Self-force in hyperbolic scattering

Leor Barack University of Southampton

• Part A: Introduction to gravitational self-force in classical GR

- Foundations
- Sample of results for bound orbits

• Part B: Self-force in black-hole scattering

- First results in a scalar-field toy model [LB & Long 2021, 2022]
- Comparison with Amplitude PM calculations [LB, Bern et al., 2023]
- Current and future work [Whittall & LB, 2023]

PART A: INTRODUCTION TO SELF-FORCE

Nonexpert review:

Barack & Pound, *Self-force and radiation reaction in general relativity*, 2019 Rep. Prog. Phys. **82** 016904 [arXiv:1805.10385]

Domains of the 2-body problem in classical GR

EMRIs as astrophysical probes of strong-field physics

- Small mass ratio, $q \sim \frac{10 M_{\odot}}{10^6 M_{\odot}} = 10^{-5} \ll 1$
 - \Rightarrow Slow evolution, over $T_{\rm RR} \sim T_{\rm orb}/q \gg T_{\rm orb}$
 - \Rightarrow Very many grav. wave cycles in LISA band: $N_{\rm orb} \sim 1/q \sim 10^5$
- Orbits very complicated. Geodesics generically tri-periodic & ergodic.

- Precision probe of strong-field geometry:
 - "black-hole geodesy"
 - tests of GR

Problem of motion

Guiding principles:

- "Point particle" does not make sense as a fundamental object in GR, but "point particle equation of motion" can — in a certain effective way.
- No need for ad-hoc regularization; EoM rigorously derived via a limit process.

Matched Asymptotic Expansions

Mino, Sasaki & Tanaka (1997), building on Burke, d'Eath, Kates, Thorne & Hartle,...

- Trajectory defined on background spacetime using a suitable far-zone limit; constrained by matching near & far expansions of the metric in the matching zone.
- No resort to "point particles": notion derived rather than assumed

Equation of Motion with 1st-order self-force

Metric perturbation at x^{μ} is a sum of "direct" and "tail" contributions:

$$g_{\alpha\beta}^{\text{full}} = g_{\alpha\beta}^{(0)} + h_{\alpha\beta}^{\text{direct}} + h_{\alpha\beta}^{\text{tail}}$$

$$m\frac{D^2 z^{\alpha}}{d\tau^2} = m\nabla^{\alpha\beta\gamma} h^{\text{tail}}_{\beta\gamma}\Big|_{z(\tau)} =: F^{\alpha}_{\text{self}}$$

$$\nabla^{\alpha\beta\gamma}h_{\gamma\beta} := -\frac{1}{2}(g^{\alpha\beta}_{(0)} + u^{\alpha}u^{\beta})u^{\gamma}u^{\delta}\left(2\nabla^{(0)}_{\delta}h_{\beta\gamma} - \nabla^{(0)}_{\beta}h_{\gamma\delta}\right)$$

"R field" reformulation [Detweiler & Whiting 2003]

- $h_{\alpha\beta}^{\text{tail}}$ is **not** a vacuum solution of the linearized Einstein equations
- But one can construct a vacuum solution $h_{\alpha\beta}^{R}$ [associated with a certain (a-causal) Green function in the Hadamard representation] such that $\nabla h^{R}|_{z} = \nabla h^{tail}|_{z}$.

$$\Rightarrow \quad F_{\rm self}^{\alpha} = m \nabla^{\alpha\beta\gamma} h_{\beta\gamma}^{\mathbf{R}} = \nabla^{\alpha\beta\gamma} \left(h_{\beta\gamma}^{\rm ret} - h_{\beta\gamma}^{\mathbf{S}} \right)$$

- Interpretation: orbit is a geodesic in the effective metric.
- Similar result for extended material objects [Harte 2010], 2nd-order self-force (Pound 2012), non-perturbative [Harte 2012]

Practical schemes in black-hole spacetimes: I. Mode-sum method

Subtraction of h^S_{αβ} done mode-by-mode in a multipole expansion about large BH:

$$\begin{split} F_{\rm self}(z(\tau)) &= m \sum_{\ell=0}^{\infty} \left[(\nabla h^{\rm ret})^{\ell} - (\nabla h^{S})^{\ell} \right] \Big|_{z(\tau)} \\ &= \sum_{\ell=0}^{\infty} \left[m (\nabla h^{\rm ret})^{\ell} \Big|_{z(\tau)} - A(z)\ell - B(z) - C(z)/\ell \right] - D(z) \end{split}$$

- Regularization parameters derived analytically from local form of $h_{\alpha\beta}^S$; known for generic orbits in Kerr (LB & Ori 2000-03)
- Numerical input: Modes of $h_{\beta\gamma}$ obtained by solving metric perturbation equations with a particle (delta function) source and retarded boundary conditions.

Practical schemes in black-hole spacetimes: II. Puncture (or "effective source") method

- Analytically construct Puncture field $h^P_{\alpha\beta} \approx h^S_{\alpha\beta}$ so that $\nabla h^P = \nabla h^S$ at particle.
- Write linearized field equation $\delta G_{\mu\nu}(h) = T_{\mu\nu}$ in "punctured" form

$$\delta G_{\mu\nu}(h - h^P) = T_{\mu\nu} - \delta G_{\mu\nu}(h^P) =: S_{\mu\nu}^{\text{eff}}$$

• Numerically solve for Residual field $h^{\text{Res}} := h - h^{P}$. Then $F_{\text{self}} = m \nabla h^{\text{Res}}$

Implementations (2007–) by

- LB, Golbourn, Dolan, Thornburg,...
- Detweiler, Vega, Diener, Wardell,...

credit: J. Thornburg & B. Wardell

Self-force along fixed geodesic orbits

sample results for equatorial orbits in Kerr (a = 0.5M)

Based on data from M. van de Meent (2016) using numerical implementation of Mano-Suzuki-Takasugi method + metric reconstruction + mode-sum regularization.

Self-force along fixed geodesic orbits

sample results for an inclined eccentric orbit in Kerr

 $a = 0.5M, p = 10, e = 0.1, \cos \theta_{\min} = 0.3$

[M. Van de Meent]

First 1-post-adiabatic waveforms from 2nd-order calculations

mass ratio 1:10

[Wardell et al. 2021]

First 1-post-adiabatic waveforms from 2nd-order calculations

Conservative effects of the self-force

Now "turn off" dissipation:

$$m\frac{Dz^{\alpha}}{d\tau^{2}} = F_{\rm cons}^{\alpha} := \frac{1}{2} \left[F_{\rm self}^{\alpha}(h^{\rm ret}) + F_{\rm self}^{\alpha}(h^{\rm adv}) \right]$$

Motivation

- Clean quantitative description of gauge-invariant finite-mass effects
- ▶ Comparison with post-Newtonian & post-Minskowskian calculations
- Strong-field calibration data for Effective One Body potentials
- Construct two-body Hamiltonian

$\mathbf{O}(\mathbf{q})$ shift in the ISCO frequency

$$\begin{aligned} \left(\frac{\Delta\Omega_{\rm isco}}{\Omega_{\rm isco}}\right)_{\rm SF} &= 0.2513(6) \, q \qquad \text{[LB \& Sago 2009]} \\ &= 0.25101546(5) \, q \qquad \text{[Akcay, LB, Damour \& Sago 2012]} \\ \left(\frac{\Delta\Omega_{\rm isco}}{\Omega_{\rm isco}}\right)_{\rm 3PN} &= 0.434913 \dots \, q \end{aligned}$$

O(q) correction to the periastron advance in slightly eccentric orbits $_{\mbox{\tiny [LB, Damour \& Sago 2010]}}$

"Self-torque" and spin precession

[Dolan, Warburton, Harte, Le Tiec, Wardell & LB 2014]

In limit
$$s \ll m^2$$
, spin is parallel-transported along geodesic of $g + h^R$:

$$u^eta
abla^{(R)}_eta u_lpha=0, \quad u^eta
abla^{(R)}_eta s_lpha=0$$
 [Harte 2012]

30R/M

160 180

2PN

3PN (4PN) GSF

Nordita 2023

35

SF effects on the ZEZO (Zero-binding-Energy Zoom-whirl Orbit)

[LB, Colleoni, Damour, Isoyama & Sago 2019]

Two asymptotic symmetries allow identification of the (unstable) circular orbit's energy and angular momentum as Bondi-type quantities (neglecting radiation).

SF effects on the ZEZO (Zero-binding-Energy Zoom-whirl Orbit)

[LB, Colleoni, Damour, Isoyama & Sago 2019]

Frequency of the asymptotic circular orbit:

$$\Omega = (8M)^{-1} [1 + 0.5536(2)q]$$
our direct calculation
= $(8M)^{-1} [1 + 0.55358516671q]$ IBCO redshift + 1st law
= $(8M)^{-1} [1 + 0.32q]$ EOB (2009 model)
= $(8M)^{-1} [1 + 0.553603030(1)q]$ EOB using 1st law

Angular momentum of the asymptotic circular orbit:

- $L = 4M\mu \left[1 0.304(3)q\right]$ our direct calculation
 - $= 4M\mu [1 0.3046742879q]$ IBCO redshift + 1st law

$$= 4M\mu [1 - 0.288(80)q]$$
 EOB (2009 model)

 $= 4M\mu \left[1 - 0.30467428782(6)q\right]$ EOB using 1st law

PART B: SELF-FORCE AND SCATTERING

Motivation

- Scattering angle $\chi(E_{\rm COM}, b)$ defined unambiguously (even with radiation); benchmark for strong-field dynamics
- Can probe down to light ring, r = 3M
- New way of calibrating EOB theory, using PM χ info [Damour 2016]
- Bound-to-unbound map [Kälin & Porto 2019+]
- χ_{1SF} determines the full conservative dynamics to 4PM order (arbitrary q); χ_{2SF} extends that to 6PM. [Damour 2019]
- 1GSF results give the full O(q) piece of χ ("all PM orders")

Self-force correction to the scattering angle

$$\Delta \chi := \chi(E, b) - \chi_0(E, b) = O(q)$$

where $\chi_0 := \lim_{q \to 0} \chi$ is the geodesic limit at same E, b:

$$\Delta \chi_0 = 2k\sqrt{p/e} \operatorname{Elliptic}\left(\frac{\chi_\infty}{2}; -k^2\right)$$

with

$$k := 2\sqrt{\frac{e}{p-6-2e}}, \qquad \chi_{\infty} := \cos^{-1}(-1/e),$$

and with the transformation $(p, e) \leftrightarrow (E, b)$ obtainable in analytical form.

$$\Delta \chi = \int_{-\infty}^{\infty} A_{\alpha}(\tau;e,p) F_{\rm self}^{\alpha}(\tau) \, d\tau \quad \text{[LB \& Long 2022]}$$

[*Note at O(q) it suffices to evaluate F_{self}^{α} along the limiting geodesic.]

Conservative and dissipative effects

$$\Delta \chi_{\rm cons} = \int_{-\infty}^{\infty} A_{\alpha}^{\rm cons}(\tau; p, e) F_{\rm cons}^{\alpha}(\tau) \, d\tau$$

$$\begin{split} \Delta\chi_{\rm diss} &= \int_{-\infty}^{\infty} A_{\alpha}^{\rm diss}(\tau;p,e) F_{\rm diss}^{\alpha}(\tau) \, d\tau \\ &= \alpha_E(p,e) \Delta E_{\rm rad} + \alpha_J(p,e) \Delta J_{\rm rad} \quad \text{[LB \& Long 2022]} \end{split}$$

Last result expresses $\Delta\chi_{\rm diss}$ in terms of total radiated energy and angular momentum, similar to relations in PM theory.

First attempt on gravitational scattering problem

Via metric reconstruction from a Hertz potential ϕ , obtained by numerically solving Teukolsky equation as a PDE in 1+1D [Long & LB 2021]

• $F_{self} \sim \partial h_{\alpha\beta} \sim \partial^3 \phi$. Hard to get good accuracy with current, rudimentary numerical method.

• On hold till better integration method developed (in progress).

Toy model:

Scalar charge scattered off a Schwarzschild black hole

Charge sources a massless Klein-Gordon field Φ :

$$\nabla^{\alpha} \nabla_{\alpha} \Phi = -4\pi Q \int_{-\infty}^{\infty} \frac{\delta^4(x - z(\tau))}{\sqrt{-g(x)}} d\tau$$

We ignore the gravitational self-force, and consider only back-reaction from Φ :

$$\frac{Dp^{\alpha}}{d\tau} = -Q\nabla^{\alpha}\Phi^{R} =: F_{\text{self}}^{\alpha}$$

Assume $q_s:=Q^2/(mM)\ll 1.$ Then deviation from geodesic is small, and again

$$\Delta \chi = \int_{-\infty}^{\infty} A_{\alpha}(\tau; e, p) F_{\text{self}}^{\alpha}(\tau) \, d\tau,$$

with F_{self}^{α} again evaluated along the limiting geodesic.

Scattering angle results (v = 0.2) [LB & Long 2022]

Scattering angle results (b = 100M) [LB & Long 2022]

Scattering angle results (near plunge threshold) [LB & Long 2022]

Comparison with PM results from Amplitudes

Expansion around flat space:

$$\delta\chi^{\rm PM} = \sum_{i=0}^{\infty} \delta\chi_i \left(\frac{M}{b}\right)^i$$
2PM [Gralla & Lobo '22]:

$$\delta\chi_2^{\rm cons} = -\frac{\pi}{4} \left(\frac{M}{b}\right)^2$$

$$\delta\chi_2^{\rm diss} = 0$$

$$v: \text{ Velocity at infinity} \\ b: \text{ Impact parameter}$$
3PM:

$$\delta\chi_3^{\rm cons} = -\frac{4(3-v^2)}{3v^2\sqrt{1-v^2}} \left(\frac{M}{b}\right)^3$$

$$\delta\chi_3^{\rm diss} = \frac{2(v^2+1)^2}{3v^3\sqrt{1-v^2}} \left(\frac{M}{b}\right)^3$$

$$IO$$
NLO
NLO
APM dissipative:

$$\delta\chi_4^{\rm diss} = \left(r_1 + r_2 \operatorname{arcsech} \left(\sqrt{1-v^2}\right) + r_3 \log \left[\frac{1}{2} \left(\frac{1}{\sqrt{1-v^2}} + 1\right)\right]\right) \left(\frac{M}{b}\right)^4$$

$$r_i = \text{rational coefficients}$$

Comparison with PM: conservative sector

Comparison with PM: dissipative sector

Comparison with PM: numerical fitting

[LB, Bern, Herrmann, Long, Parra-Martinez, Roiban, Ruf, Shen, Solon, Teng, Zeng 2023]

PM expansion with free parameters:

$$\delta \varphi^{\rm PM}_{\rm cons} = \frac{a_2}{b^2} + \frac{a_3}{b^3} + \frac{a_4}{b^4} + \frac{a_5}{b^5} + \dots$$

Up to 3PM can fit value or use **analytic value**.

a_2	a_3	a_4	a_5
-1.0886	$\overline{}$	-	<u> </u>
-0.7535	-21.77	-	_
-0.7899	-16.17	-206.5	_
-0.7803	-18.49	-25.0	-4620
-0.785398	-19.18	-	_
-0.785398	-16.93	-176.2	_
-0.785398	-17.20	-131.1	-1793
-0.785398	-16.9356	-175.9	_
-0.785398	-16.9356	-174.4	-107
< 1%	$\sim 1\%$	~ -175	< 0(?)

4PM results from Amplitudes

$$\begin{split} \delta \varphi_4^{\text{cons}} = & \left(r_1 + r_2 \operatorname{arccosh} \left(\frac{1}{\sqrt{1 - v^2}} \right) + r_3 \operatorname{arccosh} \left(\frac{1}{\sqrt{1 - v^2}} \right)^2 + \left[r_4 \mathsf{E} \left(-\frac{v^2 + 2\sqrt{1 - v^2} - 2}{v^2} \right)^2 \right] \right] \\ & + r_5 \mathsf{K} \left(-\frac{v^2 + 2\sqrt{1 - v^2} - 2}{v^2} \right) \mathsf{E} \left(-\frac{v^2 + 2\sqrt{1 - v^2} - 2}{v^2} \right) + r_6 \mathsf{K} \left(-\frac{v^2 + 2\sqrt{1 - v^2} - 2}{v^2} \right)^2 \\ & + r_7 \log \left(\frac{v}{2\sqrt{1 - v^2}} \right) + r_8 \log \left(\frac{v}{2\sqrt{1 - v^2}} \right) \operatorname{arccosh} \left(\frac{1}{\sqrt{1 - v^2}} \right) \\ & + r_9 \log \left(\frac{v}{2\sqrt{1 - v^2}} \right) \log \left(\frac{1}{2} \left(\frac{1}{\sqrt{1 - v^2}} + 1 \right) \right) + r_{10} \log \left(\frac{1}{2} \left(\frac{1}{\sqrt{1 - v^2}} + 1 \right) \right) \\ & + r_{11} \log^2 \left(\frac{1}{2} \left(\frac{1}{\sqrt{1 - v^2}} + 1 \right) \right) + r_{12} \alpha + r_{13} \frac{\beta}{v^2} + r_4 \log(b) \\ & \swarrow \mathsf{K} \\ & \mathsf{Free coefficients} \\ & \mathsf{Log term} \end{split}$$

Fitting for internal-structure coefficients c_1 and c_2

[LB, Bern, Herrmann, Long, Parra-Martinez, Roiban, Ruf, Shen, Solon, Teng, Zeng 2023]

Subtract known analytic parts of conservative 4PM:

$$\Delta_{4}(v) := (\delta \chi_{4}^{\text{cons}} - \delta \chi_{4}^{\text{known}})b^{4} = \frac{3}{8}\pi M^{4} \left[c_{2} + c_{1}(5 - 4/v^{2})\right] + \mathcal{O}(1/b)$$

$$c_{1} \& c_{2} \text{ are Love numbers.}$$
Expect $c_{1} = 0$ [Binnington & Poisson '09]
$$b/M = \frac{c_{1}}{40} + \frac{c_{2}}{40} + \frac{c_$$

Comparison through 4PM: conservative sector

[LB, Bern, Herrmann, Long, Parra-Martinez, Roiban, Ruf, Shen, Solon, Teng, Zeng 2023]

Nordita 2023

Frequency-domain approach for improved precision

[Whittall and LB 2023]

$$\Phi = \sum_{\ell,m} \int d\omega \, \phi_{\ell m \omega}(r) Y_{\ell m}(\theta,\varphi) e^{-i\omega t}$$

- Reconstruct Φ and F_{self} from numerical solutions of ODEs for $\phi_{\ell m \omega}(r)$
- Much more precise than TD method in strong field

Frequency-domain approach for improved precision [Whittall and LB 2023]

- FD code loses accuracy fast at large r, where small frequencies dominate.
- Work in progress to analytically derive F_{self} at large r in 1/r expansion.

- Improved TD method: spectral, hyperbolidal slicing, compactification. Two ongoing efforts, one using mode-sum regularization (with R. Mecado), another using puncture (with P. Diener).
- Analytical self-force at large **r** is under way, to capitalize on improved accuracy enabled by FD method.
- Road to gravitational scattering:
 - Direct Lorenz-gauge calculation [Akcay, Warburton, LB 2013]
 - Radiation-gauge reconstruction [Pound, Merlin, LB 2013]
 - Lorenz-gauge reconstruction [Dolan, Durkan, Kavanagh, Wardell 2023]
- **2nd-order self-force?** No disparate timescales perhaps makes scattering problem easier than bound-orbit case.