An Application of SymTFT: Group-Theoretical Duality Defects

Yunqin Zheng Kavli IPMU, ISSP @ U.Tokyo

Nordita Workshop—Categorical Aspects of Symmetries [Zhengdi Sun, YZ, 2307.14428] [Justin Kaidi, Kantaro Ohmori, YZ, 2209.11062]

Aug 18th, 2023

Outline

- Brief overview of duality defects.
- What is, and why do we care about, group theoretical duality defects?
- Why is SymTFT useful in probing group-theoretical-ness?
- Criteria of group-theoretical-ness.
- **6** Example 1: $\mathbb{Z}_N^{(0)}$ duality defects in 2d.
- **6** Example 2: $\mathbb{Z}_N^{(1)}$ duality defects in 4d.
- Relation to obstruction to duality preserving gapped phases.

A Brief Overview of Duality defects

Duality Defects

• Given a quantum field theory \mathcal{X} in d spacetime dimensions, with a finite, abelian, non-anomalous, p-form symmetry $G^{(p)}$. \mathcal{X} has a duality symmetry if

$$\mathcal{X} = \mathcal{X}/G^{(p)}$$

possible only when p + 1 = d/2. In this talk, focus on $G^{(p)} = \mathbb{Z}_N^{(0)}$ in 2d, and $\mathbb{Z}_N^{(1)}$ in 4d.

• A duality symmetry comes with a duality defect \mathcal{N} : gauge $G^{(p)}$ on half of the spacetime, with Dirichlet boundary condition for $G^{(p)}$ Wilson operator at the defect locus.

Non-Invertible Fusion Rule

• The duality defects satisfy the non-invertible fusion rule

Take € → 0, N × N = C
 C = condensation defect = sum over G^(p) defects on x = 0 submanifold.
 Non-invertible duality defect. [Choi,Cordova,Hsin,Lam,Shao, 21',22']
 [Kaidi,Ohmori,YZ,21',22'],
 [Bhardwaj,Bottini,Schafer-Nameki,Tiwari,22']...

More Refined Data 1: Bicharacter

- There are different *G*^(*p*) duality defects with the same fusion rule. [Tambara,Yamagami,98']...
- Take $G^{(p)} = \mathbb{Z}_N^{(0)}$ and d = 2: Gauging $\mathbb{Z}_N^{(0)}$ produces a $\mathbb{Z}_N^{(0)}$ quantum symmetry: generated by

$$\exp\left(\frac{2\pi i}{N}\int a^{(1)}\right)$$

Alternatively, one can take the $\mathbb{Z}_N^{(0)}$ quantum symmetry to be generated by

$$\exp\left(\frac{2\pi i}{N} v \int a^{(1)}\right)$$

as long as gcd(v, N) = 1, it still generates $\mathbb{Z}_N^{(0)}$. The choice of v was termed bicharacter.

More Refined Data 2: Frobenius-Schur indicator

• Duality defects with the same fusion rule can also have different F-symbols.

- The choice of $\epsilon = \pm 1$ was termed Frobenius-Schur indicator.
- In 2d, it is known that these refined data completely specify the Fusion Category *TY*(ℤ_N, ν, ε). [Tambara, Yamagami, 98']

Candidate QFTs with Duality Symmetry

- What is the QFT X satisfying the self-duality condition X = X/G^(p)? Intuitively, such X is very limited.
- Example 1: 2d compact bosons at special $R = \sqrt{N}$.

• Example 2: 4d Maxwell theory with special coupling constant $\tau = iN$.

Candidate QFTs with Duality Symmetry

- It seems that the candidate \mathcal{X} with self-duality is highly fine-tuned—showing $\mathcal{X} = \mathcal{X}/G^{(p)}$ requires either T or S-dualities, which hold for only very special theories, like compact bosons, Maxwell theory, $\mathcal{N} = 4$ super-Yang-Mills. These well-known examples are either free field theories, or CFTs.
- However, for some $G^{(p)}$, there exists an alternative, systematic, construction of the self-dual \mathcal{X} , which significantly expands the allowed candidates—Group Theoretical Duality Defects

Group Theoretical Duality Defects: What? Why?

An Alternative Construction of Duality Defects

- Let's consider an example: G^(p) = Z₂⁽¹⁾ in 4d, the QFT X satisfying
 X = X/Z₂⁽¹⁾ admits an alternative construction. [Kaidi,Ohmori,YZ,21']
- Start with a 4d QFT ${\mathcal Y}$ with
 - global symmetry: $G^{(1)} imes H^{(0)} = \mathbb{Z}_2^{(1)} imes \mathbb{Z}_4^{(0)}$,
 - mixed anomaly: 5d inflow action $\frac{\pi}{2}A^{(1)}\mathcal{P}(B^{(2)})$.
- Many candidates for \mathcal{Y} :
 - SU(2) Yang-Mills at $\theta = \pi (\mathbb{Z}_4^{(0)} \to \mathbb{Z}_2^T)$.
 - $\mathcal{N} = 1 SU(2) SQCD$
 - SU(2) QCD with $N_f = 1$ adjoint fermion (w/ or w/o 4-fermion term)
 - any symmetric deformation of the above theories.

An Alternative Construction of Duality Defects

- Construct $\mathcal{X} := \mathsf{Topo}.\mathsf{Mani}.(\mathcal{Y})$, where $\mathsf{Topo}.\mathsf{Mani}. := TS$
 - *S*: gauge $\mathbb{Z}_{2}^{(1)}$.
 - T: stack a 4d $\mathbb{Z}_2^{(1)}$ SPT.
- <u>Claim</u>: \mathcal{X} is self-dual: $\mathcal{X} = S(\mathcal{X}) := \mathcal{X}/\mathbb{Z}_2^{(1)}$.
- <u>Prove</u>: S, T obey $SL(2, \mathbb{Z}_2)$ algebra, in particular STS = TST and $T^2 = S^2 = 1$. Moreover, anomaly implies $T(\mathcal{Y}) = \mathcal{Y}$. Then

$$S(\mathcal{X}) = STS(\mathcal{Y}) = TST(\mathcal{Y}) = TS(\mathcal{Y}) =: \mathcal{X}$$

- As many \mathcal{X} with duality defects as \mathcal{Y} 's with invertible symmetries:
 - SO(3) Yang-Mills at $\theta = \pi$
 - $\mathcal{N} = 1 SO(3) SQCD.$
 - SO(3) QCD with $N_f = 1$ adjoint fermion (w/ or w/o 4-fermion terms)
 - any symmetric deformation of the above theories.

Group Theoretical Duality Defects

• A duality defect in QFT ${\cal X}$ is group theoretical if there is another QFT ${\cal Y}$ with invertible symmetries, such that

$$\mathcal{X} \stackrel{\textit{Top.Mani.}}{\longleftrightarrow} \mathcal{Y}$$

Remarks:

- Clarification on terminology: Group theoretical duality defect was also recently called non-intrinsically non-invertible duality defect. [Kaidi,Zafrir,YZ,22']
- Group theoretical fusion category has been discussed extensively in math literatures [Drinfeld,Gelaki,Nikshych,Ostrik,07'], [Gelaki,Naidu,Nikshych,09'] Recently group theoretical 2-fusion category was studied in [Décoppet,Yu,23']

Why Shall We Care?

• Ubiquitous: a large family of QFTs with duality defects.

 <u>Stable</u>: Easy to add duality-preserving perturbation, friendly for studying duality-preserving RG flows.

Intimately related to the anomaly of duality symmetries.

It is difficult to exhaust all possible topological manipulations by brute-force \odot , so some organization principle is required—Symmetry TFT

Symmetry TFT of Duality Symmetry

Symmetry TFT

 SymTFT (together with its topological boundary condition) is a nice way to package the global symmetry and anomaly of the QFT. [Kong,Wen,Zheng,15',17'], [Ji,Wen,19'], [Gaiotto,Kulp,20'], [Kong,Lan,Wen,Zhang,Zheng,20']
 [Apruzzi,Bonetti,García-Etxebarria,S.Hosseini,Schafer-Nameki,21'], [Freed,Moore,Teleman,22'], [Kaidi,Ohmori,YZ,22'],
 [Antinucci,Benini,Copetti,Galati,Rizi,22']... [Garcia Etxebarria's, Ji's and Kong's talks]

 $\{Symmetry, Anomaly theory\} = \{SymTFT, Top.b.c.\}$

Features of SymTFT

 $\{Symmetry, Anomaly theory\} = \{SymTFT, Top.b.c.\}$

- "Background fields" of the symmetry only enters the top.b.c.
 → Topological manipulation only changes top.b.c.
 → SvmTFT is an invariant under topological manipulation.
- When the symmetry is invertible, the SymTFT is Dijkgraaf-Witten (= gauged higher-group SPT).

A non-invertible symmetry is group theoretical if and only if its SymTFT is Dijkgraaf-Witten.

SymTFT of anomaly-free $\mathbb{Z}_{N}^{(p)}$ Symmetry

Since the duality symmetry contains Z_N^(p) symmetry, it is useful to first discuss the SymTFT of anomaly free Z_N^(p) symmetry.

• SymTFT = \mathbb{Z}_N (p + 1)-form gauge theory:

$$\frac{2\pi}{N}\widehat{b}^{(p+1)}\delta b^{(p+1)}$$

- Left Dirichlet boundary condition: $\langle \text{Dir}[B^{(p+1)}]| = \sum_{b^{(p+1)}} \delta(b^{(p+1)} - B^{(p+1)}) \langle b^{(p+1)}|$
- Right dynamical boundary condition: $|\mathcal{X}\rangle = \sum_{b^{(p+1)}} Z_{\mathcal{X}}[b^{(p+1)}] |b^{(p+1)}\rangle$

EM Exchange Symmetry

$$\frac{2\pi}{N}\widehat{b}^{(p+1)}\delta b^{(p+1)}$$

• The \mathbb{Z}_N (p+1)-form gauge theory has an EM exchange symmetry

$$b^{(p+1)} o u \widehat{b}^{(p+1)}, \qquad \widehat{b}^{(p+1)} o (-1)^{p} v b^{(p+1)}$$

where $uv = 1 \mod N$, i.e. $u = v^{-1} \ln \mathbb{Z}_N$. The symmetry is \mathbb{Z}_2^{em} for p = 0, and \mathbb{Z}_4^{em} for p = 1.

The EM exchange symmetry comes with a codim-1 topological defect D_{EM}, and can be explicitly constructed as a condensation defect of (p + 1)-dim'al operators e^{2πi} ∮ b^(p+1) and e^{2πi} ∮ b^(p+1). [Seifnashri,Roumpedakis,Shao,22'], [Kaidi,Ohmori,YZ,22']

Gauging $\mathbb{Z}_N^{(p)}$ from Fusing with EM Exchange Symmetry Defect

Duality Interfaces from Fusing with Twist Defects

• The twist defect is the EM exchange symmetry defect on half space.

SymTFT of Duality Symmetry

- We further require the theory \mathcal{X} to be invariant under gauging $\mathbb{Z}_N^{(p)}$, i.e. duality symmetry.
- The SymTFT of the duality symmetry should be such that the "tail" of the twist defect is transparent. ⇒ The EM exchange symmetry should be gauged.

SymTFT of Duality Symmetry

	SymTFT	Duality Defect
Bicharacter	EM exchange sym	choices of quantum
	$b^{(p+1)} ightarrow u \widehat{b}^{(p+1)}$	symmetry defects
	$\widehat{b}^{(p+1)} ightarrow (-1)^p v b^{(p+1)}$	$\exp(\frac{2\pi i}{N} v \oint b^{(p+1)})$
FS indicator	Discrete theta term	E move of duality defects
	for \mathbb{Z}^{em}_χ gauge field	r-move of duality defects

SymTFT of
$$\mathbb{Z}_N^{(p)}$$
 duality symmetry $_{v,\epsilon}$
||
 $\mathbb{Z}_N(p+1)$ -form gauge theory $/(\mathbb{Z}_\chi^{em})_{v,\epsilon}$

Criteria of Group Theoretical Duality Defects

Group Theoretical Condition

Group Theoretical Condition, Refined

- Luckily, for duality symmetry in 2d, whether the duality symmetry is group theoretical has been discussed by Mathematicians ~15 years ago. [Drinfeld,Gelaki,Nikshych,Ostrik,0704.0195], [Gelaki,Naidu,Nikshych,0905.3117]
- Let me translate the main ideas in physics Language.

Criteria of $\mathbb{Z}_N^{(0)}$ Group Theoretical Duality Defects in 2d

Criteria of $\mathbb{Z}_N^{(p)}$ Group Theoretical Duality Defects in 2(p+1)-dim

Example 1: $\mathbb{Z}_N^{(0)}$ duality defects in 2d

Group Theoretical Duality Defects in 2d

Our goals are:

- Determine when $3d \mathbb{Z}_N$ gauge theory contains \mathbb{Z}_2^{em} stable Lagrangian subgroup.
- **2** Establish \uparrow arrow.
- **8** Establish \downarrow arrow.

Lagrangian subgroups of 3d \mathbb{Z}_N gauge theory

- In 3d \mathbb{Z}_N gauge theory, anyons are labeled by (e, m). The topological spin of the anyon (e, m) is $\theta_{(e,m)} = e^{\frac{2\pi i}{N}em}$. The mutual braiding of two pairs of anyons are determined by the self-spins $\mathcal{B}_{(e,m),(e',m')} = \theta_{(e+e',m+m')}/\theta_{(e,m)}\theta_{(e',m')}$.
- Lagrangian subgroup A of a 3d Abelian TQFT consists of anyons/topological lines satisfying:
 - \blacksquare all anyons in ${\mathcal A}$ are bosonic.
 - 2 any pair of two anyons have trivial mutual braiding.
 - ${\ensuremath{\mathfrak{G}}}$ any anyon not within ${\ensuremath{\mathcal{A}}}$ must braid non-trivially at least with one anyon in ${\ensuremath{\mathcal{A}}}.$
- Using definition and some elementary-school number theory, one can show

 $\mathcal{A} = \{x(p,0) + y(0,N/p) \mid x \in \mathbb{Z}_{N/p}, y \in \mathbb{Z}_p\}$

where p is a factor of N.

\mathbb{Z}_2^{em} Stable Lagrangian Subgroup

- The \mathbb{Z}_2^{em} symmetry premutes the two generating anyons in \mathcal{A} as $(p, 0) \rightarrow (0, up), \qquad (0, N/p) \rightarrow (vN/p, 0)$
- \mathcal{A} is \mathbb{Z}_2^{em} stable means the resulting anyons also belong to \mathcal{A} , $(0, up) = (xp, yN/p), \quad (vN/p, 0) = (zp, wN/p)$
- From $up = yN/p \mod N$, multiply both sides by p, one finds $p^2 = 0 \mod N$, so $p^2/N \in \mathbb{Z}$.
- From $vN/p = zp \mod N$, multiply both sides by N/p, one finds $(N/p)^2 = 0 \mod N$, so $(N/p)^2/N \in \mathbb{Z} \Leftrightarrow N/p^2 \in \mathbb{Z}$.

 $\mathbb{Z}_{\textit{N}}$ gauge theory contains an \mathbb{Z}_2^{em} stable Lagrangian subgroup

 $N = p^2$ is a prefect square.

\mathbb{Z}_N gauge theory $/\mathbb{Z}_2^{em} = Dijkgraaf-Witten$

• Recall the action of the \mathbb{Z}_N gauge theory

$$\frac{2\pi}{N}\widehat{b}\delta b$$

When N = p², the Z^{em}₂ stable Lagrangian subalgebra is generated by e^{2πi}/_N ∮ pb and e^{2πi}/_N ∮ pb, and the Z^{em}₂ symmetry exchanges them. It motivates us to introduce the Z_p fields, via b = pâ + c, b̂ = pĉ + a, so that the Z^{em}₂ symmetry exchanges a and c, (and similarly â and ĉ)

$$\begin{pmatrix} a \\ c \end{pmatrix} \rightarrow \begin{pmatrix} 0 & v \\ u & 0 \end{pmatrix} \begin{pmatrix} a \\ c \end{pmatrix}, \qquad \begin{pmatrix} \widehat{a} \\ \widehat{c} \end{pmatrix} \rightarrow \begin{pmatrix} 0 & u \\ v & 0 \end{pmatrix} \begin{pmatrix} \widehat{a} \\ \widehat{c} \end{pmatrix}$$

• In terms of \mathbb{Z}_p fields, the Lagrangian can be rewritten as

$$\frac{2\pi}{p}\widehat{a}\delta a + \frac{2\pi}{p}\widehat{c}\delta c + \frac{2\pi}{N}a\delta c$$

This is a $\mathbb{Z}_p \times \mathbb{Z}_p$ Dijkgraaf-Witten theory, and the \mathbb{Z}_2^{em} symmetry becomes a "flavor rotation" symmetry!

\mathbb{Z}_N gauge theory $/\mathbb{Z}_2^{em} = Dijkgraaf-Witten$

- Now, it is straightforward to gauge the "flavor rotation" symmetry (via twisted cocycle approach), and show the resulting theory is Dijkgraaf-Witten.
- After gauging "flavor rotation" symmetry, the Lagrangian becomes

$$\frac{2\pi}{p}\widehat{\mathbf{a}}_{ij}^{T}K^{\mathbf{x}_{ij}}(K^{\mathbf{x}_{jk}}\mathbf{a}_{kl}-\mathbf{a}_{jl}+\mathbf{a}_{jk})+\frac{\pi}{N}\mathbf{a}_{ij}^{T}\sigma^{1}K^{\mathbf{x}_{ij}}(K^{\mathbf{x}_{jk}}\mathbf{a}_{kl}-\mathbf{a}_{jl}+\mathbf{a}_{jk})+\epsilon\pi\mathbf{x}_{ij}\mathbf{x}_{jk}\mathbf{x}_{kl}$$

where
$$K = \begin{pmatrix} 0 & v \\ u & 0 \end{pmatrix}$$
.

- x_{ij} is the flat Z₂^{em} dynamical gauge field. The last term is the discrete theta term, related to the FS indicator.
- This is a DW gauge theory with gauge group (Z_p × Z_p) ⋊ Z₂, for all choices of the bicharacter v (or u) and the FS indicator ε, as expected.
- It is possible to find explicit topological manipulation that maps the duality defect to invertible defect.

Summary so far

- We have extablished the upward arrow: Z_N⁽⁰⁾ duality symmetry is group theoretical <u>if</u> N is a perfect square.
 [Drinfeld,Gelaki,Nikshych,Ostrik,0704.0195],
 [Gelaki,Naidu,Nikshych,0905.3117], [Sun,YZ,23']
- How about the downward arrow?

Gauging \mathbb{Z}_2^{em} of \mathbb{Z}_N gauge theory

- One data that is easy to obtain from directly gauging Z^{em}₂ of Z_N gauge theory is the spectrum of line operators. See e.g. [Teo,Hughes,Fradkin,15'], [Barkeshli,Bonderson,Cheng,Wang, 14'], [Bhardwaj,Bottini,Schafer-Nameki,Tiwari,22'], [Kaidi,Ohmori,YZ,22'], [Antinucci,Benini,Copetti,Galati,Rizi,22'] for discussions toward physicists.
- Before gauging \mathbb{Z}_2^{em} , the operators include
 - N^2 lines labeled by (e, m)
 - \mathbb{Z}_2^{em} defect: D_{em}
- Gauging \mathbb{Z}_2^{em} amounts to three step process (at the level of operator spectrum)
 - keep the lines invariant under \mathbb{Z}_2^{em}
 - promote the twist defect to genunie line by forgetting the "tail".
 - attach a quantum line dual to \mathbb{Z}_2^{em} to the above lines.

Gauging $\mathbb{Z}_2^{\mathrm{em}}$ of \mathbb{Z}_N gauge theory

- Applying the three step process to \mathbb{Z}_N gauge theory, we obtain the following spectrum of operators:
 - 2N invertible lines
 - N(N-1)/2 non-invertible lines of quantum dim 2.
 - 2N non-invertible lines of quantum dim \sqrt{N} .
- However, it is well-known that in a (bosonic) DW theory, all lines should have integer dimensions. ⇒ N must be a perfect square! [Kaidi,Ohmori,YZ,22']

Summary of $\mathbb{Z}_N^{(0)}$ Duality Defect in 2d

Example 2: $\mathbb{Z}_{N}^{(1)}$ duality defects in 4d

Group Theoretical Duality Defects in 4d

• The main idea is the same, but there are interesting new technical features. We will be brief.

\mathbb{Z}_4^{em} stable Lagrangian subgroup

• The Lagrangian subgroup is given by surface operators

 $\mathcal{A} = \{x(p,0) + y(\ell, N/p) \mid x \in \mathbb{Z}_{N/p}, y \in \mathbb{Z}_p\}$

- Stability of A under Z₄^{em} if and only if N = L²M, where −1 is the quadratic residue of M, and L is an arbitrary integer. [Sun,YZ,23']
- The condition again does not depend on the choice of bicharacter v and FS indicator ϵ .

 $5d \mathbb{Z}_N$ 2-form gauge theory contains \mathbb{Z}_4^{em} stable Lagrangian subgroup.

 $N = L^2 M$, where -1 is the quadratic residue of M

Group Theoretical Duality Defects in 4d

• Applying similar discussion, when $N = L^2 M$ and -1 being the quadratic residue of M, one can explicitly show that the \mathbb{Z}_4^{em} gauged theory is a Dijkgraaf-Witten.

• However, the discussion using quantum dimension does not generalize to 4d, hence the downward arrow remains a conjecture.

Repeated Occurrence

- The sequence $N = L^2 M$, or its subsequence, have appeared in various contexts.
 - The special case of prime *N* was found in [Bashmakov, Del-Zotto, Hasan, Kaidi,22'].
 - The same full sequence N = L²M was found independently to be group theoretical when studying the Hanany-Witten effect in string theory. [Apruzzi,Bonetti,S.W.Gould,Schafer-Nameki 23']
 - A special subsequence for *L* = 1 was found to be a necessary condition for anomaly free. [Choi,Cordova,Hsin,Lam,Shao,21',22']
 - The same full sequence N = L²M was found recently in studying the obstruction to duality preserving gapped TQFTs [Apte,Cordova,Lam,22'].

Relation to obstruction to duality preserving SPT and TQFTs

Four Types of Obstructions

Given a $\mathbb{Z}_N^{(1)}$ duality defect, it is useful to distinguish four types of obstructions to

- (a) existence of SPT equipped with the duality defect with an unspecified bicharacter and FS indicator. \Leftrightarrow SPT = SPT/ $\mathbb{Z}_N^{(1)}$. [Choi,Cordova,Hsin,Lam,Shao,21']
- (b) existence of SPT equipped with the duality defect with specified bicharacter and FS indicator. \Leftrightarrow Anomaly of duality symmetry labeled by N, v, ϵ .
- (a') existence of TQFT (with unique GS on S^3) equipped with the duality defect with an <u>unspecified</u> bicharacter and FS indicator. \Leftrightarrow TQFT = TQFT/ $\mathbb{Z}_N^{(1)}$. [Apte,Cordova,Lam,22']
- (b') existence of TQFT (with unique GS on S^3) equipped with the duality defect with specified bicharacter and FS indicator. \Leftrightarrow Obstruction gapped phase preserving duality symmetry labeled by N, v, ϵ .

SymTFT Interpretation of Obstruction (a')

$$Z_{\text{TQFT}} \longleftarrow \begin{bmatrix} \frac{2\pi}{N} \hat{b}^{(2)} \delta b^{(2)} \\ \langle Dir | & |\text{TQFT} \rangle \end{bmatrix}$$

$$Z_{\text{TQFT}/\mathbb{Z}_{N}^{(1)}} \land \langle Dir | & D_{\text{EM}} & |\text{TQFT} \rangle & \langle Dir | & |\text{TQFT} \rangle$$

if $D_{\text{EM}}|\text{TQFT}\rangle = |\text{TQFT}\rangle$, i.e. $|\text{TQFT}\rangle$ is \mathbb{Z}_4^{em} stable. This is precisely the condition required by the group-theoretical duality defect, and also reproduces [Apte,Cordova,Lam,22']. See Po-Shen Hsin's and Francesco Benini's talks next Tuesday on SymTFT interpretation of (b) and (b').

Anomaly free \Rightarrow Group Theoretical

Duality Symmetry is Anomaly Free = $(b) \subset (a) \subset (a')$ = Group Theoretical

Summary

- QFTs with group theoretical duality defect are ubiquitous, including many gauge theories. Friendly to study duality-preserving deformation/RG flows.
- The SymTFT is very useful to determine when a duality defect is group theoretical. The problem can be translated to the existence of EM stable Lagrangian subgroup of finite gauge theories.
 - In 2d QFT, the $\mathbb{Z}_N^{(0)}$ duality defect is group theoretical if and only if N is a prefect square, irrelevant to the choice of bicharacter and FS indicator.
 - In 4d QFT, the $\mathbb{Z}_N^{(1)}$ duality defect is group theoretical if and only if $N = L^2 M$ where -1 is a quadratic residue of M, irrelevant to the choice of bicharacter and FS indicator.
- The group theoretical condition coincides with the obstruction to symmetric gapped phases (with unspecified FS indicator), and this can be easily interpreted using SymTFT. Being group theoretical is a necessary condition for being anomaly free.

Thank you!