhµ⌫(k)iWQFT , (12)

where ⌦ is the GW frequency and x̂ = x/r points to-
wards the observer. However, it is advantageous to study
the time-domain waveform f(u, x̂) which is given by a
Fourier transform:

✏µ⌫hµ⌫ =
f(u, x̂)

r
=

4G

r

Z

⌦
e�ik·x ✏µ⌫ Sµ⌫(k)

���
kµ=⌦ ⇢µ

,

(13)

where we have contracted with a polarization tensor
✏µ⌫ = 1

2✏
µ✏⌫ ,

R
⌦ :=

R 1
�1

d⌦
2⇡ , ⇢µ = (1, x̂) and, in a PM

decomposition f =
P

n Gnf (n), we seek the 2PM compo-
nent f (2). Note that k · x = ⌦(t � r) yields the retarded
time u = t � r, and ✏ · ✏ = ✏ · ⇢ = 0.

Integration. — Our integration procedure follows
closely that used for the non-spinning calculation in
Ref. [16], the main di↵erence being that we maintain
four-dimensional Lorentz covariance. Each diagram con-
tributing to k2

hhµ⌫(k)iWQFT carries the overall factor

µ1,2(k) = ei(q1·b1+q2·b2)��(q1 · v1)�
�(q2 · v2)�

�(k � q1 � q2) .
(14)

We integrate over qi, the momentum emitted from each
worldline (see Fig. 1). When we also integrate over ⌦ —
as in Eq. (13) — the full integration measure becomes

Z

⌦,q1,q2

µ1,2(k)e�ik·x =
1

⇢ · v2

Z

q1

��(q1 · v1)e
�iq1·b̃ , (15)

where
R

qi
:=

R d4qi

(2⇡)4 ; the delta function constraints give

⌦ = q1·v2

⇢·v2

and q2 = k�q1. The shifted impact parameter

b̃µ is

b̃µ = b̃µ
2 � b̃µ

1 , b̃µ
i = bµ

i + uiv
µ
i , (16)

which extends the original impact parameter bµ = bµ
2 �

bµ
1 along the undeflected trajectories of the two bodies.

Finally, ui is the retarded time in the i’th rest frame:

ui =
⇢ · (x � bi)

⇢ · vi
, (17)

This implies ⇢ · b̃i = ⇢ · x = u, so ⇢ · b̃ = 0.
Rewriting the integral measure as in Eq. (15) is con-

venient for performing the integrals of diagrams (b)–(d),
in the rest frame of body 1. The mirrored counterparts
to these diagrams are easily recovered after integration
using the 1 $ 2 symmetry of the waveform. To inte-
grate diagram (a) we insert the partial-fraction identity
q�2
1 q�2

2 = �q�2
1 (2k ·q1)�1

�q�2
2 (2k ·q2)�1 (which is valid

for k on-shell) and focus on the first term.
The full 2PM waveform is then written schematically

as (dropping the subscript on q1)GM: fix margin
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q
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e�iq·b̃

q2

✓
N (q)

q · v2 + i✏
+

M(q)

(q · v2)(q · ⇢)

◆
,

+ (1 $ 2) , (18)

the N - and M-contributions corresponding to diagrams
(b)–(d) and (a) in Fig. 1 respectively. The numerators
N (q) and M(q) have a uniform power counting in q for
each spin order:

N (q) = Nµqµ + Nµ⌫qµq⌫ + Nµ⌫⇢q
µq⌫q⇢ , (19)

M(q) = Mµ⌫qµq⌫ + Mµ⌫⇢q
µq⌫q⇢ + Mµ⌫⇢�qµq⌫q⇢q� ,

FIG. 1. The four diagram topologies contributing to the 2PM
Bremsstrahlung up to O(S2), where !i = k ·vi by energy con-
servation at the worldline vertices. For diagrams (b)–(d) we
also include the corresponding flipped topologies with massive
bodies 1$2; for diagram (d) (which includes the propagating
fermion  0µ

2 ) we also include the graph with the arrow re-
versed.

Next we consider the worldline vertices. The simplest
of these is the single-graviton emission vertex:

hµ⌫(k)

= �i
m

2
eik·b��(k · v)

✓
vµv⌫ + ik⇢S
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+
1

2
k⇢k�S
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⌫� +
CE
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◆
,

(11)

where ��(!) := (2⇡)�(!) and we have used S
µ⌫ =

�2i ̄[µ ⌫]. The other worldline-based vertices required
for the 2PM Bremsstrahlung all appear in Fig. 1: the
two-point interaction between a graviton and a single zµ

mode in (b), the two-graviton emission vertex in (c), and
the two-point interaction between a graviton and  0µ in
(d). Full expressions for these vertices are provided in
the Supplementary Material.

Waveform from WQFT. — To describe the
Bremsstrahlung at 2PM order including spin e↵ects we
compute the expectation value k2

hhµ⌫(k)iWQFT. This
requires us to compute four kinds of Feynman graphs,
illustrated in Fig. 1. Explicit expressions for the first
two graphs (a) and (b) were given in the non-spinning
case [16]; these are now modified by terms up to O(S2).
Graphs (c) and (d) are unique to the spinning case — for
the latter we sum over both routings of the fermion line.

From this result we seek to obtain the waveform in
spacetime in the wave zone, where the distance to the
observer |x| = r is large compared to all other lengths.
Following Ref. [16] the gauge-invariant frequency-domain
waveform 4G ✏µ⌫Sµ⌫(kµ = ⌦ (1, x̂)) is extracted from the
WQFT via

Sµ⌫(k) =
2


k2

hhµ⌫(k)iWQFT , (12)

where ⌦ is the GW frequency and x̂ = x/r points to-
wards the observer. However, it is advantageous to study
the time-domain waveform f(u, x̂) which is given by a
Fourier transform:

✏µ⌫hµ⌫ =
f(u, x̂)

r
=

4G

r

Z
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.

(13)
We have contracted with a polarization tensor ✏µ⌫ =
1
2✏

µ✏⌫ ,
R
⌦ :=

R 1
�1

d⌦
2⇡ , and ⇢µ = (1, x̂); in a PM decom-

position f =
P

n Gnf (n) we seek the 2PM component
f (2). Note that k · x = ⌦(t � r) yields the retarded time
u = t � r, and ✏ · ✏ = ✏ · ⇢ = 0.

Integration. — Our integration procedure follows
closely that used for the non-spinning calculation in
Ref. [16], the main di↵erence being that we maintain
four-dimensional Lorentz covariance. Each diagram con-
tributing to k2

hhµ⌫(k)iWQFT carries the overall factor

µ1,2(k) = ei(q1·b1+q2·b2)��(q1 · v1)�
�(q2 · v2)�

�(k � q1 � q2) .
(14)

We integrate over qi, the momentum emitted from each
worldline (see Fig. 1). When we also integrate over ⌦ —
as in Eq. (13) — the full integration measure becomes

Z

⌦,q1,q2

µ1,2(k)e�ik·x =
1

⇢ · v2

Z

q1

��(q1 · v1)e
�iq1·b̃ , (15)

where
R

qi
:=

R d4qi

(2⇡)4 ; the delta function constraints give

⌦ = q1·v2

⇢·v2

and q2 = k�q1. The shifted impact parameter,

b̃µ = b̃µ
2 � b̃µ

1 , b̃µ
i = bµ

i + uiv
µ
i , (16)

extends the original impact parameter bµ = bµ
2 �bµ

1 along
the undeflected trajectories of the two bodies. Finally, ui

is the retarded time in the i’th rest frame:

ui =
⇢ · (x � bi)

⇢ · vi
, (17)

This implies ⇢ · b̃i = ⇢ · x = u, so ⇢ · b̃ = 0.
Rewriting the integral measure as in Eq. (15) is con-

venient for performing the integrals of diagrams (b)–(d),
in the rest frame of body 1. The mirrored counterparts
to these diagrams are easily recovered after integration
using the 1 $ 2 symmetry of the waveform. To inte-
grate diagram (a) we insert the partial-fraction identity
q�2
1 q�2

2 = �q�2
1 (2k ·q1)�1

�q�2
2 (2k ·q2)�1 (which is valid

for k on-shell) and focus on the first term.
The full 2PM waveform is then written schematically

as (dropping the subscript on q1)
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the N - and M-contributions corresponding to diagrams
(b)–(d) and (a) in Fig. 1 respectively. The numerators
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FIG. 1. The four diagram topologies contributing to the 2PM
Bremsstrahlung up to O(S

2
), where !i = k ·vi by energy con-

servation at the worldline vertices. For diagrams (b)–(d) we
also include the corresponding flipped topologies with massive
bodies 1$2; for diagram (d) (which includes the propagating
fermion  

0µ
2 ) we also include the graph with the arrow re-

versed.

where ��(!) := (2⇡)�(!) and we have used Sµ⌫ =
�2i ̄[µ ⌫]. The other worldline-based vertices required
for the 2PM Bremsstrahlung all appear in Fig. 1: the
two-point interaction between a graviton and a single zµ

mode in (b), the two-graviton emission vertex in (c), and
the two-point interaction between a graviton and  0µ

in
(d). Full expressions for these vertices are provided in
the Supplementary Material.

Waveform from WQFT. — To describe the
Bremsstrahlung at 2PM order including spin e↵ects we
compute the expectation value k2hhµ⌫(k)iWQFT. This
requires us to compute four kinds of Feynman graphs,
illustrated in Fig. 1. Explicit expressions for the first
two graphs (a) and (b) were given in the non-spinning
case [16]; these are now modified by terms up to O(S2).
Graphs (c) and (d) are unique to the spinning case — for
the latter we sum over both routings of the fermion line.

From this result we seek to obtain the waveform in
spacetime in the wave zone, where the distance to the
observer |x| = r is large compared to all other lengths.
Following Ref. [16] the gauge-invariant frequency-domain
waveform 4G Sij(kµ = ⌦ (1, x̂)) is extracted from the
WQFT via

Sµ⌫(k) =
2


k

2
hhµ⌫(k)iWQFT , (12)

where ⌦ is the GW frequency and x̂ = x/r points to-
wards the observer. However, it is advantageous to study
the time-domain waveform f(u, x̂) which is given by a
Fourier transform:

✏
µ⌫

hµ⌫ =
f(u, x̂)
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where we have contracted with a polarization tensor
✏µ⌫ =

1
2✏µ✏⌫ ,

R
⌦ :=

R 1
�1

d⌦
2⇡ , ⇢µ = (1, x̂) and, in a PM

decomposition f =
P

n Gnf (n), we seek the 2PM compo-
nent f (2). Note that k · x = ⌦(t � r) yields the retarded
time u = t � r, and ✏ · ✏ = ✏ · ⇢ = 0.

Integration. — Our integration procedure follows
closely that used for the non-spinning calculation in
Ref. [16], the main di↵erence being that we maintain
four-dimensional Lorentz covariance. Each diagram con-
tributing to k2hhµ⌫(k)iWQFT carries the overall factor

µ1,2(k) = e
i(q1·b1+q2·b2)��(q1 · v1)��(q2 · v2)��(k � q1 � q2) .

(14)
We integrate over qi, the momentum emitted from each
worldline (see Fig. 1). When we also integrate over ⌦ —
as in Eq. (13) — the full integration measure becomes
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Finally, ui is the retarded time in the i’th rest frame:

ui =
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, (17)

This implies ⇢ · b̃i = ⇢ · x = u, so ⇢ · b̃ = 0.
Rewriting the integral measure as in Eq. (15) is con-

venient for performing the integrals of diagrams (b)–(d),
in the rest frame of body 1. The mirrored counterparts
to these diagrams are easily recovered after integration
using the 1 $ 2 symmetry of the waveform. To inte-
grate diagram (a) we insert the partial-fraction identity
q�2
1 q�2

2 = �q�2
1 (2k ·q1)�1 �q�2

2 (2k ·q2)�1 (which is valid
for k on-shell) and focus on the first term.

The full 2PM waveform is then written schematically
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the N - and M-contributions corresponding to diagrams
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servation at the worldline vertices. For diagrams (b)–(d) we
also include the corresponding flipped topologies with massive
bodies 1$2; for diagram (d) (which includes the propagating
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Next we consider the worldline vertices. The simplest
of these is the single-graviton emission vertex:
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where ��(!) := (2⇡)�(!) and we have used Sµ⌫ =
�2i ̄[µ ⌫]. The other worldline-based vertices required
for the 2PM Bremsstrahlung all appear in Fig. 1: the
two-point interaction between a graviton and a single zµ

mode in (b), the two-graviton emission vertex in (c), and
the two-point interaction between a graviton and  0µ

in
(d). Full expressions for these vertices are provided in
the Supplementary Material.

Waveform from WQFT. — To describe the
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µ
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µ
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the undeflected trajectories of the two bodies. Finally, ui

is the retarded time in the i’th rest frame:
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This implies ⇢ · b̃i = ⇢ · x = u, so ⇢ · b̃ = 0.
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1 q�2
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◆
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+ (1 $ 2) , (18)

the N - and M-contributions corresponding to diagrams
(b)–(d) and (a) in Fig. 1 respectively. The numerators
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servation at the worldline vertices. All three diagrams have
the integral measure in Eq. (16); in the rest frame of black
hole 1 diagram (a) does not contribute as soon as the outgo-
ing graviton is contracted with a purely spatial polarization
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these waveforms we furthermore reproduce Damour’s re-
cent result for the total radiated angular momentum [22]
at 2PM order. Our results also complement the recent
result of the total radiated momentum at leading order in
G (3PM) established with amplitude techniques [30]. We
comment on how to achieve this result from our methods.
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ing on trajectories xµ
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with 2 = 32⇡G the gravitational coupling; we have sup-
pressed the ghost contributions in Eq. (1) as they are ir-
relevant in the classical setting. We work in mostly minus
signature, ⌘µ⌫ = diag(1, �1, �1, �1), and set c = ~ = 1.

Correlation functions in the WQFT hO(h, {xi})iWQFT

result from an insertion of the operator O in the path
integral and dividing by ZWQFT. Moving to momentum
space for the graviton hµ⌫(k) and energy space for the
fluctuations zµ(!) we have the retarded propagators
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The energy ! is also taken as outgoing. One also has the
standard bulk graviton vertices, of which we shall need
only the three-graviton vertex — see e.g. Ref. [31].

To determine the Bremsstrahlung of two travers-
ing black holes we compute the expectation value
k2

hhµ⌫(k)iWQFT. At leading (2PM) order there are three
diagrams contributing, cp. Fig. 1. We integrate over the
momenta or energies of internal gravitons or fluctuations
respectively; lack of three-momentum conservation at the
worldline vertices leaves unresolved integrals for the tree-
level diagrams.

Diagram (a) of Fig. 1 then takes the form1
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1 In principle we should also contract with Pµ⌫;⇢� for an outgo-
ing graviton line; however as the polarization tensors eµ⌫

+,⇥ are
traceless we find it unnecessary.
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i ẋ⌫
i

i
,

where SEH+Sgf is the gauge-fixed Einstein-Hilbert action

SEH + Sgf =

Z
d4x

�
�

2

2

p
�gR + (@⌫hµ⌫

�
1

2
@µh⌫

⌫)2
�

,

(2)

with 2 = 32⇡G the gravitational coupling; we have sup-
pressed the ghost contributions in Eq. (1) as they are ir-
relevant in the classical setting. We work in mostly minus
signature, ⌘µ⌫ = diag(1, �1, �1, �1), and set c = ~ = 1.

Correlation functions in the WQFT hO(h, {xi})iWQFT

result from an insertion of the operator O in the path
integral and dividing by ZWQFT. Moving to momentum
space for the graviton hµ⌫(k) and energy space for the
fluctuations zµ(!) we have the retarded propagators

2

µ,⌫

��
!1

k
q2 �

1

2

(a)

µ,⌫

!2
�� k

q1 �

2

1

(b)

µ,⌫k

q1 �

q2 �

1

2

(c)

FIG. 1. The three diagrams contributing to the
Bremsstrahlung at 2PM order, where !i = k·vi by energy con-
servation at the worldline vertices. All three diagrams have
the integral measure in Eq. (16); in the rest frame of black
hole 1 diagram (a) does not contribute as soon as the outgo-
ing graviton is contracted with a purely spatial polarization
tensor.

these waveforms we furthermore reproduce Damour’s re-
cent result for the total radiated angular momentum [22]
at 2PM order. Our results also complement the recent
result of the total radiated momentum at leading order in
G (3PM) established with amplitude techniques [30]. We
comment on how to achieve this result from our methods.

Worldline Quantum Field Theory. — The classical
gravitational scattering of two massive objects mi mov-
ing on trajectories xµ

i (⌧i) = bµ
i +vµ

i ⌧i+zµ
i (⌧i) is described

by the worldline quantum field theory (WQFT) with par-
tition function [29]

ZWQFT := const ⇥

Z
D[hµ⌫ ]

Z 2Y

i=1

D[zi] e
i(SEH+Sgf ) (1)

exp
h
�i

2X

i=1

Z 1

�1
d⌧i

mi

2
[⌘µ⌫ + hµ⌫(x)]ẋµ
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i ẋ⌫
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relevant in the classical setting. We work in mostly minus
signature, ⌘µ⌫ = diag(1, �1, �1, �1), and set c = ~ = 1.

Correlation functions in the WQFT hO(h, {xi})iWQFT

result from an insertion of the operator O in the path
integral and dividing by ZWQFT. Moving to momentum
space for the graviton hµ⌫(k) and energy space for the
fluctuations zµ(!) we have the retarded propagators
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The energy ! is also taken as outgoing. One also has the
standard bulk graviton vertices, of which we shall need
only the three-graviton vertex — see e.g. Ref. [31].

To determine the Bremsstrahlung of two travers-
ing black holes we compute the expectation value
k2

hhµ⌫(k)iWQFT. At leading (2PM) order there are three
diagrams contributing, cp. Fig. 1. We integrate over the
momenta or energies of internal gravitons or fluctuations
respectively; lack of three-momentum conservation at the
worldline vertices leaves unresolved integrals for the tree-
level diagrams.

Diagram (a) of Fig. 1 then takes the form1
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1 In principle we should also contract with Pµ⌫;⇢� for an outgo-
ing graviton line; however as the polarization tensors eµ⌫

+,⇥ are
traceless we find it unnecessary.
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The energy ! is also taken as outgoing. One also has the
standard bulk graviton vertices, of which we shall need
only the three-graviton vertex — see e.g. Ref. [31].

To determine the Bremsstrahlung of two travers-
ing black holes we compute the expectation value
k2

hhµ⌫(k)iWQFT. At leading (2PM) order there are three
diagrams contributing, cp. Fig. 1. We integrate over the
momenta or energies of internal gravitons or fluctuations
respectively; lack of three-momentum conservation at the
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N (q) and M(q) have a uniform power counting in q for
each spin order:

N (q) = Nµqµ + Nµ⌫qµq⌫ + Nµ⌫⇢q
µq⌫q⇢ , (19)

M(q) = Mµ⌫qµq⌫ + Mµ⌫⇢q
µq⌫q⇢ + Mµ⌫⇢�qµq⌫q⇢q� ,

and the non-spinning result involves only Nµ and Mµ⌫ .
We present full expressions for N and M in the ancillary
file attached to the arXiv submission of this Letter.

To lowest order in qµ, the first integral in eq. (18) is
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where Pµ⌫
i := ⌘µ⌫

�vµ
i v⌫

i is a projector into the rest frame
of the i’th body, |b| = �
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are the lengths of the shifted impact parameter b̃µ (16)
in the two rest frames. The second integral in eq. (18) is
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where we have introduced the symmetric tensor

Kµ⌫
i := Pµ⌫

i |b̃|
2
i + (Pi · b̃)µ(Pi · b̃)⌫ , (23)

with the property that Kµ⌫
i vi,⌫ = Kµ⌫

i b̃⌫ = 0. Both
integrals are derived in the Supplementary Material; one
generalizes to higher powers of qµ in the numerators by
taking derivatives with respect to b̃µ.

Results. — The 2PM waveform takes the schematic
form
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where the coe�cients ↵(s)
i , �(s)

i , provided in the ancillary
file, are associated with the N - and M-type contribu-
tions in Eq. (18) respectively; they are functions of ui,
bµ, vµ

i , ⇢µ, and S
µ⌫
i and bi-linear in ✏µ. The waveform f

is invariant under the SUSY transformations in Eq. (8)
to quadratic order in spin regardless of the values of CE,i.
To see this we expand the waveform at all PM orders in
powers of spin:

f = f0+
2X

i=1

Si,µ⌫fµ⌫
i +
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(25)
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where the non-spinning result involves only Nµ and Mµ⌫ .
We present full expressions for N and M in the ancillary
file attached to the arXiv submission of this Letter.

To lowest order in qµ, the first integral in eq. (18) is

4⇡

Z

q
��(q · v1)

e�iq·b̃

q2

qµ

q · v2 + i✏

=
Pµ⌫

1 v2,⌫

(�2 � 1)|b̃|1

�
bµ

b2

 
1p

�2 � 1
+

u2

|b̃|1

!
,

(20)

where Pµ⌫
i := ⌘µ⌫

� vµ
i v⌫

i is a projector into the rest
frame of the i’th body; b2 = |b|2 = �bµbµ (the impact
parameter is spacelike) and

|b̃|1,2 :=
q

�b̃µPµ⌫
1,2 b̃⌫ =

q
b2 + (�2 � 1)u2

2,1 (21)

are the lengths of the shifted impact parameter b̃µ (16)
in the two rest frames. The second integral in eq. (18) is

4⇡

Z

q
��(q · v1)

e�iq·b̃

q2

qµq⌫

q · v2 q · ⇢

=
Kµ⌫

1 v2 · K1 · ⇢ � 2(v2 · K1)(µ(⇢ · K1)⌫)

(�2 � 1) (⇢ · v1)2 b2 |b̃|2 |b̃|1

,

(22)

where we have introduced the symmetric tensor

Kµ⌫
i := Pµ⌫

i |b̃|
2
i + (Pi · b̃)µ(Pi · b̃)⌫ , (23)

with the property that Kµ⌫
i vi,⌫ = Kµ⌫

i b̃⌫ = 0. Both inte-
grals are derived in the Supplementary Material; versions
with higher powers of qµ in the numerators are derived
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where the coe�cients ↵(s)
i , �(s)

i are associated with the
N - and M-type contributions in Eq. (18) respectively;
they are functions of b, ui, vi, ⇢ and Si and bi-linear
in ✏. In the Kerr-BH case (CE,i = 0) the waveform f
is invariant under the SUSY transformations in Eq. (8):
For this we expand the waveform at any PM order in
powers of spin
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i +
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where SUSY links higher-spin terms to lower ones
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To illustrate the waveform we consider the gravita-
tional wave memory �f(x̂) := f(+1, x̂) � f(�1, x̂).
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FIG. 2. Total radiated angular momenta for the scattering of
two Kerr-BHs with v = 0.2 as a function of the angle between
the total initial spins a3 = a1 + a2 and b (with ai · vi =
0) for a range of ratios |a3|/|b|. We show the normalized
ratio of angular momenta emitted orthogonal to the b,v plane
(left plot) and in the b direction (right plot), normalization
is w.r.t. angular momentum emitted in the spin-less.

The constant spin tensors are decomposed in terms of
the Pauli-Lubanski vectors aµ

i as S
µ⌫
i = ✏µ⌫

⇢�v⇢
i a�

i ; they
satisfy ai · vi = 0. In the aligned-spin case where
ai · b = ai · vj = 0, i.e. the spin vectors are orthogo-

nal to the plane of scattering. Writing li =
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wave memory is proportional to the non-spinning result:
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where we have introduced aµ
3 = aµ

1 + aµ
2 with length

|a3|. For two Kerr black holes (CE,i = 0) with equal-
and-opposite spins (aµ

1 = �aµ
2 ) the result is the same as

the non-spinning; we observe this also when the spins are
mis-aligned to the plane of scattering.

There is also a 1PM (non-radiating) contribution to
the waveform consisting of single-graviton emission from
either massive body:

f (1)(x̂) =
2m1

⇢ · v1
(✏ · v1)

2 +
2m2

⇢ · v2
(✏ · v2)

2 . (28)

At 1PM order there is manifestly no dependence on either
the spins S

µ⌫
i or impact parameters bµ

i , so the SUSY
identities in Eq. (26) are trivially satisfied.

Finally, the wave memory and 1PM part of the wave-
form contribute to the total radiated angular momentum
J rad

ij . Using three-dimensional Cartesian basis vectors êi,
we choose a frame of reference with the initial velocities
vµ

i restricted to the t–x plane; b = b ê2 is orthogonal to
these. Then we find two non-zero components of J rad

ij :

FIG. 2. Total radiated angular momenta for the scattering of
two Kerr-BHs with v = 0.2 as a function of the angle between
the total initial spins a3 = a1 + a2 and b (with ai · vi =
0) for a range of ratios |a3|/|b|. We show the normalized
ratio of angular momenta emitted orthogonal to the b,v plane
(left plot) and in the b direction (right plot), normalization
is w.r.t. angular momentum emitted in the spinless case.
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and these identities are satisfied by the waveform (24).
To illustrate the waveform we consider the gravita-
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where the non-spinning result involves only Nµ and Mµ⌫ .
We present full expressions for N and M in the ancillary
file attached to the arXiv submission of this Letter.

To lowest order in qµ, the first integral in eq. (18) is

4⇡

Z

q
��(q · v1)

e�iq·b̃

q2

qµ

q · v2 + i✏

=
Pµ⌫

1 v2,⌫

(�2 � 1)|b̃|1

�
bµ

b2

 
1p

�2 � 1
+

u2

|b̃|1

!
,

(20)

where Pµ⌫
i := ⌘µ⌫

� vµ
i v⌫

i is a projector into the rest
frame of the i’th body; b2 = |b|2 = �bµbµ (the impact
parameter is spacelike) and

|b̃|1,2 :=
q

�b̃µPµ⌫
1,2 b̃⌫ =

q
b2 + (�2 � 1)u2

2,1 (21)

are the lengths of the shifted impact parameter b̃µ (16)
in the two rest frames. The second integral in eq. (18) is

4⇡

Z

q
��(q · v1)

e�iq·b̃

q2

qµq⌫

q · v2 q · ⇢

=
Kµ⌫

1 v2 · K1 · ⇢ � 2(v2 · K1)(µ(⇢ · K1)⌫)

(�2 � 1) (⇢ · v1)2 b2 |b̃|2 |b̃|1

,

(22)

where we have introduced the symmetric tensor

Kµ⌫
i := Pµ⌫

i |b̃|
2
i + (Pi · b̃)µ(Pi · b̃)⌫ , (23)

with the property that Kµ⌫
i vi,⌫ = Kµ⌫

i b̃⌫ = 0. Both inte-
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i are associated with the
N - and M-type contributions in Eq. (18) respectively;
they are functions of b, ui, vi, ⇢ and Si and bi-linear
in ✏. In the Kerr-BH case (CE,i = 0) the waveform f
is invariant under the SUSY transformations in Eq. (8):
For this we expand the waveform at any PM order in
powers of spin
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where SUSY links higher-spin terms to lower ones
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To illustrate the waveform we consider the gravita-
tional wave memory �f(x̂) := f(+1, x̂) � f(�1, x̂).
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FIG. 2. Total radiated angular momenta for the scattering of
two Kerr-BHs with v = 0.2 as a function of the angle between
the total initial spins a3 = a1 + a2 and b (with ai · vi =
0) for a range of ratios |a3|/|b|. We show the normalized
ratio of angular momenta emitted orthogonal to the b,v plane
(left plot) and in the b direction (right plot), normalization
is w.r.t. angular momentum emitted in the spin-less.
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satisfy ai · vi = 0. In the aligned-spin case where
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where we have introduced aµ
3 = aµ

1 + aµ
2 with length

|a3|. For two Kerr black holes (CE,i = 0) with equal-
and-opposite spins (aµ

1 = �aµ
2 ) the result is the same as

the non-spinning; we observe this also when the spins are
mis-aligned to the plane of scattering.

There is also a 1PM (non-radiating) contribution to
the waveform consisting of single-graviton emission from
either massive body:

f (1)(x̂) =
2m1

⇢ · v1
(✏ · v1)

2 +
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(✏ · v2)
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At 1PM order there is manifestly no dependence on either
the spins S

µ⌫
i or impact parameters bµ

i , so the SUSY
identities in Eq. (26) are trivially satisfied.

Finally, the wave memory and 1PM part of the wave-
form contribute to the total radiated angular momentum
J rad

ij . Using three-dimensional Cartesian basis vectors êi,
we choose a frame of reference with the initial velocities
vµ

i restricted to the t–x plane; b = b ê2 is orthogonal to
these. Then we find two non-zero components of J rad

ij :
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0) for a range of ratios |a3|/|b|. We show the normalized
ratio of angular momenta emitted orthogonal to the b,v plane
(left plot) and in the b direction (right plot), normalization
is w.r.t. angular momentum emitted in the spinless case.
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and these identities are satisfied by the waveform (24).
To illustrate the waveform we consider the gravita-

tional wave memory �f(x̂) := f(+1, x̂) � f(�1, x̂).
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At 1PM order there is manifestly no dependence on either
the spins S
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i or impact parameters bµ

i , so the SUSY
identities in Eq. (26) are trivially satisfied.

Finally, the wave memory and 1PM part of the wave-
form contribute to the total radiated angular momentum
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N (q) and M(q) have a uniform power counting in q for
each spin order:

N (q) = Nµqµ + Nµ⌫qµq⌫ + Nµ⌫⇢q
µq⌫q⇢ , (19)

M(q) = Mµ⌫qµq⌫ + Mµ⌫⇢q
µq⌫q⇢ + Mµ⌫⇢�qµq⌫q⇢q� ,

and the non-spinning result involves only Nµ and Mµ⌫ .
We present full expressions for N and M in the ancillary
file attached to the arXiv submission of this Letter.
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integrals are derived in the Supplementary Material; one
generalizes to higher powers of qµ in the numerators by
taking derivatives with respect to b̃µ.
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i b̃⌫ = 0. Both inte-
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where the coe�cients ↵(s)
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i are associated with the
N - and M-type contributions in Eq. (18) respectively;
they are functions of b, ui, vi, ⇢ and Si and bi-linear
in ✏. In the Kerr-BH case (CE,i = 0) the waveform f
is invariant under the SUSY transformations in Eq. (8):
For this we expand the waveform at any PM order in
powers of spin
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To illustrate the waveform we consider the gravita-
tional wave memory �f(x̂) := f(+1, x̂) � f(�1, x̂).
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FIG. 2. Total radiated angular momenta for the scattering of
two Kerr-BHs with v = 0.2 as a function of the angle between
the total initial spins a3 = a1 + a2 and b (with ai · vi =
0) for a range of ratios |a3|/|b|. We show the normalized
ratio of angular momenta emitted orthogonal to the b,v plane
(left plot) and in the b direction (right plot), normalization
is w.r.t. angular momentum emitted in the spin-less.

The constant spin tensors are decomposed in terms of
the Pauli-Lubanski vectors aµ

i as S
µ⌫
i = ✏µ⌫

⇢�v⇢
i a�

i ; they
satisfy ai · vi = 0. In the aligned-spin case where
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where we have introduced aµ
3 = aµ

1 + aµ
2 with length

|a3|. For two Kerr black holes (CE,i = 0) with equal-
and-opposite spins (aµ

1 = �aµ
2 ) the result is the same as

the non-spinning; we observe this also when the spins are
mis-aligned to the plane of scattering.

There is also a 1PM (non-radiating) contribution to
the waveform consisting of single-graviton emission from
either massive body:

f (1)(x̂) =
2m1

⇢ · v1
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At 1PM order there is manifestly no dependence on either
the spins S

µ⌫
i or impact parameters bµ

i , so the SUSY
identities in Eq. (26) are trivially satisfied.

Finally, the wave memory and 1PM part of the wave-
form contribute to the total radiated angular momentum
J rad

ij . Using three-dimensional Cartesian basis vectors êi,
we choose a frame of reference with the initial velocities
vµ

i restricted to the t–x plane; b = b ê2 is orthogonal to
these. Then we find two non-zero components of J rad

ij :
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the total initial spins a3 = a1 + a2 and b (with ai · vi =
0) for a range of ratios |a3|/|b|. We show the normalized
ratio of angular momenta emitted orthogonal to the b,v plane
(left plot) and in the b direction (right plot), normalization
is w.r.t. angular momentum emitted in the spinless case.
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and these identities are satisfied by the waveform (24).
To illustrate the waveform we consider the gravita-
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FIG. 1. The four diagram topologies contributing to the 2PM
Bremsstrahlung up to O(S2), where !i = k ·vi by energy con-
servation at the worldline vertices. For diagrams (b)–(d) we
also include the corresponding flipped topologies with massive
bodies 1$2; for diagram (d) (which includes the propagating
fermion  0µ

2 ) we also include the graph with the arrow re-
versed.

where ��(!) := (2⇡)�(!) and we have used S
µ⌫ =

�2i ̄[µ ⌫]. The other worldline-based vertices required
for the 2PM Bremsstrahlung all appear in Fig. 1: the
two-point interaction between a graviton and a single zµ

mode in (b), the two-graviton emission vertex in (c), and
the two-point interaction between a graviton and  0µ in
(d). Full expressions for these vertices are provided in
the Supplementary Material.

Waveform from WQFT. — To describe the
Bremsstrahlung at 2PM order including spin e↵ects we
compute the expectation value k2

hhµ⌫(k)iWQFT. This
requires us to compute four kinds of Feynman graphs,
illustrated in Fig. 1. Explicit expressions for the first
two graphs (a) and (b) were given in the non-spinning
case [16]; these are now modified by terms up to O(S2).
Graphs (c) and (d) are unique to the spinning case — for
the latter we sum over both routings of the fermion line.

From this result we seek to obtain the waveform in
spacetime in the wave zone, where the distance to the
observer |x| = r is large compared to all other lengths.
Following Ref. [16] the gauge-invariant frequency-domain
waveform 4G Sij(kµ = ⌦ (1, x̂)) is extracted from the
WQFT via

Sµ⌫(k) =
2


k2

hhµ⌫(k)iWQFT , (12)

where ⌦ is the GW frequency and x̂ = x/r points to-
wards the observer. However, it is advantageous to study
the time-domain waveform f(u, x̂) which is given by a
Fourier transform:

✏µ⌫hµ⌫ =
f(u, x̂)

r
=

4G

r

Z

⌦
e�ik·x ✏µ⌫ Sµ⌫(k)

���
kµ=⌦ ⇢µ

,

(13)

where we have contracted with a polarization tensor
✏µ⌫ = 1

2✏
µ✏⌫ ,

R
⌦ :=

R 1
�1

d⌦
2⇡ , ⇢µ = (1, x̂) and, in a PM

decomposition f =
P

n Gnf (n), we seek the 2PM compo-
nent f (2). Note that k · x = ⌦(t � r) yields the retarded
time u = t � r, and ✏ · ✏ = ✏ · ⇢ = 0.

Integration. — Our integration procedure follows
closely that used for the non-spinning calculation in
Ref. [16], the main di↵erence being that we maintain
four-dimensional Lorentz covariance. Each diagram con-
tributing to k2

hhµ⌫(k)iWQFT carries the overall factor

µ1,2(k) = ei(q1·b1+q2·b2)��(q1 · v1)�
�(q2 · v2)�

�(k � q1 � q2) .
(14)

We integrate over qi, the momentum emitted from each
worldline (see Fig. 1). When we also integrate over ⌦ —
as in Eq. (13) — the full integration measure becomes

Z

⌦,q1,q2

µ1,2(k)e�ik·x =
1

⇢ · v2

Z

q1

��(q1 · v1)e
�iq1·b̃ , (15)

where
R

qi
:=

R d4qi

(2⇡)4 ; the delta function constraints give

⌦ = q1·v2

⇢·v2

and q2 = k�q1. The shifted impact parameter

b̃µ is

b̃µ = b̃µ
2 � b̃µ

1 , b̃µ
i = bµ

i + uiv
µ
i , (16)

which extends the original impact parameter bµ = bµ
2 �

bµ
1 along the undeflected trajectories of the two bodies.

Finally, ui is the retarded time in the i’th rest frame:

ui =
⇢ · (x � bi)

⇢ · vi
, (17)

This implies ⇢ · b̃i = ⇢ · x = u, so ⇢ · b̃ = 0.
Rewriting the integral measure as in Eq. (15) is con-

venient for performing the integrals of diagrams (b)–(d),
in the rest frame of body 1. The mirrored counterparts
to these diagrams are easily recovered after integration
using the 1 $ 2 symmetry of the waveform. To inte-
grate diagram (a) we insert the partial-fraction identity
q�2
1 q�2

2 = �q�2
1 (2k ·q1)�1

�q�2
2 (2k ·q2)�1 (which is valid

for k on-shell) and focus on the first term.
The full 2PM waveform is then written schematically

as (dropping the subscript on q1)GM: fix margin
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,

+ (1 $ 2) , (18)

the N - and M-contributions corresponding to diagrams
(b)–(d) and (a) in Fig. 1 respectively. The numerators
N (q) and M(q) have a uniform power counting in q for
each spin order:

N (q) = Nµqµ + Nµ⌫qµq⌫ + Nµ⌫⇢q
µq⌫q⇢ , (19)

M(q) = Mµ⌫qµq⌫ + Mµ⌫⇢q
µq⌫q⇢ + Mµ⌫⇢�qµq⌫q⇢q� ,

FIG. 1. The four diagram topologies contributing to the 2PM
Bremsstrahlung up to O(S2), where !i = k ·vi by energy con-
servation at the worldline vertices. For diagrams (b)–(d) we
also include the corresponding flipped topologies with massive
bodies 1$2; for diagram (d) (which includes the propagating
fermion  0µ

2 ) we also include the graph with the arrow re-
versed.

Next we consider the worldline vertices. The simplest
of these is the single-graviton emission vertex:
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(11)

where ��(!) := (2⇡)�(!) and we have used S
µ⌫ =

�2i ̄[µ ⌫]. The other worldline-based vertices required
for the 2PM Bremsstrahlung all appear in Fig. 1: the
two-point interaction between a graviton and a single zµ

mode in (b), the two-graviton emission vertex in (c), and
the two-point interaction between a graviton and  0µ in
(d). Full expressions for these vertices are provided in
the Supplementary Material.

Waveform from WQFT. — To describe the
Bremsstrahlung at 2PM order including spin e↵ects we
compute the expectation value k2

hhµ⌫(k)iWQFT. This
requires us to compute four kinds of Feynman graphs,
illustrated in Fig. 1. Explicit expressions for the first
two graphs (a) and (b) were given in the non-spinning
case [16]; these are now modified by terms up to O(S2).
Graphs (c) and (d) are unique to the spinning case — for
the latter we sum over both routings of the fermion line.

From this result we seek to obtain the waveform in
spacetime in the wave zone, where the distance to the
observer |x| = r is large compared to all other lengths.
Following Ref. [16] the gauge-invariant frequency-domain
waveform 4G ✏µ⌫Sµ⌫(kµ = ⌦ (1, x̂)) is extracted from the
WQFT via

Sµ⌫(k) =
2


k2

hhµ⌫(k)iWQFT , (12)

where ⌦ is the GW frequency and x̂ = x/r points to-
wards the observer. However, it is advantageous to study
the time-domain waveform f(u, x̂) which is given by a
Fourier transform:

✏µ⌫hµ⌫ =
f(u, x̂)
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1
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position f =
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n Gnf (n) we seek the 2PM component
f (2). Note that k · x = ⌦(t � r) yields the retarded time
u = t � r, and ✏ · ✏ = ✏ · ⇢ = 0.

Integration. — Our integration procedure follows
closely that used for the non-spinning calculation in
Ref. [16], the main di↵erence being that we maintain
four-dimensional Lorentz covariance. Each diagram con-
tributing to k2

hhµ⌫(k)iWQFT carries the overall factor

µ1,2(k) = ei(q1·b1+q2·b2)��(q1 · v1)�
�(q2 · v2)�

�(k � q1 � q2) .
(14)

We integrate over qi, the momentum emitted from each
worldline (see Fig. 1). When we also integrate over ⌦ —
as in Eq. (13) — the full integration measure becomes
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⌦ = q1·v2

⇢·v2

and q2 = k�q1. The shifted impact parameter,

b̃µ = b̃µ
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1 , b̃µ
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i + uiv
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extends the original impact parameter bµ = bµ
2 �bµ

1 along
the undeflected trajectories of the two bodies. Finally, ui

is the retarded time in the i’th rest frame:

ui =
⇢ · (x � bi)

⇢ · vi
, (17)

This implies ⇢ · b̃i = ⇢ · x = u, so ⇢ · b̃ = 0.
Rewriting the integral measure as in Eq. (15) is con-

venient for performing the integrals of diagrams (b)–(d),
in the rest frame of body 1. The mirrored counterparts
to these diagrams are easily recovered after integration
using the 1 $ 2 symmetry of the waveform. To inte-
grate diagram (a) we insert the partial-fraction identity
q�2
1 q�2

2 = �q�2
1 (2k ·q1)�1

�q�2
2 (2k ·q2)�1 (which is valid

for k on-shell) and focus on the first term.
The full 2PM waveform is then written schematically

as (dropping the subscript on q1)
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m1m2
= 4⇡
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e�iq·b̃
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N (q)

q · v2 + i✏
+

M(q)

(q · v2)(q · ⇢)

◆
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+ (1 $ 2) , (18)

the N - and M-contributions corresponding to diagrams
(b)–(d) and (a) in Fig. 1 respectively. The numerators
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N (q) and M(q) have a uniform power counting in q for
each spin order:

N (q) = Nµqµ + Nµ⌫qµq⌫ + Nµ⌫⇢q
µq⌫q⇢ , (19)

M(q) = Mµ⌫qµq⌫ + Mµ⌫⇢q
µq⌫q⇢ + Mµ⌫⇢�qµq⌫q⇢q� ,

and the non-spinning result involves only Nµ and Mµ⌫ .
We present full expressions for N and M in the ancillary
file attached to the arXiv submission of this Letter.

To lowest order in qµ, the first integral in eq. (18) is

4⇡

Z

q
��(q · v1)

e�iq·b̃

q2

qµ

q · v2 + i✏

=
Pµ⌫

1 v2,⌫

(�2 � 1)|b̃|1

�
bµ

|b|2

 
1p

�2 � 1
+

u2

|b̃|1

!
,

(20)

where Pµ⌫
i := ⌘µ⌫

�vµ
i v⌫

i is a projector into the rest frame
of the i’th body, |b| = �

p
bµbµ (the impact parameter is

spacelike) and

|b̃|1,2 :=
q

�b̃µPµ⌫
1,2 b̃⌫ =

q
|b|2 + (�2 � 1)u2

2,1 (21)

are the lengths of the shifted impact parameter b̃µ (16)
in the two rest frames. The second integral in eq. (18) is

4⇡

Z

q
��(q · v1)

e�iq·b̃

q2

qµq⌫

q · v2 q · ⇢

=
Kµ⌫

1 v2 · K1 · ⇢ � 2(v2 · K1)(µ(⇢ · K1)⌫)

(�2 � 1) (⇢ · v1)2 |b|2 |b̃|2 |b̃|1

,

(22)

where we have introduced the symmetric tensor

Kµ⌫
i := Pµ⌫

i |b̃|
2
i + (Pi · b̃)µ(Pi · b̃)⌫ , (23)

with the property that Kµ⌫
i vi,⌫ = Kµ⌫

i b̃⌫ = 0. Both
integrals are derived in the Supplementary Material; one
generalizes to higher powers of qµ in the numerators by
taking derivatives with respect to b̃µ.

Results. — The 2PM waveform takes the schematic
form

f (2)

m1m2
=

2X

s=0

1

|b̃|
2s+1
1

"
↵(s)

1 +
�(s)

1

|b̃|2s+2

#
+ (1 $ 2) , (24)

where the coe�cients ↵(s)
i , �(s)

i , provided in the ancillary
file, are associated with the N - and M-type contribu-
tions in Eq. (18) respectively; they are functions of ui,
bµ, vµ

i , ⇢µ, and S
µ⌫
i and bi-linear in ✏µ. The waveform f

is invariant under the SUSY transformations in Eq. (8)
to quadratic order in spin regardless of the values of CE,i.
To see this we expand the waveform at all PM orders in
powers of spin:

f = f0+
2X

i=1

Si,µ⌫fµ⌫
i +

2X

i,j=1

Si,µ⌫Sj,⇢�fµ⌫;⇢�
ij + O(S3) ,

(25)
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where the non-spinning result involves only Nµ and Mµ⌫ .
We present full expressions for N and M in the ancillary
file attached to the arXiv submission of this Letter.

To lowest order in qµ, the first integral in eq. (18) is
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where Pµ⌫
i := ⌘µ⌫

� vµ
i v⌫

i is a projector into the rest
frame of the i’th body; b2 = |b|2 = �bµbµ (the impact
parameter is spacelike) and

|b̃|1,2 :=
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�b̃µPµ⌫
1,2 b̃⌫ =

q
b2 + (�2 � 1)u2

2,1 (21)

are the lengths of the shifted impact parameter b̃µ (16)
in the two rest frames. The second integral in eq. (18) is
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where we have introduced the symmetric tensor

Kµ⌫
i := Pµ⌫

i |b̃|
2
i + (Pi · b̃)µ(Pi · b̃)⌫ , (23)

with the property that Kµ⌫
i vi,⌫ = Kµ⌫

i b̃⌫ = 0. Both inte-
grals are derived in the Supplementary Material; versions
with higher powers of qµ in the numerators are derived
by taking derivatives with respect to b̃µ.

Results. — The 2PM waveform takes the schematic
form

f (2)

m1m2
=
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1
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1
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1 +
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+ (1 $ 2) , (24)

where the coe�cients ↵(s)
i , �(s)

i are associated with the
N - and M-type contributions in Eq. (18) respectively;
they are functions of b, ui, vi, ⇢ and Si and bi-linear
in ✏. In the Kerr-BH case (CE,i = 0) the waveform f
is invariant under the SUSY transformations in Eq. (8):
For this we expand the waveform at any PM order in
powers of spin

f = f0+
2X

i=1

Si,µ⌫fµ⌫
i +

2X

i,j=1

Si,µ⌫Sj,⇢� + O(S3) (25)

where SUSY links higher-spin terms to lower ones

1

2

@f0

@bi,⌫
= vi,µ f [µ⌫]

i ,
1

4

@fµ⌫
i

@bj,⇢
= vj,� fµ⌫;[⇢�]

ij . (26)

To illustrate the waveform we consider the gravita-
tional wave memory �f(x̂) := f(+1, x̂) � f(�1, x̂).

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

0.96

0.98

1.00

1.02

1.04

1.06

1.08

1.10

Angle[a3,b]

Jxy / Jxy(a3=0)

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
0.00

0.02

0.04

0.06

0.08

Angle[a3,b]

| Jzx / Jxy(a3=0) |

�������

-1.5-1.0-0.5 0.0 0.5 1.0 1.5
0.00

0.02

0.04

0.06

0.08

Angle[a3,b]

| Jzx / Jxy |

v=0.2

a3/b=
0.00

0.02

0.05

0.07

0.10

0.12

0.15

0.17

FIG. 2. Total radiated angular momenta for the scattering of
two Kerr-BHs with v = 0.2 as a function of the angle between
the total initial spins a3 = a1 + a2 and b (with ai · vi =
0) for a range of ratios |a3|/|b|. We show the normalized
ratio of angular momenta emitted orthogonal to the b,v plane
(left plot) and in the b direction (right plot), normalization
is w.r.t. angular momentum emitted in the spin-less.

The constant spin tensors are decomposed in terms of
the Pauli-Lubanski vectors aµ

i as S
µ⌫
i = ✏µ⌫

⇢�v⇢
i a�

i ; they
satisfy ai · vi = 0. In the aligned-spin case where
ai · b = ai · vj = 0, i.e. the spin vectors are orthogo-

nal to the plane of scattering. Writing li =
p

�a2
i the

wave memory is proportional to the non-spinning result:

�f (2) =
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2vl3
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l23
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�2 � 1(⇢ · v1)2
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where we have introduced aµ
3 = aµ

1 + aµ
2 with length

|a3|. For two Kerr black holes (CE,i = 0) with equal-
and-opposite spins (aµ

1 = �aµ
2 ) the result is the same as

the non-spinning; we observe this also when the spins are
mis-aligned to the plane of scattering.

There is also a 1PM (non-radiating) contribution to
the waveform consisting of single-graviton emission from
either massive body:

f (1)(x̂) =
2m1

⇢ · v1
(✏ · v1)

2 +
2m2

⇢ · v2
(✏ · v2)

2 . (28)

At 1PM order there is manifestly no dependence on either
the spins S

µ⌫
i or impact parameters bµ

i , so the SUSY
identities in Eq. (26) are trivially satisfied.

Finally, the wave memory and 1PM part of the wave-
form contribute to the total radiated angular momentum
J rad

ij . Using three-dimensional Cartesian basis vectors êi,
we choose a frame of reference with the initial velocities
vµ

i restricted to the t–x plane; b = b ê2 is orthogonal to
these. Then we find two non-zero components of J rad

ij :

FIG. 2. Total radiated angular momenta for the scattering of
two Kerr-BHs with v = 0.2 as a function of the angle between
the total initial spins a3 = a1 + a2 and b (with ai · vi =
0) for a range of ratios |a3|/|b|. We show the normalized
ratio of angular momenta emitted orthogonal to the b,v plane
(left plot) and in the b direction (right plot), normalization
is w.r.t. angular momentum emitted in the spinless case.
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and these identities are satisfied by the waveform (24).
To illustrate the waveform we consider the gravita-

tional wave memory �f(x̂) := f(+1, x̂) � f(�1, x̂).
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At 1PM order there is manifestly no dependence on either
the spins S
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i , so the SUSY
identities in Eq. (26) are trivially satisfied.

Finally, the wave memory and 1PM part of the wave-
form contribute to the total radiated angular momentum
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FIG. 2. Plots of the wave memories �f+,⇥ for v = 0.2. For a
visualisation of the complete waveforms as they evolve with
retarded time u see f+(u, ✓, �)|v=0.2 and f⇥(u, ✓, �)|v=0.2.

beauty of our result (26) lies in the fact that the memo-
ries only receive contributions from the second term, and
read

�f+,⇥ = �2G2m1m2

bi
N

i
+,⇥

b2
+ O(G3) . (28)

Diagrammatically they exclusively emerge from diagram
(b) of Fig. 1. So they are manifestly insensitive to grav-
itational self-interactions — this was also pointed out in
Ref. [22].

Radiated Energy and Angular Momentum. — One
may now use our result for the waveform (26) to com-
pute the total radiated momentum and angular momen-
tum. Expressions for these quantities in terms of the
asymptotic waveform are given in Refs. [22, 33]:

Pµ
rad

=
1

32⇡G

Z
dud�[ḟij ]

2⇢µ , (29)

J rad

ij =
1

8⇡G

Z
dud�

✓
fk[iḟj]k �

1

2
x[i@j]fklḟkl

◆
, (30)

where ḟij := @ufij and d� = sin ✓d✓d� is the unit sphere
measure.

We first concentrate on J rad

ij as it contributes at lead-
ing order O(G2) and was recently obtained in the center-

of-mass frame [22]. The static nature of f (1)

ij (27) allows
one to trivially perform the u-integration and express the
radiated angular momentum in terms of the wave mem-
ories �f+,⇥. Inserting the basis of polarization tensors

(15) (and using f (1)

⇥ = 0) gives

J rad

xy =
1

8⇡

Z
d�

h sin �

sin ✓
f (1)

+
�f⇥ �

1

2
cos � @✓f

(1)

+
�f+

i

+ O(G3) . (31)

The spherical integral is elementary and yields

J rad

xy

J init
xy

=
4G2m1m2

b2

(2�2
� 1)p

�2 � 1
I(v) + O(G3) , (32a)

I(v) = �
8

3
+

1

v2
+

(3v2
� 1)

v3
arctanh(v) , (32b)

where we have normalized our result with respect to the
initial angular momentum in the rest frame of black hole

1: J init

xy = m2|v2||b| = m2�vb. We find perfect agree-
ment with Ref. [22].3

Similarly, Pµ
rad

of Eq. (29) should reproduce the recent
result of Ref. [30] contributing at O(G3). So far we have
only been able to perform the integral in the PN expan-
sion recovering the result of Ref. [30] to order v6. Yet it is
straightforward to obtain di↵erential quantities derived
from the integrand of Eq. (29). The di↵erential power
spectrum (total energy radiated per unit frequency) as
well as the total energy radiated per unit solid angle are
collected in the supplementary material to this letter.
These results go well beyond Kovacs and Thorne [4] and
may be expanded to any desired order in v.

Conclusions. — Searching for GWs from scattering
events over the full range of impact velocities requires
precision predictions in the PM approximation. While
the potential and radiation of bound systems was calcu-
lated to high PN order [34] (see Refs. [35] for spinning
bodies), a resummation of PN results in the strong-field
and fast-motion regimes is essential for building accu-
rate waveform models [8]. The PM resummation is one
promising recent attempt [21, 36, 37].

Our results provide a stepping stone for higher-order
calculations, where a repertoire of advanced integration
techniques can be put to use [17, 24, 30, 38]. In fact the
3PM integrand has essentially been presented in Ref. [29].
The present challenge lies in the multi-scale integrals,
which despite their tree-level structure are of higher loop
three-momentum type as the worldline only preserves en-
ergy. Generalizations to spin and finite-size e↵ects are
possible and lead to the same families of integrations at
2PM. Also the extensions to bound systems using map-
pings between bound and unbound orbits [24, 39] would
be of great utility.
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SUPPLEMENTAL MATERIAL

Integrals. — We begin with the simpler integral in
Eq. (22), corresponding to diagram (b) in Fig. 1. Work-
ing in Cartesian components with b = (b1, b2, b3) (in the

main text we replace b ! eb) and q = (q1, q2, q3) it is
su�cient to show
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b2
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1
)

✓
1 +

b1

|b|

◆
. (33)

3 As the two frames are related by a boost in the x direction this
implies that Jrad

0y = 0 in both frames.
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FIG. 1. The four diagram topologies contributing to the 2PM
Bremsstrahlung up to O(S2), where !i = k ·vi by energy con-
servation at the worldline vertices. For diagrams (b)–(d) we
also include the corresponding flipped topologies with massive
bodies 1$2; for diagram (d) (which includes the propagating
fermion  0µ

2 ) we also include the graph with the arrow re-
versed.

where ��(!) := (2⇡)�(!) and we have used S
µ⌫ =

�2i ̄[µ ⌫]. The other worldline-based vertices required
for the 2PM Bremsstrahlung all appear in Fig. 1: the
two-point interaction between a graviton and a single zµ

mode in (b), the two-graviton emission vertex in (c), and
the two-point interaction between a graviton and  0µ in
(d). Full expressions for these vertices are provided in
the Supplementary Material.

Waveform from WQFT. — To describe the
Bremsstrahlung at 2PM order including spin e↵ects we
compute the expectation value k2

hhµ⌫(k)iWQFT. This
requires us to compute four kinds of Feynman graphs,
illustrated in Fig. 1. Explicit expressions for the first
two graphs (a) and (b) were given in the non-spinning
case [16]; these are now modified by terms up to O(S2).
Graphs (c) and (d) are unique to the spinning case — for
the latter we sum over both routings of the fermion line.

From this result we seek to obtain the waveform in
spacetime in the wave zone, where the distance to the
observer |x| = r is large compared to all other lengths.
Following Ref. [16] the gauge-invariant frequency-domain
waveform 4G Sij(kµ = ⌦ (1, x̂)) is extracted from the
WQFT via

Sµ⌫(k) =
2


k2

hhµ⌫(k)iWQFT , (12)

where ⌦ is the GW frequency and x̂ = x/r points to-
wards the observer. However, it is advantageous to study
the time-domain waveform f(u, x̂) which is given by a
Fourier transform:

✏µ⌫hµ⌫ =
f(u, x̂)

r
=

4G

r

Z
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e�ik·x ✏µ⌫ Sµ⌫(k)

���
kµ=⌦ ⇢µ

,

(13)

where we have contracted with a polarization tensor
✏µ⌫ = 1

2✏
µ✏⌫ ,

R
⌦ :=

R 1
�1

d⌦
2⇡ , ⇢µ = (1, x̂) and, in a PM

decomposition f =
P

n Gnf (n), we seek the 2PM compo-
nent f (2). Note that k · x = ⌦(t � r) yields the retarded
time u = t � r, and ✏ · ✏ = ✏ · ⇢ = 0.

Integration. — Our integration procedure follows
closely that used for the non-spinning calculation in
Ref. [16], the main di↵erence being that we maintain
four-dimensional Lorentz covariance. Each diagram con-
tributing to k2

hhµ⌫(k)iWQFT carries the overall factor

µ1,2(k) = ei(q1·b1+q2·b2)��(q1 · v1)�
�(q2 · v2)�

�(k � q1 � q2) .
(14)

We integrate over qi, the momentum emitted from each
worldline (see Fig. 1). When we also integrate over ⌦ —
as in Eq. (13) — the full integration measure becomes
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µ1,2(k)e�ik·x =
1

⇢ · v2

Z

q1

��(q1 · v1)e
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where
R

qi
:=

R d4qi

(2⇡)4 ; the delta function constraints give

⌦ = q1·v2

⇢·v2

and q2 = k�q1. The shifted impact parameter

b̃µ is

b̃µ = b̃µ
2 � b̃µ

1 , b̃µ
i = bµ

i + uiv
µ
i , (16)

which extends the original impact parameter bµ = bµ
2 �

bµ
1 along the undeflected trajectories of the two bodies.

Finally, ui is the retarded time in the i’th rest frame:

ui =
⇢ · (x � bi)

⇢ · vi
, (17)

This implies ⇢ · b̃i = ⇢ · x = u, so ⇢ · b̃ = 0.
Rewriting the integral measure as in Eq. (15) is con-

venient for performing the integrals of diagrams (b)–(d),
in the rest frame of body 1. The mirrored counterparts
to these diagrams are easily recovered after integration
using the 1 $ 2 symmetry of the waveform. To inte-
grate diagram (a) we insert the partial-fraction identity
q�2
1 q�2

2 = �q�2
1 (2k ·q1)�1

�q�2
2 (2k ·q2)�1 (which is valid

for k on-shell) and focus on the first term.
The full 2PM waveform is then written schematically

as (dropping the subscript on q1)GM: fix margin
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the N - and M-contributions corresponding to diagrams
(b)–(d) and (a) in Fig. 1 respectively. The numerators
N (q) and M(q) have a uniform power counting in q for
each spin order:
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FIG. 1. The four diagram topologies contributing to the 2PM
Bremsstrahlung up to O(S2), where !i = k ·vi by energy con-
servation at the worldline vertices. For diagrams (b)–(d) we
also include the corresponding flipped topologies with massive
bodies 1$2; for diagram (d) (which includes the propagating
fermion  0µ

2 ) we also include the graph with the arrow re-
versed.

Next we consider the worldline vertices. The simplest
of these is the single-graviton emission vertex:
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where ��(!) := (2⇡)�(!) and we have used S
µ⌫ =

�2i ̄[µ ⌫]. The other worldline-based vertices required
for the 2PM Bremsstrahlung all appear in Fig. 1: the
two-point interaction between a graviton and a single zµ

mode in (b), the two-graviton emission vertex in (c), and
the two-point interaction between a graviton and  0µ in
(d). Full expressions for these vertices are provided in
the Supplementary Material.

Waveform from WQFT. — To describe the
Bremsstrahlung at 2PM order including spin e↵ects we
compute the expectation value k2

hhµ⌫(k)iWQFT. This
requires us to compute four kinds of Feynman graphs,
illustrated in Fig. 1. Explicit expressions for the first
two graphs (a) and (b) were given in the non-spinning
case [16]; these are now modified by terms up to O(S2).
Graphs (c) and (d) are unique to the spinning case — for
the latter we sum over both routings of the fermion line.

From this result we seek to obtain the waveform in
spacetime in the wave zone, where the distance to the
observer |x| = r is large compared to all other lengths.
Following Ref. [16] the gauge-invariant frequency-domain
waveform 4G ✏µ⌫Sµ⌫(kµ = ⌦ (1, x̂)) is extracted from the
WQFT via

Sµ⌫(k) =
2


k2

hhµ⌫(k)iWQFT , (12)

where ⌦ is the GW frequency and x̂ = x/r points to-
wards the observer. However, it is advantageous to study
the time-domain waveform f(u, x̂) which is given by a
Fourier transform:

✏µ⌫hµ⌫ =
f(u, x̂)
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1
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2⇡ , and ⇢µ = (1, x̂); in a PM decom-

position f =
P

n Gnf (n) we seek the 2PM component
f (2). Note that k · x = ⌦(t � r) yields the retarded time
u = t � r, and ✏ · ✏ = ✏ · ⇢ = 0.

Integration. — Our integration procedure follows
closely that used for the non-spinning calculation in
Ref. [16], the main di↵erence being that we maintain
four-dimensional Lorentz covariance. Each diagram con-
tributing to k2

hhµ⌫(k)iWQFT carries the overall factor

µ1,2(k) = ei(q1·b1+q2·b2)��(q1 · v1)�
�(q2 · v2)�
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(14)

We integrate over qi, the momentum emitted from each
worldline (see Fig. 1). When we also integrate over ⌦ —
as in Eq. (13) — the full integration measure becomes
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where
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:=

R d4qi

(2⇡)4 ; the delta function constraints give
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and q2 = k�q1. The shifted impact parameter,

b̃µ = b̃µ
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1 , b̃µ
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extends the original impact parameter bµ = bµ
2 �bµ

1 along
the undeflected trajectories of the two bodies. Finally, ui

is the retarded time in the i’th rest frame:

ui =
⇢ · (x � bi)

⇢ · vi
, (17)

This implies ⇢ · b̃i = ⇢ · x = u, so ⇢ · b̃ = 0.
Rewriting the integral measure as in Eq. (15) is con-

venient for performing the integrals of diagrams (b)–(d),
in the rest frame of body 1. The mirrored counterparts
to these diagrams are easily recovered after integration
using the 1 $ 2 symmetry of the waveform. To inte-
grate diagram (a) we insert the partial-fraction identity
q�2
1 q�2

2 = �q�2
1 (2k ·q1)�1

�q�2
2 (2k ·q2)�1 (which is valid

for k on-shell) and focus on the first term.
The full 2PM waveform is then written schematically
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FIG. 1. The four diagram topologies contributing to the 2PM
Bremsstrahlung up to O(S

2
), where !i = k ·vi by energy con-

servation at the worldline vertices. For diagrams (b)–(d) we
also include the corresponding flipped topologies with massive
bodies 1$2; for diagram (d) (which includes the propagating
fermion  

0µ
2 ) we also include the graph with the arrow re-

versed.

where ��(!) := (2⇡)�(!) and we have used Sµ⌫ =
�2i ̄[µ ⌫]. The other worldline-based vertices required
for the 2PM Bremsstrahlung all appear in Fig. 1: the
two-point interaction between a graviton and a single zµ

mode in (b), the two-graviton emission vertex in (c), and
the two-point interaction between a graviton and  0µ

in
(d). Full expressions for these vertices are provided in
the Supplementary Material.

Waveform from WQFT. — To describe the
Bremsstrahlung at 2PM order including spin e↵ects we
compute the expectation value k2hhµ⌫(k)iWQFT. This
requires us to compute four kinds of Feynman graphs,
illustrated in Fig. 1. Explicit expressions for the first
two graphs (a) and (b) were given in the non-spinning
case [16]; these are now modified by terms up to O(S2).
Graphs (c) and (d) are unique to the spinning case — for
the latter we sum over both routings of the fermion line.

From this result we seek to obtain the waveform in
spacetime in the wave zone, where the distance to the
observer |x| = r is large compared to all other lengths.
Following Ref. [16] the gauge-invariant frequency-domain
waveform 4G Sij(kµ = ⌦ (1, x̂)) is extracted from the
WQFT via

Sµ⌫(k) =
2


k

2
hhµ⌫(k)iWQFT , (12)

where ⌦ is the GW frequency and x̂ = x/r points to-
wards the observer. However, it is advantageous to study
the time-domain waveform f(u, x̂) which is given by a
Fourier transform:
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hµ⌫ =
f(u, x̂)
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where we have contracted with a polarization tensor
✏µ⌫ =

1
2✏µ✏⌫ ,
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⌦ :=

R 1
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2⇡ , ⇢µ = (1, x̂) and, in a PM

decomposition f =
P

n Gnf (n), we seek the 2PM compo-
nent f (2). Note that k · x = ⌦(t � r) yields the retarded
time u = t � r, and ✏ · ✏ = ✏ · ⇢ = 0.

Integration. — Our integration procedure follows
closely that used for the non-spinning calculation in
Ref. [16], the main di↵erence being that we maintain
four-dimensional Lorentz covariance. Each diagram con-
tributing to k2hhµ⌫(k)iWQFT carries the overall factor

µ1,2(k) = e
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We integrate over qi, the momentum emitted from each
worldline (see Fig. 1). When we also integrate over ⌦ —
as in Eq. (13) — the full integration measure becomes
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Finally, ui is the retarded time in the i’th rest frame:

ui =
⇢ · (x � bi)
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, (17)

This implies ⇢ · b̃i = ⇢ · x = u, so ⇢ · b̃ = 0.
Rewriting the integral measure as in Eq. (15) is con-

venient for performing the integrals of diagrams (b)–(d),
in the rest frame of body 1. The mirrored counterparts
to these diagrams are easily recovered after integration
using the 1 $ 2 symmetry of the waveform. To inte-
grate diagram (a) we insert the partial-fraction identity
q�2
1 q�2

2 = �q�2
1 (2k ·q1)�1 �q�2

2 (2k ·q2)�1 (which is valid
for k on-shell) and focus on the first term.

The full 2PM waveform is then written schematically
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also include the corresponding flipped topologies with massive
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where ��(!) := (2⇡)�(!) and we have used Sµ⌫ =
�2i ̄[µ ⌫]. The other worldline-based vertices required
for the 2PM Bremsstrahlung all appear in Fig. 1: the
two-point interaction between a graviton and a single zµ

mode in (b), the two-graviton emission vertex in (c), and
the two-point interaction between a graviton and  0µ

in
(d). Full expressions for these vertices are provided in
the Supplementary Material.

Waveform from WQFT. — To describe the
Bremsstrahlung at 2PM order including spin e↵ects we
compute the expectation value k2hhµ⌫(k)iWQFT. This
requires us to compute four kinds of Feynman graphs,
illustrated in Fig. 1. Explicit expressions for the first
two graphs (a) and (b) were given in the non-spinning
case [16]; these are now modified by terms up to O(S2).
Graphs (c) and (d) are unique to the spinning case — for
the latter we sum over both routings of the fermion line.

From this result we seek to obtain the waveform in
spacetime in the wave zone, where the distance to the
observer |x| = r is large compared to all other lengths.
Following Ref. [16] the gauge-invariant frequency-domain
waveform 4G ✏µ⌫Sµ⌫(kµ = ⌦ (1, x̂)) is extracted from the
WQFT via

Sµ⌫(k) =
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where ⌦ is the GW frequency and x̂ = x/r points to-
wards the observer. However, it is advantageous to study
the time-domain waveform f(u, x̂) which is given by a
Fourier transform:
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Integration. — Our integration procedure follows
closely that used for the non-spinning calculation in
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four-dimensional Lorentz covariance. Each diagram con-
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The full 2PM waveform is then written schematically
as (dropping the subscript on q1)
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◆
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+ (1 $ 2) , (18)

the N - and M-contributions corresponding to diagrams
(b)–(d) and (a) in Fig. 1 respectively. The numerators
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SPINNING WAVEFORM @ NLO
[Jakobsen,Mogull,JP,Steinhoff]

The spinning wave memory:

Using Pauli-Lubanski vector:

4

N (q) and M(q) have a uniform power counting in q for
each spin order:

N (q) = Nµqµ + Nµ⌫qµq⌫ + Nµ⌫⇢q
µq⌫q⇢ , (19)

M(q) = Mµ⌫qµq⌫ + Mµ⌫⇢q
µq⌫q⇢ + Mµ⌫⇢�qµq⌫q⇢q� ,

and the non-spinning result involves only Nµ and Mµ⌫ .
We present full expressions for N and M in the ancillary
file attached to the arXiv submission of this Letter.
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where Pµ⌫
i := ⌘µ⌫

�vµ
i v⌫

i is a projector into the rest frame
of the i’th body, |b| = �

p
bµbµ (the impact parameter is

spacelike) and

|b̃|1,2 :=
q

�b̃µPµ⌫
1,2 b̃⌫ =

q
|b|2 + (�2 � 1)u2

2,1 (21)

are the lengths of the shifted impact parameter b̃µ (16)
in the two rest frames. The second integral in eq. (18) is
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where we have introduced the symmetric tensor

Kµ⌫
i := Pµ⌫

i |b̃|
2
i + (Pi · b̃)µ(Pi · b̃)⌫ , (23)

with the property that Kµ⌫
i vi,⌫ = Kµ⌫

i b̃⌫ = 0. Both
integrals are derived in the Supplementary Material; one
generalizes to higher powers of qµ in the numerators by
taking derivatives with respect to b̃µ.

Results. — The 2PM waveform takes the schematic
form
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"
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#
+ (1 $ 2) , (24)

where the coe�cients ↵(s)
i , �(s)

i , provided in the ancillary
file, are associated with the N - and M-type contribu-
tions in Eq. (18) respectively; they are functions of ui,
bµ, vµ

i , ⇢µ, and S
µ⌫
i and bi-linear in ✏µ. The waveform f

is invariant under the SUSY transformations in Eq. (8)
to quadratic order in spin regardless of the values of CE,i.
To see this we expand the waveform at all PM orders in
powers of spin:

f = f0+
2X

i=1

Si,µ⌫fµ⌫
i +

2X

i,j=1

Si,µ⌫Sj,⇢�fµ⌫;⇢�
ij + O(S3) ,

(25)
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where the non-spinning result involves only Nµ and Mµ⌫ .
We present full expressions for N and M in the ancillary
file attached to the arXiv submission of this Letter.
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where Pµ⌫
i := ⌘µ⌫
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i v⌫

i is a projector into the rest
frame of the i’th body; b2 = |b|2 = �bµbµ (the impact
parameter is spacelike) and
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are the lengths of the shifted impact parameter b̃µ (16)
in the two rest frames. The second integral in eq. (18) is
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where we have introduced the symmetric tensor

Kµ⌫
i := Pµ⌫

i |b̃|
2
i + (Pi · b̃)µ(Pi · b̃)⌫ , (23)

with the property that Kµ⌫
i vi,⌫ = Kµ⌫

i b̃⌫ = 0. Both inte-
grals are derived in the Supplementary Material; versions
with higher powers of qµ in the numerators are derived
by taking derivatives with respect to b̃µ.

Results. — The 2PM waveform takes the schematic
form
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=
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1
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where the coe�cients ↵(s)
i , �(s)

i are associated with the
N - and M-type contributions in Eq. (18) respectively;
they are functions of b, ui, vi, ⇢ and Si and bi-linear
in ✏. In the Kerr-BH case (CE,i = 0) the waveform f
is invariant under the SUSY transformations in Eq. (8):
For this we expand the waveform at any PM order in
powers of spin

f = f0+
2X

i=1

Si,µ⌫fµ⌫
i +

2X

i,j=1

Si,µ⌫Sj,⇢� + O(S3) (25)

where SUSY links higher-spin terms to lower ones

1

2

@f0

@bi,⌫
= vi,µ f [µ⌫]

i ,
1

4

@fµ⌫
i

@bj,⇢
= vj,� fµ⌫;[⇢�]

ij . (26)

To illustrate the waveform we consider the gravita-
tional wave memory �f(x̂) := f(+1, x̂) � f(�1, x̂).
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FIG. 2. Total radiated angular momenta for the scattering of
two Kerr-BHs with v = 0.2 as a function of the angle between
the total initial spins a3 = a1 + a2 and b (with ai · vi =
0) for a range of ratios |a3|/|b|. We show the normalized
ratio of angular momenta emitted orthogonal to the b,v plane
(left plot) and in the b direction (right plot), normalization
is w.r.t. angular momentum emitted in the spin-less.

The constant spin tensors are decomposed in terms of
the Pauli-Lubanski vectors aµ

i as S
µ⌫
i = ✏µ⌫

⇢�v⇢
i a�

i ; they
satisfy ai · vi = 0. In the aligned-spin case where
ai · b = ai · vj = 0, i.e. the spin vectors are orthogo-

nal to the plane of scattering. Writing li =
p

�a2
i the

wave memory is proportional to the non-spinning result:

�f (2) =
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+
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�2 � 1(⇢ · v1)2

+ (1 $ 2) , (27)

where we have introduced aµ
3 = aµ

1 + aµ
2 with length

|a3|. For two Kerr black holes (CE,i = 0) with equal-
and-opposite spins (aµ

1 = �aµ
2 ) the result is the same as

the non-spinning; we observe this also when the spins are
mis-aligned to the plane of scattering.

There is also a 1PM (non-radiating) contribution to
the waveform consisting of single-graviton emission from
either massive body:

f (1)(x̂) =
2m1

⇢ · v1
(✏ · v1)

2 +
2m2

⇢ · v2
(✏ · v2)

2 . (28)

At 1PM order there is manifestly no dependence on either
the spins S

µ⌫
i or impact parameters bµ

i , so the SUSY
identities in Eq. (26) are trivially satisfied.

Finally, the wave memory and 1PM part of the wave-
form contribute to the total radiated angular momentum
J rad

ij . Using three-dimensional Cartesian basis vectors êi,
we choose a frame of reference with the initial velocities
vµ

i restricted to the t–x plane; b = b ê2 is orthogonal to
these. Then we find two non-zero components of J rad

ij :

FIG. 2. Total radiated angular momenta for the scattering of
two Kerr-BHs with v = 0.2 as a function of the angle between
the total initial spins a3 = a1 + a2 and b (with ai · vi =
0) for a range of ratios |a3|/|b|. We show the normalized
ratio of angular momenta emitted orthogonal to the b,v plane
(left plot) and in the b direction (right plot), normalization
is w.r.t. angular momentum emitted in the spinless case.

where fµ⌫
i and fµ⌫;⇢�

ij are defined modulo terms that van-
ish on support of vi,µS

µ⌫
i = 0. The SUSY links higher-

spin to lower-spin terms:
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and these identities are satisfied by the waveform (24).
To illustrate the waveform we consider the gravita-

tional wave memory �f(x̂) := f(+1, x̂) � f(�1, x̂).
The constant spin tensors are decomposed in terms of
the Pauli-Lubanski vectors aµ

i as S
µ⌫
i = ✏µ⌫
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latter satisfying ai · vi = 0. In the aligned-spin case
ai · b = ai · vj = 0, i.e. the spin vectors are orthogo-

nal to the plane of scattering. Writing |ai| =
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i the

wave memory is then proportional to the non-spinning
result:

�f (2) =

 
1 +

2v|a3|

b(1 + v2)
+

|a3|
2

|b|2
�

2X

i=1

CE,i|ai|
2

|b|2

!
�f (2)

S=0,

�f (2)
S=0

m1m2
=

4(2�2
� 1)✏ · v1(2b · ✏ ⇢ · v1 � b · ⇢ ✏ · v1)

|b|2
p

�2 � 1(⇢ · v1)2

+ (1 $ 2) , (27)

where aµ
3 = aµ

1 +aµ
2 . For two Kerr black holes (CE,i = 0)

with equal-and-opposite spins (aµ
1 = �aµ

2 ) we see that

�f (2) = �f (2)
S=0, which we observe also when the spins

are mis-aligned to the plane of scattering.
There is also a 1PM (non-radiating) contribution to

the waveform consisting of single-graviton emission from
either massive body:
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2 +
2m2

⇢ · v2
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At 1PM order there is manifestly no dependence on either
the spins S

µ⌫
i or impact parameters bµ

i , so the SUSY
identities in Eq. (26) are trivially satisfied.

Finally, the wave memory and 1PM part of the wave-
form contribute to the total radiated angular momentum

4

N (q) and M(q) have a uniform power counting in q for
each spin order:

N (q) = Nµqµ + Nµ⌫qµq⌫ + Nµ⌫⇢q
µq⌫q⇢ , (19)

M(q) = Mµ⌫qµq⌫ + Mµ⌫⇢q
µq⌫q⇢ + Mµ⌫⇢�qµq⌫q⇢q� ,

and the non-spinning result involves only Nµ and Mµ⌫ .
We present full expressions for N and M in the ancillary
file attached to the arXiv submission of this Letter.
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where Pµ⌫
i := ⌘µ⌫
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i v⌫

i is a projector into the rest frame
of the i’th body, |b| = �
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bµbµ (the impact parameter is
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are the lengths of the shifted impact parameter b̃µ (16)
in the two rest frames. The second integral in eq. (18) is
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where we have introduced the symmetric tensor
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i + (Pi · b̃)µ(Pi · b̃)⌫ , (23)

with the property that Kµ⌫
i vi,⌫ = Kµ⌫

i b̃⌫ = 0. Both
integrals are derived in the Supplementary Material; one
generalizes to higher powers of qµ in the numerators by
taking derivatives with respect to b̃µ.

Results. — The 2PM waveform takes the schematic
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file, are associated with the N - and M-type contribu-
tions in Eq. (18) respectively; they are functions of ui,
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i and bi-linear in ✏µ. The waveform f

is invariant under the SUSY transformations in Eq. (8)
to quadratic order in spin regardless of the values of CE,i.
To see this we expand the waveform at all PM orders in
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where the non-spinning result involves only Nµ and Mµ⌫ .
We present full expressions for N and M in the ancillary
file attached to the arXiv submission of this Letter.
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where we have introduced the symmetric tensor
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with the property that Kµ⌫
i vi,⌫ = Kµ⌫

i b̃⌫ = 0. Both inte-
grals are derived in the Supplementary Material; versions
with higher powers of qµ in the numerators are derived
by taking derivatives with respect to b̃µ.

Results. — The 2PM waveform takes the schematic
form
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where the coe�cients ↵(s)
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i are associated with the
N - and M-type contributions in Eq. (18) respectively;
they are functions of b, ui, vi, ⇢ and Si and bi-linear
in ✏. In the Kerr-BH case (CE,i = 0) the waveform f
is invariant under the SUSY transformations in Eq. (8):
For this we expand the waveform at any PM order in
powers of spin
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i +
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where SUSY links higher-spin terms to lower ones
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To illustrate the waveform we consider the gravita-
tional wave memory �f(x̂) := f(+1, x̂) � f(�1, x̂).
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FIG. 2. Total radiated angular momenta for the scattering of
two Kerr-BHs with v = 0.2 as a function of the angle between
the total initial spins a3 = a1 + a2 and b (with ai · vi =
0) for a range of ratios |a3|/|b|. We show the normalized
ratio of angular momenta emitted orthogonal to the b,v plane
(left plot) and in the b direction (right plot), normalization
is w.r.t. angular momentum emitted in the spin-less.

The constant spin tensors are decomposed in terms of
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i ; they
satisfy ai · vi = 0. In the aligned-spin case where
ai · b = ai · vj = 0, i.e. the spin vectors are orthogo-

nal to the plane of scattering. Writing li =
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i the
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�f (2) =

 
1 +

2vl3
b(1 + v2)

+
l23
b2

�

2X

i=1

CE,il2i
b2

!
�f (2)

S=0,

�f (2)
S=0

m1m2
=

4(2�2
� 1)✏ · v1(2b · ✏ ⇢ · v1 � b · ⇢ ✏ · v1)

b2
p

�2 � 1(⇢ · v1)2

+ (1 $ 2) , (27)

where we have introduced aµ
3 = aµ

1 + aµ
2 with length

|a3|. For two Kerr black holes (CE,i = 0) with equal-
and-opposite spins (aµ

1 = �aµ
2 ) the result is the same as

the non-spinning; we observe this also when the spins are
mis-aligned to the plane of scattering.

There is also a 1PM (non-radiating) contribution to
the waveform consisting of single-graviton emission from
either massive body:

f (1)(x̂) =
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At 1PM order there is manifestly no dependence on either
the spins S

µ⌫
i or impact parameters bµ

i , so the SUSY
identities in Eq. (26) are trivially satisfied.

Finally, the wave memory and 1PM part of the wave-
form contribute to the total radiated angular momentum
J rad

ij . Using three-dimensional Cartesian basis vectors êi,
we choose a frame of reference with the initial velocities
vµ

i restricted to the t–x plane; b = b ê2 is orthogonal to
these. Then we find two non-zero components of J rad

ij :
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two Kerr-BHs with v = 0.2 as a function of the angle between
the total initial spins a3 = a1 + a2 and b (with ai · vi =
0) for a range of ratios |a3|/|b|. We show the normalized
ratio of angular momenta emitted orthogonal to the b,v plane
(left plot) and in the b direction (right plot), normalization
is w.r.t. angular momentum emitted in the spinless case.
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and these identities are satisfied by the waveform (24).
To illustrate the waveform we consider the gravita-

tional wave memory �f(x̂) := f(+1, x̂) � f(�1, x̂).
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i as S
µ⌫
i = ✏µ⌫

⇢�v⇢
i a�

i , the
latter satisfying ai · vi = 0. In the aligned-spin case
ai · b = ai · vj = 0, i.e. the spin vectors are orthogo-

nal to the plane of scattering. Writing |ai| =
p

�a2
i the

wave memory is then proportional to the non-spinning
result:

�f (2) =

 
1 +

2v|a3|

b(1 + v2)
+

|a3|
2

|b|2
�

2X

i=1

CE,i|ai|
2

|b|2

!
�f (2)

S=0,

�f (2)
S=0

m1m2
=

4(2�2
� 1)✏ · v1(2b · ✏ ⇢ · v1 � b · ⇢ ✏ · v1)

|b|2
p

�2 � 1(⇢ · v1)2

+ (1 $ 2) , (27)

where aµ
3 = aµ

1 +aµ
2 . For two Kerr black holes (CE,i = 0)

with equal-and-opposite spins (aµ
1 = �aµ

2 ) we see that

�f (2) = �f (2)
S=0, which we observe also when the spins

are mis-aligned to the plane of scattering.
There is also a 1PM (non-radiating) contribution to

the waveform consisting of single-graviton emission from
either massive body:

f (1)(x̂) =
2m1

⇢ · v1
(✏ · v1)

2 +
2m2

⇢ · v2
(✏ · v2)

2 . (28)

At 1PM order there is manifestly no dependence on either
the spins S

µ⌫
i or impact parameters bµ

i , so the SUSY
identities in Eq. (26) are trivially satisfied.

Finally, the wave memory and 1PM part of the wave-
form contribute to the total radiated angular momentum

4

N (q) and M(q) have a uniform power counting in q for
each spin order:

N (q) = Nµqµ + Nµ⌫qµq⌫ + Nµ⌫⇢q
µq⌫q⇢ , (19)

M(q) = Mµ⌫qµq⌫ + Mµ⌫⇢q
µq⌫q⇢ + Mµ⌫⇢�qµq⌫q⇢q� ,

and the non-spinning result involves only Nµ and Mµ⌫ .
We present full expressions for N and M in the ancillary
file attached to the arXiv submission of this Letter.

To lowest order in qµ, the first integral in eq. (18) is

4⇡

Z

q
��(q · v1)

e�iq·b̃

q2

qµ

q · v2 + i✏

=
Pµ⌫

1 v2,⌫

(�2 � 1)|b̃|1

�
bµ

|b|2

 
1p

�2 � 1
+

u2

|b̃|1

!
,

(20)

where Pµ⌫
i := ⌘µ⌫

�vµ
i v⌫

i is a projector into the rest frame
of the i’th body, |b| = �

p
bµbµ (the impact parameter is

spacelike) and

|b̃|1,2 :=
q

�b̃µPµ⌫
1,2 b̃⌫ =

q
|b|2 + (�2 � 1)u2

2,1 (21)

are the lengths of the shifted impact parameter b̃µ (16)
in the two rest frames. The second integral in eq. (18) is

4⇡

Z

q
��(q · v1)

e�iq·b̃

q2

qµq⌫

q · v2 q · ⇢

=
Kµ⌫

1 v2 · K1 · ⇢ � 2(v2 · K1)(µ(⇢ · K1)⌫)

(�2 � 1) (⇢ · v1)2 |b|2 |b̃|2 |b̃|1

,

(22)

where we have introduced the symmetric tensor

Kµ⌫
i := Pµ⌫

i |b̃|
2
i + (Pi · b̃)µ(Pi · b̃)⌫ , (23)

with the property that Kµ⌫
i vi,⌫ = Kµ⌫

i b̃⌫ = 0. Both
integrals are derived in the Supplementary Material; one
generalizes to higher powers of qµ in the numerators by
taking derivatives with respect to b̃µ.

Results. — The 2PM waveform takes the schematic
form

f (2)

m1m2
=

2X

s=0

1

|b̃|
2s+1
1

"
↵(s)

1 +
�(s)

1

|b̃|2s+2

#
+ (1 $ 2) , (24)

where the coe�cients ↵(s)
i , �(s)

i , provided in the ancillary
file, are associated with the N - and M-type contribu-
tions in Eq. (18) respectively; they are functions of ui,
bµ, vµ

i , ⇢µ, and S
µ⌫
i and bi-linear in ✏µ. The waveform f

is invariant under the SUSY transformations in Eq. (8)
to quadratic order in spin regardless of the values of CE,i.
To see this we expand the waveform at all PM orders in
powers of spin:

f = f0+
2X

i=1

Si,µ⌫fµ⌫
i +

2X

i,j=1

Si,µ⌫Sj,⇢�fµ⌫;⇢�
ij + O(S3) ,

(25)
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where the non-spinning result involves only Nµ and Mµ⌫ .
We present full expressions for N and M in the ancillary
file attached to the arXiv submission of this Letter.
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where Pµ⌫
i := ⌘µ⌫

� vµ
i v⌫

i is a projector into the rest
frame of the i’th body; b2 = |b|2 = �bµbµ (the impact
parameter is spacelike) and

|b̃|1,2 :=
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�b̃µPµ⌫
1,2 b̃⌫ =

q
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2,1 (21)

are the lengths of the shifted impact parameter b̃µ (16)
in the two rest frames. The second integral in eq. (18) is
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where we have introduced the symmetric tensor

Kµ⌫
i := Pµ⌫

i |b̃|
2
i + (Pi · b̃)µ(Pi · b̃)⌫ , (23)

with the property that Kµ⌫
i vi,⌫ = Kµ⌫

i b̃⌫ = 0. Both inte-
grals are derived in the Supplementary Material; versions
with higher powers of qµ in the numerators are derived
by taking derivatives with respect to b̃µ.

Results. — The 2PM waveform takes the schematic
form
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=
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where the coe�cients ↵(s)
i , �(s)

i are associated with the
N - and M-type contributions in Eq. (18) respectively;
they are functions of b, ui, vi, ⇢ and Si and bi-linear
in ✏. In the Kerr-BH case (CE,i = 0) the waveform f
is invariant under the SUSY transformations in Eq. (8):
For this we expand the waveform at any PM order in
powers of spin

f = f0+
2X

i=1

Si,µ⌫fµ⌫
i +

2X

i,j=1

Si,µ⌫Sj,⇢� + O(S3) (25)

where SUSY links higher-spin terms to lower ones

1

2

@f0

@bi,⌫
= vi,µ f [µ⌫]

i ,
1

4

@fµ⌫
i

@bj,⇢
= vj,� fµ⌫;[⇢�]

ij . (26)

To illustrate the waveform we consider the gravita-
tional wave memory �f(x̂) := f(+1, x̂) � f(�1, x̂).
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FIG. 2. Total radiated angular momenta for the scattering of
two Kerr-BHs with v = 0.2 as a function of the angle between
the total initial spins a3 = a1 + a2 and b (with ai · vi =
0) for a range of ratios |a3|/|b|. We show the normalized
ratio of angular momenta emitted orthogonal to the b,v plane
(left plot) and in the b direction (right plot), normalization
is w.r.t. angular momentum emitted in the spin-less.

The constant spin tensors are decomposed in terms of
the Pauli-Lubanski vectors aµ

i as S
µ⌫
i = ✏µ⌫

⇢�v⇢
i a�

i ; they
satisfy ai · vi = 0. In the aligned-spin case where
ai · b = ai · vj = 0, i.e. the spin vectors are orthogo-

nal to the plane of scattering. Writing li =
p

�a2
i the

wave memory is proportional to the non-spinning result:
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+ (1 $ 2) , (27)

where we have introduced aµ
3 = aµ

1 + aµ
2 with length

|a3|. For two Kerr black holes (CE,i = 0) with equal-
and-opposite spins (aµ

1 = �aµ
2 ) the result is the same as

the non-spinning; we observe this also when the spins are
mis-aligned to the plane of scattering.

There is also a 1PM (non-radiating) contribution to
the waveform consisting of single-graviton emission from
either massive body:

f (1)(x̂) =
2m1

⇢ · v1
(✏ · v1)

2 +
2m2

⇢ · v2
(✏ · v2)

2 . (28)

At 1PM order there is manifestly no dependence on either
the spins S

µ⌫
i or impact parameters bµ

i , so the SUSY
identities in Eq. (26) are trivially satisfied.

Finally, the wave memory and 1PM part of the wave-
form contribute to the total radiated angular momentum
J rad

ij . Using three-dimensional Cartesian basis vectors êi,
we choose a frame of reference with the initial velocities
vµ

i restricted to the t–x plane; b = b ê2 is orthogonal to
these. Then we find two non-zero components of J rad

ij :

FIG. 2. Total radiated angular momenta for the scattering of
two Kerr-BHs with v = 0.2 as a function of the angle between
the total initial spins a3 = a1 + a2 and b (with ai · vi =
0) for a range of ratios |a3|/|b|. We show the normalized
ratio of angular momenta emitted orthogonal to the b,v plane
(left plot) and in the b direction (right plot), normalization
is w.r.t. angular momentum emitted in the spinless case.

where fµ⌫
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ij are defined modulo terms that van-
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and these identities are satisfied by the waveform (24).
To illustrate the waveform we consider the gravita-

tional wave memory �f(x̂) := f(+1, x̂) � f(�1, x̂).
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the Pauli-Lubanski vectors aµ
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latter satisfying ai · vi = 0. In the aligned-spin case
ai · b = ai · vj = 0, i.e. the spin vectors are orthogo-
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result:
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where aµ
3 = aµ

1 +aµ
2 . For two Kerr black holes (CE,i = 0)

with equal-and-opposite spins (aµ
1 = �aµ

2 ) we see that

�f (2) = �f (2)
S=0, which we observe also when the spins

are mis-aligned to the plane of scattering.
There is also a 1PM (non-radiating) contribution to

the waveform consisting of single-graviton emission from
either massive body:

f (1)(x̂) =
2m1

⇢ · v1
(✏ · v1)

2 +
2m2

⇢ · v2
(✏ · v2)

2 . (28)

At 1PM order there is manifestly no dependence on either
the spins S

µ⌫
i or impact parameters bµ

i , so the SUSY
identities in Eq. (26) are trivially satisfied.

Finally, the wave memory and 1PM part of the wave-
form contribute to the total radiated angular momentum

Radiated angular momentum in COM:

5

J rad
ij . Using three-dimensional Cartesian basis vectors êi,

we choose a frame of reference with the initial velocities
vµ

i restricted to the t–x plane; b = |b| ê2 is orthogonal to
these. Then we find two non-zero components of J rad

ij :

J rad
xy and J rad

zx , which are conveniently arranged into

J rad
xy + iJ rad

zx

J init
xy

��
S=0

=
4G2m1m2

|b|2
(2�2

� 1)p
�2 � 1
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⇥

 
1 �

2iv a3 · l

|b|(1 + v2)
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(a3 · l)2

|b|2
+

2X
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CE,i

|b|2
(ai · l)2

!

+ O(G3) .
(29)

We normalize with respect to J init
xy

��
S=0

, the initial angu-

lar momentum in the non-spinning case. The spin vec-
tors a1 and a2 are taken in the rest frame of each massive
body; a3 = a1 + a2, l = ê2 + iê3, and

I(v) = �
8

3
+

1

v2
+

(3v2
� 1)

v3
arctanh(v) (30)

is a universal prefactor. Eq. (29) holds in the rest frame
of either body or the center-of-mass (c.o.m.) frame; see
Fig. 2 for plots. For a derivation we refer the reader
to the Supplementary Material. There we also compute
the total radiated energy in the c.o.m. frame. Due to
the multi-scale nature of the waveform it is di�cult to
perform the necessary time and solid angle-integrals, so
we performed a low velocity expansion. For terms up to
O(v2) we find

Erad,LO
CoM =

vG3m2
1m

2
2⇡

|b|3


37

15
+

v(65m1 + 69m2)(a1·ê3)

10|b|(m1 + m2)
+

1503(a1·ê1)(a2·ê1) � 3559(a1·ê2)(a2·ê2) + 1816(a1·ê3)(a2·ê3)

320|b|2

+
9(185 � 176CE,1)(a1·ê1)2 � (3385 � 3472CE,1)(a1·ê2)2 + 8(245 � 236CE,1)(a1·ê3)2

320|b|2
+ (1 $ 2) + O

�
v2
� �

, (31)

where the swap (1 $ 2) does not a↵ect the basis vectors
êi or the constant term 37

15 . It is straighforward to extend
this result to higher orders in v.

Conclusions. — In this Letter we extended the
WQFT to describe spinning compact bodies to quadratic
order in spin, and calculated the leading-PM order wave-
form for highly eccentric (scattering) orbits. Our accom-
panying work [33] presents an application to further ob-
servables such as the spin kick and deflection [26, 29] at
2PM order and gives details on the approximate SUSY
and its relation to the SSC. The radiated energy (31)
should also be particularly useful for future studies. In
Refs. [37, 38] the O(G3) energy loss from a scattering
of non-spinning black holes was recently computed to all
orders in velocity using the KMOC formalism [39] (see
also Ref. [40]); a similar result could conceivably be ob-
tained at O(S2), and then checked against Eq. (31) in
the low-velocity limit. Similarly, the remarkably simple
result for radiated angular momentum (29) at 2PM order
is intriguing; it may be important for understanding the
high-energy limit, see Ref. [41, 42] for the non-spinning
case.

The application of modern on-shell and integration
techniques to compute scattering amplitudes [37, 43–47]
holds great promise for pushing calculations to higher
PM orders. This is demonstrated by the impressive cal-
culation of the 4PM conservative dynamics in the po-
tential region [47, 48] — see also Refs. [41, 42, 45, 49–
53]. The connection between amplitudes and classical
physics was studied in Refs. [39, 40, 54], and Refs. [27, 54]
discussed the connection to bound orbits. Our WQFT
framework [16, 17] provides an e�cient, rather intuitive
way to connect amplitude and (classical) worldline EFT
calculations. It may therefore benefit from modern am-
plitude techniques at higher PM orders in future work,
building on the compact Lorentz-covariant master inte-
grals provided here.
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ful for use of G. Kälin’s C++ graph library. GUJ’s and
GM’s research is funded by the Deutsche Forschungsge-
meinschaft (DFG, German Research Foundation) Pro-
jektnummer 417533893/GRK2575 “Rethinking Quan-
tum Field Theory”.

[1] B.P. Abbott et al. (LIGO Scientific, Virgo), “Obser-
vation of Gravitational Waves from a Binary Black
Hole Merger,” Phys. Rev. Lett. 116, 061102 (2016),
arXiv:1602.03837 [gr-qc]; “GWTC-1: A Gravitational-

Wave Transient Catalog of Compact Binary Mergers Ob-
served by LIGO and Virgo during the First and Sec-
ond Observing Runs,” Phys. Rev. X 9, 031040 (2019),
arXiv:1811.12907 [astro-ph.HE]; R. Abbott et al. (LIGO

Update Kovacs-Thorne with spin.

 46

33

µ, �k
q1 �

q2 �

1

2

(a)

µ, �

!2
��

k
q1 �

1

2

(b)

µ, �

k

q1 �

1

2

(c)

µ, �

!2
��

k
q1 �

1

2

(d)

FIG. 1. The four diagram topologies contributing to the 2PM
Bremsstrahlung up to O(S2), where !i = k ·vi by energy con-
servation at the worldline vertices. For diagrams (b)–(d) we
also include the corresponding flipped topologies with massive
bodies 1$2; for diagram (d) (which includes the propagating
fermion  0µ

2 ) we also include the graph with the arrow re-
versed.

where ��(!) := (2⇡)�(!) and we have used S
µ⌫ =

�2i ̄[µ ⌫]. The other worldline-based vertices required
for the 2PM Bremsstrahlung all appear in Fig. 1: the
two-point interaction between a graviton and a single zµ

mode in (b), the two-graviton emission vertex in (c), and
the two-point interaction between a graviton and  0µ in
(d). Full expressions for these vertices are provided in
the Supplementary Material.

Waveform from WQFT. — To describe the
Bremsstrahlung at 2PM order including spin e↵ects we
compute the expectation value k2

hhµ⌫(k)iWQFT. This
requires us to compute four kinds of Feynman graphs,
illustrated in Fig. 1. Explicit expressions for the first
two graphs (a) and (b) were given in the non-spinning
case [16]; these are now modified by terms up to O(S2).
Graphs (c) and (d) are unique to the spinning case — for
the latter we sum over both routings of the fermion line.

From this result we seek to obtain the waveform in
spacetime in the wave zone, where the distance to the
observer |x| = r is large compared to all other lengths.
Following Ref. [16] the gauge-invariant frequency-domain
waveform 4G Sij(kµ = ⌦ (1, x̂)) is extracted from the
WQFT via

Sµ⌫(k) =
2


k2

hhµ⌫(k)iWQFT , (12)

where ⌦ is the GW frequency and x̂ = x/r points to-
wards the observer. However, it is advantageous to study
the time-domain waveform f(u, x̂) which is given by a
Fourier transform:

✏µ⌫hµ⌫ =
f(u, x̂)

r
=

4G

r

Z

⌦
e�ik·x ✏µ⌫ Sµ⌫(k)

���
kµ=⌦ ⇢µ

,

(13)

where we have contracted with a polarization tensor
✏µ⌫ = 1

2✏
µ✏⌫ ,

R
⌦ :=

R 1
�1

d⌦
2⇡ , ⇢µ = (1, x̂) and, in a PM

decomposition f =
P

n Gnf (n), we seek the 2PM compo-
nent f (2). Note that k · x = ⌦(t � r) yields the retarded
time u = t � r, and ✏ · ✏ = ✏ · ⇢ = 0.

Integration. — Our integration procedure follows
closely that used for the non-spinning calculation in
Ref. [16], the main di↵erence being that we maintain
four-dimensional Lorentz covariance. Each diagram con-
tributing to k2

hhµ⌫(k)iWQFT carries the overall factor

µ1,2(k) = ei(q1·b1+q2·b2)��(q1 · v1)�
�(q2 · v2)�

�(k � q1 � q2) .
(14)

We integrate over qi, the momentum emitted from each
worldline (see Fig. 1). When we also integrate over ⌦ —
as in Eq. (13) — the full integration measure becomes

Z

⌦,q1,q2

µ1,2(k)e�ik·x =
1

⇢ · v2

Z

q1

��(q1 · v1)e
�iq1·b̃ , (15)

where
R

qi
:=

R d4qi

(2⇡)4 ; the delta function constraints give

⌦ = q1·v2

⇢·v2

and q2 = k�q1. The shifted impact parameter

b̃µ is

b̃µ = b̃µ
2 � b̃µ

1 , b̃µ
i = bµ

i + uiv
µ
i , (16)

which extends the original impact parameter bµ = bµ
2 �

bµ
1 along the undeflected trajectories of the two bodies.

Finally, ui is the retarded time in the i’th rest frame:

ui =
⇢ · (x � bi)

⇢ · vi
, (17)

This implies ⇢ · b̃i = ⇢ · x = u, so ⇢ · b̃ = 0.
Rewriting the integral measure as in Eq. (15) is con-

venient for performing the integrals of diagrams (b)–(d),
in the rest frame of body 1. The mirrored counterparts
to these diagrams are easily recovered after integration
using the 1 $ 2 symmetry of the waveform. To inte-
grate diagram (a) we insert the partial-fraction identity
q�2
1 q�2

2 = �q�2
1 (2k ·q1)�1

�q�2
2 (2k ·q2)�1 (which is valid

for k on-shell) and focus on the first term.
The full 2PM waveform is then written schematically

as (dropping the subscript on q1)GM: fix margin

f (2)

m1m2
= 4⇡

Z

q
��(q · v1)

e�iq·b̃

q2

✓
N (q)

q · v2 + i✏
+

M(q)

(q · v2)(q · ⇢)

◆
,

+ (1 $ 2) , (18)
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FIG. 1. The four diagram topologies contributing to the 2PM
Bremsstrahlung up to O(S2), where !i = k ·vi by energy con-
servation at the worldline vertices. For diagrams (b)–(d) we
also include the corresponding flipped topologies with massive
bodies 1$2; for diagram (d) (which includes the propagating
fermion  0µ

2 ) we also include the graph with the arrow re-
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Next we consider the worldline vertices. The simplest
of these is the single-graviton emission vertex:

hµ⌫(k)

= �i
m

2
eik·b��(k · v)

✓
vµv⌫ + ik⇢S

⇢(µv⌫)

+
1

2
k⇢k�S

⇢µ
S

⌫� +
CE

2
vµv⌫(k · S · S · k)

◆
,

(11)

where ��(!) := (2⇡)�(!) and we have used S
µ⌫ =

�2i ̄[µ ⌫]. The other worldline-based vertices required
for the 2PM Bremsstrahlung all appear in Fig. 1: the
two-point interaction between a graviton and a single zµ

mode in (b), the two-graviton emission vertex in (c), and
the two-point interaction between a graviton and  0µ in
(d). Full expressions for these vertices are provided in
the Supplementary Material.

Waveform from WQFT. — To describe the
Bremsstrahlung at 2PM order including spin e↵ects we
compute the expectation value k2

hhµ⌫(k)iWQFT. This
requires us to compute four kinds of Feynman graphs,
illustrated in Fig. 1. Explicit expressions for the first
two graphs (a) and (b) were given in the non-spinning
case [16]; these are now modified by terms up to O(S2).
Graphs (c) and (d) are unique to the spinning case — for
the latter we sum over both routings of the fermion line.

From this result we seek to obtain the waveform in
spacetime in the wave zone, where the distance to the
observer |x| = r is large compared to all other lengths.
Following Ref. [16] the gauge-invariant frequency-domain
waveform 4G ✏µ⌫Sµ⌫(kµ = ⌦ (1, x̂)) is extracted from the
WQFT via

Sµ⌫(k) =
2


k2

hhµ⌫(k)iWQFT , (12)

where ⌦ is the GW frequency and x̂ = x/r points to-
wards the observer. However, it is advantageous to study
the time-domain waveform f(u, x̂) which is given by a
Fourier transform:

✏µ⌫hµ⌫ =
f(u, x̂)
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position f =
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n Gnf (n) we seek the 2PM component
f (2). Note that k · x = ⌦(t � r) yields the retarded time
u = t � r, and ✏ · ✏ = ✏ · ⇢ = 0.

Integration. — Our integration procedure follows
closely that used for the non-spinning calculation in
Ref. [16], the main di↵erence being that we maintain
four-dimensional Lorentz covariance. Each diagram con-
tributing to k2

hhµ⌫(k)iWQFT carries the overall factor
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We integrate over qi, the momentum emitted from each
worldline (see Fig. 1). When we also integrate over ⌦ —
as in Eq. (13) — the full integration measure becomes
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where
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and q2 = k�q1. The shifted impact parameter,
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extends the original impact parameter bµ = bµ
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1 along
the undeflected trajectories of the two bodies. Finally, ui

is the retarded time in the i’th rest frame:

ui =
⇢ · (x � bi)

⇢ · vi
, (17)

This implies ⇢ · b̃i = ⇢ · x = u, so ⇢ · b̃ = 0.
Rewriting the integral measure as in Eq. (15) is con-

venient for performing the integrals of diagrams (b)–(d),
in the rest frame of body 1. The mirrored counterparts
to these diagrams are easily recovered after integration
using the 1 $ 2 symmetry of the waveform. To inte-
grate diagram (a) we insert the partial-fraction identity
q�2
1 q�2

2 = �q�2
1 (2k ·q1)�1

�q�2
2 (2k ·q2)�1 (which is valid

for k on-shell) and focus on the first term.
The full 2PM waveform is then written schematically
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the N - and M-contributions corresponding to diagrams
(b)–(d) and (a) in Fig. 1 respectively. The numerators
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FIG. 1. The four diagram topologies contributing to the 2PM
Bremsstrahlung up to O(S2), where !i = k ·vi by energy con-
servation at the worldline vertices. For diagrams (b)–(d) we
also include the corresponding flipped topologies with massive
bodies 1$2; for diagram (d) (which includes the propagating
fermion  0µ

2 ) we also include the graph with the arrow re-
versed.

where ��(!) := (2⇡)�(!) and we have used S
µ⌫ =

�2i ̄[µ ⌫]. The other worldline-based vertices required
for the 2PM Bremsstrahlung all appear in Fig. 1: the
two-point interaction between a graviton and a single zµ

mode in (b), the two-graviton emission vertex in (c), and
the two-point interaction between a graviton and  0µ in
(d). Full expressions for these vertices are provided in
the Supplementary Material.

Waveform from WQFT. — To describe the
Bremsstrahlung at 2PM order including spin e↵ects we
compute the expectation value k2

hhµ⌫(k)iWQFT. This
requires us to compute four kinds of Feynman graphs,
illustrated in Fig. 1. Explicit expressions for the first
two graphs (a) and (b) were given in the non-spinning
case [16]; these are now modified by terms up to O(S2).
Graphs (c) and (d) are unique to the spinning case — for
the latter we sum over both routings of the fermion line.

From this result we seek to obtain the waveform in
spacetime in the wave zone, where the distance to the
observer |x| = r is large compared to all other lengths.
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where ⌦ is the GW frequency and x̂ = x/r points to-
wards the observer. However, it is advantageous to study
the time-domain waveform f(u, x̂) which is given by a
Fourier transform:
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nent f (2). Note that k · x = ⌦(t � r) yields the retarded
time u = t � r, and ✏ · ✏ = ✏ · ⇢ = 0.

Integration. — Our integration procedure follows
closely that used for the non-spinning calculation in
Ref. [16], the main di↵erence being that we maintain
four-dimensional Lorentz covariance. Each diagram con-
tributing to k2

hhµ⌫(k)iWQFT carries the overall factor

µ1,2(k) = ei(q1·b1+q2·b2)��(q1 · v1)�
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(14)

We integrate over qi, the momentum emitted from each
worldline (see Fig. 1). When we also integrate over ⌦ —
as in Eq. (13) — the full integration measure becomes
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1 along the undeflected trajectories of the two bodies.

Finally, ui is the retarded time in the i’th rest frame:

ui =
⇢ · (x � bi)

⇢ · vi
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This implies ⇢ · b̃i = ⇢ · x = u, so ⇢ · b̃ = 0.
Rewriting the integral measure as in Eq. (15) is con-

venient for performing the integrals of diagrams (b)–(d),
in the rest frame of body 1. The mirrored counterparts
to these diagrams are easily recovered after integration
using the 1 $ 2 symmetry of the waveform. To inte-
grate diagram (a) we insert the partial-fraction identity
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for k on-shell) and focus on the first term.
The full 2PM waveform is then written schematically
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the N - and M-contributions corresponding to diagrams
(b)–(d) and (a) in Fig. 1 respectively. The numerators
N (q) and M(q) have a uniform power counting in q for
each spin order:

N (q) = Nµqµ + Nµ⌫qµq⌫ + Nµ⌫⇢q
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FIG. 1. The four diagram topologies contributing to the 2PM
Bremsstrahlung up to O(S2), where !i = k ·vi by energy con-
servation at the worldline vertices. For diagrams (b)–(d) we
also include the corresponding flipped topologies with massive
bodies 1$2; for diagram (d) (which includes the propagating
fermion  0µ

2 ) we also include the graph with the arrow re-
versed.

Next we consider the worldline vertices. The simplest
of these is the single-graviton emission vertex:
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where ��(!) := (2⇡)�(!) and we have used S
µ⌫ =

�2i ̄[µ ⌫]. The other worldline-based vertices required
for the 2PM Bremsstrahlung all appear in Fig. 1: the
two-point interaction between a graviton and a single zµ

mode in (b), the two-graviton emission vertex in (c), and
the two-point interaction between a graviton and  0µ in
(d). Full expressions for these vertices are provided in
the Supplementary Material.

Waveform from WQFT. — To describe the
Bremsstrahlung at 2PM order including spin e↵ects we
compute the expectation value k2

hhµ⌫(k)iWQFT. This
requires us to compute four kinds of Feynman graphs,
illustrated in Fig. 1. Explicit expressions for the first
two graphs (a) and (b) were given in the non-spinning
case [16]; these are now modified by terms up to O(S2).
Graphs (c) and (d) are unique to the spinning case — for
the latter we sum over both routings of the fermion line.

From this result we seek to obtain the waveform in
spacetime in the wave zone, where the distance to the
observer |x| = r is large compared to all other lengths.
Following Ref. [16] the gauge-invariant frequency-domain
waveform 4G ✏µ⌫Sµ⌫(kµ = ⌦ (1, x̂)) is extracted from the
WQFT via

Sµ⌫(k) =
2


k2

hhµ⌫(k)iWQFT , (12)

where ⌦ is the GW frequency and x̂ = x/r points to-
wards the observer. However, it is advantageous to study
the time-domain waveform f(u, x̂) which is given by a
Fourier transform:

✏µ⌫hµ⌫ =
f(u, x̂)
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We have contracted with a polarization tensor ✏µ⌫ =
1
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R 1
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2⇡ , and ⇢µ = (1, x̂); in a PM decom-
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n Gnf (n) we seek the 2PM component
f (2). Note that k · x = ⌦(t � r) yields the retarded time
u = t � r, and ✏ · ✏ = ✏ · ⇢ = 0.

Integration. — Our integration procedure follows
closely that used for the non-spinning calculation in
Ref. [16], the main di↵erence being that we maintain
four-dimensional Lorentz covariance. Each diagram con-
tributing to k2

hhµ⌫(k)iWQFT carries the overall factor

µ1,2(k) = ei(q1·b1+q2·b2)��(q1 · v1)�
�(q2 · v2)�
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We integrate over qi, the momentum emitted from each
worldline (see Fig. 1). When we also integrate over ⌦ —
as in Eq. (13) — the full integration measure becomes
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where
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and q2 = k�q1. The shifted impact parameter,
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extends the original impact parameter bµ = bµ
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1 along
the undeflected trajectories of the two bodies. Finally, ui

is the retarded time in the i’th rest frame:

ui =
⇢ · (x � bi)

⇢ · vi
, (17)

This implies ⇢ · b̃i = ⇢ · x = u, so ⇢ · b̃ = 0.
Rewriting the integral measure as in Eq. (15) is con-

venient for performing the integrals of diagrams (b)–(d),
in the rest frame of body 1. The mirrored counterparts
to these diagrams are easily recovered after integration
using the 1 $ 2 symmetry of the waveform. To inte-
grate diagram (a) we insert the partial-fraction identity
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2 = �q�2
1 (2k ·q1)�1
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2 (2k ·q2)�1 (which is valid

for k on-shell) and focus on the first term.
The full 2PM waveform is then written schematically

as (dropping the subscript on q1)

f (2)

m1m2
= 4⇡

Z

q
��(q · v1)

e�iq·b̃

q2

✓
N (q)

q · v2 + i✏
+

M(q)

(q · v2)(q · ⇢)

◆
,
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the N - and M-contributions corresponding to diagrams
(b)–(d) and (a) in Fig. 1 respectively. The numerators

4

N (q) and M(q) have a uniform power counting in q for
each spin order:

N (q) = Nµqµ + Nµ⌫qµq⌫ + Nµ⌫⇢q
µq⌫q⇢ , (19)

M(q) = Mµ⌫qµq⌫ + Mµ⌫⇢q
µq⌫q⇢ + Mµ⌫⇢�qµq⌫q⇢q� ,

and the non-spinning result involves only Nµ and Mµ⌫ .
We present full expressions for N and M in the ancillary
file attached to the arXiv submission of this Letter.

To lowest order in qµ, the first integral in eq. (18) is
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where Pµ⌫
i := ⌘µ⌫

�vµ
i v⌫

i is a projector into the rest frame
of the i’th body, |b| = �
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bµbµ (the impact parameter is
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are the lengths of the shifted impact parameter b̃µ (16)
in the two rest frames. The second integral in eq. (18) is
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where we have introduced the symmetric tensor

Kµ⌫
i := Pµ⌫

i |b̃|
2
i + (Pi · b̃)µ(Pi · b̃)⌫ , (23)

with the property that Kµ⌫
i vi,⌫ = Kµ⌫

i b̃⌫ = 0. Both
integrals are derived in the Supplementary Material; one
generalizes to higher powers of qµ in the numerators by
taking derivatives with respect to b̃µ.

Results. — The 2PM waveform takes the schematic
form
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where the coe�cients ↵(s)
i , �(s)

i , provided in the ancillary
file, are associated with the N - and M-type contribu-
tions in Eq. (18) respectively; they are functions of ui,
bµ, vµ

i , ⇢µ, and S
µ⌫
i and bi-linear in ✏µ. The waveform f

is invariant under the SUSY transformations in Eq. (8)
to quadratic order in spin regardless of the values of CE,i.
To see this we expand the waveform at all PM orders in
powers of spin:
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(25)
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where the non-spinning result involves only Nµ and Mµ⌫ .
We present full expressions for N and M in the ancillary
file attached to the arXiv submission of this Letter.
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where we have introduced the symmetric tensor
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i |b̃|
2
i + (Pi · b̃)µ(Pi · b̃)⌫ , (23)

with the property that Kµ⌫
i vi,⌫ = Kµ⌫

i b̃⌫ = 0. Both inte-
grals are derived in the Supplementary Material; versions
with higher powers of qµ in the numerators are derived
by taking derivatives with respect to b̃µ.

Results. — The 2PM waveform takes the schematic
form
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where the coe�cients ↵(s)
i , �(s)

i are associated with the
N - and M-type contributions in Eq. (18) respectively;
they are functions of b, ui, vi, ⇢ and Si and bi-linear
in ✏. In the Kerr-BH case (CE,i = 0) the waveform f
is invariant under the SUSY transformations in Eq. (8):
For this we expand the waveform at any PM order in
powers of spin

f = f0+
2X

i=1

Si,µ⌫fµ⌫
i +
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where SUSY links higher-spin terms to lower ones
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i

@bj,⇢
= vj,� fµ⌫;[⇢�]

ij . (26)

To illustrate the waveform we consider the gravita-
tional wave memory �f(x̂) := f(+1, x̂) � f(�1, x̂).
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FIG. 2. Total radiated angular momenta for the scattering of
two Kerr-BHs with v = 0.2 as a function of the angle between
the total initial spins a3 = a1 + a2 and b (with ai · vi =
0) for a range of ratios |a3|/|b|. We show the normalized
ratio of angular momenta emitted orthogonal to the b,v plane
(left plot) and in the b direction (right plot), normalization
is w.r.t. angular momentum emitted in the spin-less.

The constant spin tensors are decomposed in terms of
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i ; they
satisfy ai · vi = 0. In the aligned-spin case where
ai · b = ai · vj = 0, i.e. the spin vectors are orthogo-
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where we have introduced aµ
3 = aµ

1 + aµ
2 with length

|a3|. For two Kerr black holes (CE,i = 0) with equal-
and-opposite spins (aµ

1 = �aµ
2 ) the result is the same as

the non-spinning; we observe this also when the spins are
mis-aligned to the plane of scattering.

There is also a 1PM (non-radiating) contribution to
the waveform consisting of single-graviton emission from
either massive body:
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At 1PM order there is manifestly no dependence on either
the spins S

µ⌫
i or impact parameters bµ

i , so the SUSY
identities in Eq. (26) are trivially satisfied.

Finally, the wave memory and 1PM part of the wave-
form contribute to the total radiated angular momentum
J rad

ij . Using three-dimensional Cartesian basis vectors êi,
we choose a frame of reference with the initial velocities
vµ

i restricted to the t–x plane; b = b ê2 is orthogonal to
these. Then we find two non-zero components of J rad

ij :

FIG. 2. Total radiated angular momenta for the scattering of
two Kerr-BHs with v = 0.2 as a function of the angle between
the total initial spins a3 = a1 + a2 and b (with ai · vi =
0) for a range of ratios |a3|/|b|. We show the normalized
ratio of angular momenta emitted orthogonal to the b,v plane
(left plot) and in the b direction (right plot), normalization
is w.r.t. angular momentum emitted in the spinless case.
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and these identities are satisfied by the waveform (24).
To illustrate the waveform we consider the gravita-
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identities in Eq. (26) are trivially satisfied.

Finally, the wave memory and 1PM part of the wave-
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COMPARISON TO NUMERICAL RELATIVITY AND RESUMMATION TECHNIQUES

[Rettengo,Pratten,Thomas,Schmidt,Damour] 11
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FIG. 6. Scattering angle comparison between NR data and
both the perturbative, and the EOB-transcribed, PM-based
predictions for equal-mass, equal-spin simulations. The x-axis
represents ‰e� = ‰1 = ‰2. As in Fig. 1, we use dashed lines
for the PM-expanded scattering angles, while the solid lines
correspond to the weob-resummed ones. Similarly to the non-
spinning case, the weob-resummed predictions are markedly
mo accurate, especially the 4PM-informed ones

we shall consider the following cases: (i) 1PM accuracy
in all couplings up to quartic-in-spin terms (labelled as
1PM); (ii) 2PM accuracy in all couplings up to S4 (la-
belled as 2PM); (iii) 3PM accuracy in the (S0, S1, S2)
couplings and 2PM accuracy in the (S3, S4) ones (la-
belled as 3PM); and (iv) (4PM,3PM,3PM,2PM,2PM) ac-
curacy in the (S0, S1, S2, S3, S4) couplings (labelled as
4PM).

The PM-expanded results are rather unsatisfactory.
Both the spin-averaged baseline and the spin-dependence
are inaccurate, even for the highest PM accuracy. The
agreement becomes, however, more satisfactory in the
high-positive-spin domain which involves (because of the
repulsive e�ect of parallel spins) weaker-field interactions.

By contrast, the weob-resummed angles show a system-
atically better agreement with NR data points, especially
for the highest PM accuracy which exhibits a remarkable
agreement.

VI. DISCUSSION

In this paper we presented numerical simulations of
the scattering of equal-mass BBHs using the Einstein

Toolkit [101].
We first computed three sequences of equal-mass, non-

spinning BBHs at fixed initial energy and varying an-
gular momentum. The first sequence, with initial en-
ergy Êin,1 ƒ 1.023 reproduces and extends the results
of Ref. [99]. These served as useful cross-check against
previous simulations performed with di�erent numerical
codes. They were also used to improve the estimate of the

critical angular momentum L0, marking the boundary
between scattering and plunging systems. We then com-
puted two other sequences of simulations at higher ener-
gies, Êin,2 ƒ 1.040 and Êin,3 ƒ 1.055, probing stronger-
field regimes. These two series allowed us to compute the
critical angular momentum L0 in previously unexplored
regions of center-of-mass velocities, vcm,2 ƒ 0.2757 and
vcm,3 ƒ 0.3199. This leaves as regions not yet covered
by NR simulations of nonspinning BHs the low velocity
regime, vcm . 0.2, and the intermediate velocity one,
vcm ƒ 0.3 ≠ 0.6.

We then presented, for the first time, a suite of numer-
ical simulations of equal-mass aligned-spins BHs. For
these, we fixed both initial energy and angular momen-
tum to be (Êin, L̂in) ƒ (1.023, 1.1456) and varied the
individual spins up to dimensionless spin magnitudes
|‰i| = 0.8. We found (as expected both from NR sim-
ulations of coalescing binaries and from analytical pre-
dictions) the spin interaction to depend mainly on the
total spin. We extracted from numerical data the co-
e�cients of the linear and quadratic spin dependence of
the scattering angle at the considered energy and angular
momentum.

We compared our numerical results to PM-based pre-
dictions for the scattering angles of equal-mass BHs.
We used two types of PM-based analytical predic-
tions: (i) usual, perturbative PM-expanded results,
see Eq. (4.4); and (ii) a transcription of PM results
within the EOB formalism using a (spin-dependent,
radiation-reacted) radial potential in isotropic (EOB)
gauge, weob(r̄, L, S1, S2), see Eq. (4.17) We found that
PM-expanded scattering angles exhibit (both for non-
spinning and spinning systems) an acceptable agreement
with NR data only for large impact parameters, consis-
tently with the PM framework being a weak-field expan-
sion. On the contrary, a transcription of the PM informa-
tion into a corresponding (energy-dependent, radiation-
reacted, spin-dependent) EOB gravitational potential
weob(r̄, L, S1, S2) yields remarkable improvements in the
scattering angle comparisons, especially when using the
highest available PM accuracy. See Figs. 4 and 6

Visible discrepancies between NR results and EOB-
PM-predicted ones occur only for the few cases where the
impact parameter is close to the critical one leading to
plunge rather than scattering; see Fig. 5 where we com-
pare (for non-spinning systems) the EOB-PM potential
to a corresponding potential directly extracted from the
NR scattering data by inverting the relation: potential
æ scattering angle. We could, however, improve the ac-
curacy of the EOB-PM gravitational potential by adding
(an NR-fitted) additional (energy-dependent) 5PM-level
contribution wfit

5
(“)/r̄5, see Eq. (5.2).

The present work can be extended in several directions.
On the numerical side a more thorough exploration of
the parameter space is called for, notably by consider-
ing di�erent energies, mass ratios, and spin orientations.
In addition, it would be useful to complete the compu-
tation of the scattering angles by accurately estimating

Analytic 4PM input includes:


4PM: no-spin

3PM:  

2PM:  

S1, S2

S1, S2, S3, S4

[Dlapa,Källin,Liu,Neef,Porto]

[Jakobsen,Mogull]

[Bern,Kosmopoulos,Luna,Roiban,Teng]

[Aoude,Haddad,Helset]

[Daamgaard,Vanhove,Hansen,Plante]

Interesting to see an update!

Missing spin our fresh 4PM 
spin contributions!

[Cordero,Ruf,Kraus,Lin,Zeng]



PM STATE-OF-THE-ART

order deflection & spin kick waveform

plain spin-orbit spin-spin spin>2 tidal plain spin-orbit 
spin-spin tidal

1PM X trivial trivial trivial

2PM

3PM 
w/o r-r

3PM 
r-r

4PM 
w/o r-r

4PM 
w r-r

~ tree-level 

~ 1-loop

~ 2-loop

~ 3-loop

Integration 
complexity
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WQFT

WQFT

Amps

WQFT WEFT

WEFT

WQFT WEFT

Amps HEFT

WEFT Worldline effective theory
[Källin,Porto,Dlapa,Cho,Liu,..]
[Riva,Vernizzi,Mougiakakos..]

Amps Scattering amplitudes
[Bern,Roiban,Shen,Parra-Martinez,Ruf,Zeng..]                                     
[Bjerrum-Bohr,Damgaard,Plante,Vanhove,..]                                                 
[Di Vecchia,Veneziano,Heissenberg,Russo]
[Solon,Cheung,..][Huang,..]
[Guevera,Ochirov,Vines,…]
[Johansson,Pichini[Kosower,O’Connell,Maybee,
Cristofoli, Gonzo…]

HEFT Heavy BH effective theory
[Aoude,Haddad,Helset,Damgaard]
[Brandhuber,Travaglini,Chen]
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(…) : partial results

)( Amps

[Jakobsen,Mogull,Plefka,Sauer,Steinhoff]
WQFT

[Bastianelli,Comberiati,de la Cruz]
[Comberiati,Shi][Wang]



SUMMARY

•„Quantize“ world-line degrees of freedom  

• One-point functions = observables 

• Classical theory = tree-level diagrams  

• IN-IN Formalism: All propagators retarded. 

• Include spin degrees of freedom through world-line supersymmetry

Worldline Quantum Field Theory: Highly efficient technology 
for classical scattering in GR
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OUTLOOK

•Higher precision (4PM Spin-Spin, 
5PM) 

•Higher spin (beyond Spin-Spin) 

•Bound orbits? Resummation in 
Effective-one-body Formalism 

•Contact to self force expansion?

WQFT still needs to be extended:
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Thank you for your attention!

WE ARE HIRING!

•Fall 23: Long Term Postdoc (5y), 2 PhD 

•Fall 24: Postdoc (4y), 1 PhD
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POST-NEWTONIAN VS POST-MINKOWSKIAN EXPANSIONS
Conservative non-spinning 2-body dynamics:

0PN 1PN 2PN 3PN 4PN 5PN

0PM 1 v2 v4 v6 v8 v10 v12 …

1PM G/r G v2/r G v4/r G v6/r G v8/r G v10/r …

2PM G2 1/r2 G2 v2/r2  G2 v4/r2 G2 v6/r2 G2 v8/r2 …

3PM G3 1/r3  G3 v2/r3 G3 v6/r3 G3 v8/r3 …

(4PM) G4 1/r4 G4 v2/r4 G4 v6/r4 …

…. G5 1/r5 :

PM state-of-the-art

PN state-of-the-art

[Bern,Cheung,Roiban,Shen, Solon,Zeng][Kälin, Liu, Porto][Di Vecchia, Heissenberg, Russo,Veneziano][Bjerrum-
Bohr,Vanhove,Damgaard][Brandhuber,Chen,Travaglini,Wen][Jakobsen,Mogull,JP,Sauer]

[Bern,Parra-Martinez,Roiban,Ruf,Shen,Solon,Zeng][Dlapa,Källin,Liu,Porto]

[many]

[Newton] [EIH][Westpfahl]

[Einstein]

~ tree-level 

~ 1-loop

~ 2-loop

~ 3-loop

Integration 
complexity


