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Generallzed Symmetrles [Gaiotto, Kapustin, Seiberg, Willett 14]

New paradiem: symmetries in B topological defect operators,
P gm: (Euclidean) QFT B of any dimension

Standard 0-form symmetry G: codimension-1 defects Uy[X], g€ G

along submanifold

that fuse according to G group structure:

Ug X Uh = Ugh
Charge conservation = topological character of defects

* U(1) symmetry: Uaclo,1) = €xp [27ria Js *j} Here only discrete !



Categorical or Non-invertible Symmetries

Various new structures:

Lley]
@ Defects of higher codimension: p-form symmetries C/)

Charges carried by p-dimensional extended operators
/ UglZa—p-1]
@ Symmetries that act on other symmetries (e.g., n—groups):

9] R,[O] Wa Wy (a)

Ug Ug

ghk

@ Fusion algebras instead of groups

from [FB, Cordova, Hsin 18

Ua x Uy =Y NG U,

o TQFT coefficients: NS, — Zrqrr[Za—p—1] [Roumpedakis, Seifnashri, Shao 22]

@ Symmetries obtained by “condensing” other symmetries



In 2d the “most general” structure® is well understood

*: bosonic QFT, discrete & finite symmetries, no spacetime action (internal), ...

e (Unitary) Fusion category:

Objects: top. line defects i ¢

Tensor product: stacking of lines

Morphisms: fusion algebra e c = [Fg"lye
Us xUp =3, Ng Ue ¥

Associator or F-symbol: d

Includes standard O-form symmetry G with 't Hooft anomaly

One reason for simplicity is that in d dimensions, only up to
(d — 2)—form symmetries are non-trivial [Hellerman, Henriques, Pantev, Sharpe, Ando 06]

e Structure of (2d) fusion categories
is equivalently described by certain (3d) modular tensor categories (MTCs)
Drinfeld center

Related to the concept of Symmetry TFT



In d dimensions: look for (d — 1)-category . ﬂ o
N

e n-category:

Objects 0-form symmetry defects
1-morphisms between objects junctions of 0-form defects, and 1-form defects
2-morphisms between 1-morphisms junctions of junctions, ...

n-morphisms

In mathematics there are many different definitions.

It is not completely clear which one should appear in physics,
nor how to quantify all pieces of data, relations, constraints, ...

Topic of active research



Examples of non-invertible symmetries in d > 2 dimensions:

@ Gauge a O-form symmetry that acts on a higher-form symmetry.
E.g.: 4d SU(N) Yang-Mills with Z, 1-form symmetry,
gauge charge conjugation C : U, — U_,

Ua;ﬁ—a = Ua @ Ufa
Uos X Uy = Uqats — ~ ~ ~ ~
Uas x Uy = Uqsqp +Uas—p

[Bhardwaj, Bottini, Schafer-Nameki, Tiwari 22; Antinucci, Galati, Rizi 22]

@ Abelian symmetry with ABJ anomaly.
Q/Z c U(1) survives as non-invertible:

d*j=FAF = UGEQ/ZzeXp[Qm'H/

X3

wj+ AV F)|

[Choi, Lam, Shao 22, Cordova, Ohmori 22]

o Self-duality symmetries.
4d SU(N) N =4 SYM at 7 =i is almost self-dual, but SU(N) — PSU(N)
There exists a non-invertible version of self-duality
[Kaidi, Ohmori, Zheng 21; Choi, Cordova, Hsin, Lam, Shao 21 & 22]



Some questions
e Q: understand the structure of the symmetry.

This is some sort of fusion category, as opposed to a group, so requires more data.
Can we identify all such pieces of data in concrete examples?

Especially difficult in higher dimensions, where we deal with a (d — 1)-category.
Full set of required data is not known.



Some questions
e Q: understand the structure of the symmetry.

This is some sort of fusion category, as opposed to a group, so requires more data.
Can we identify all such pieces of data in concrete examples?

Especially difficult in higher dimensions, where we deal with a (d — 1)-category.
Full set of required data is not known.

e Q: understand anomalies.

Anomalies are a very powerful tool: RG invariant, exactly-calculable observables.
Give constraints on IR dynamics (esp. at strong coupling).

“Standard” anomalies are quantified by an integer: an element of a
cohomology group — e.g., & € H*™ (G, U(1)) for internal 0-form symmetry G
or more generally of a cobordism group, which are Abelian.
Standard anomalies are additive:

can be cancelled by adding matter or combining theories.

Such numbers not known for non-invertible symmetries. Might not be additive.



e Not even obvious how to define anomalies.

For standard continuous 0-form symmetry G (Lie group):
Z[A+dN = exp</ A()\,A,dA)) Z[A]
X

For invertible discrete symmetries:
@ use discrete background fields

@ background — network of defects
gauge transformations that maintain the bundle — set of moves
anomalies — phases picked up by those moves

For non-invertible symmetries:
not clear what a bundle, a background field, or an allowed move are.

Not clear how to associate a “number” to anomalies.

* Possible definition of anomaly (yes/no):

@ Anomaly if symmetry cannot be gauged.



Some questions

e Q: how do non-invertible symmetries appear in holography?

Is there a bulk gauge fields for non-invertible symmetries?

At least for discrete symmetries, the answer seems to be very much related to the
concept of Symmetry TFT.

* Example: 2d compact boson at rational R? [FB, Copetti, Di Pietro 22]

U(l)k X U(l),k

3d Chern-Simons theory
71
k

Holographically dual to

U(1)r x U(1)g 0-form symmetry is dual to a gauge field in the bulk.

Non-invertible symmetry of Verlinde lines: not dual to another gauge field,
rather to non-gauge-invariant topological lines that can only lie on the boundary.



Symmetry TFT

* Theory T with invertible (discrete) symmetry G and 't Hooft anomaly:

lives at the boundary of invertible TQFT 441 (or SPT phase) with symmetry G
which captures its anomaly —  anomaly TFT



Symmetry TFT

* Theory T with invertible (discrete) symmetry G and 't Hooft anomaly:

lives at the boundary of invertible TQFT 441 (or SPT phase) with symmetry G
which captures its anomaly —  anomaly TFT

* If part H of the symmetry is anomaly-free: gauge it to obtain
a new theory 7;/H with new symmetry and new anomaly

Gauging discrete symmetries does not introduce new dynamics
(it is RG invariant, reversible and topological):
it only reshuffles physical information between twisted and untwisted sectors

Upgrade SPT phase to a full-fledged (i.e., non-invertible) TQFT such that:
@ J topological boundary conditions that reproduces original SPT;
@ any other topological boundary condition corresponds to a possible gauging;
@ anomalies appear as “lack of boundary conditions”.

[Gaiotto, Kulp 20; Bhardwaj, Bottini, Schafer-Nameki, Tiwari 22; Freed, Moore, Teleman 22]



Plan of the talk

@ Self-duality symmetries (focus on 4d)

o Self-duality symmetries in holography — for 4d su(N) A" =4 SYM
@ RG flows  (see L. Tizzano's talk)

@ Anomalies of self-duality symmetries (in 2d and 4d) [to appear]

(see A. Antinucci's poster)
(see also P.-S. Hsin’s talk)



Self-duality Symmetries of 4d su(N) N =4 SYM

Simple example: 4d N = 4 super-Yang-Mills with gauge algebra su(N)

[Choi, Cordova, Hsin, Lam, Shao 22]

Global variants: SU(N), PSU(N),, [SU(N)/Z;CL) with k| N, p € Zj

e SL(2,Z) S-duality. S : T -1 where 7= 4478
SU(N) > PSU(N)g

Try to make S-duality into self-duality symmetry: 7 =i
But SU(N) theory does not go to itself.



Self-duality Symmetries of 4d su(N) N =4 SYM

Simple example: 4d N = 4 super-Yang-Mills with gauge algebra su(N)
[Choi, Cordova, Hsin, Lam, Shao 22]

Global variants: SU(N), PSU(N),, [SU(N)/Z;CL) with k| N, p € Zj

e SL(2,Z) S-duality. S T -1 where 1= 2 4 47l
SU(N) <> PSU(N)g

Try to make S-duality into self-duality symmetry: 7 =i

But SU(N) theory does not go to itself.

* Can be corrected by topological operations:

e SU(N) has Zy electric 1-form symmetry (shift A by Zy center of the group)
Measures N-ality of Wilson line operators

e PSU(N) has Zy magnetic 1-form symmetry (1 of gauge group)
Measures N-ality of 't Hooft line operators (top. class of bundle)

Gauging those 1-form symmetries maps SU(N) <+ PSU(N)g



Self-duality Symmetries of 4d su(N) N =4 SYM

* Combining S-duality with topological gauging — Symmetry
maps the theory to itself
Doing it on a half space: SU(N) PSU(N)/ZE\l,] >~ SU(N)
topological defect operator Ug T=1 = i
s
e Non-invertible 0-form self-duality symmetry:
US X US = CZN x 1
Us x Us =C* x Uc SU(N) SU(N)
Us X UC = US
Us Us
—_—
ciN

Uc: (invertible) charge conjugation
C%~: 3d condensate of 1-form symmetry [Choi, Cordova, Hsin, Lam, Shao 22]



@ Similar story for non-invertible triality symmetry

at 7 = 2m/3

because (CST)? =1 in SL(2,Z)

@ Other examples , e.g. in U(1) Maxwell theory
[Kaidi, Ohmori, Zheng 21; Choi, Cordova, Hsin, Lam, Shao 21]



Self-duality in holography

AdS/CFT:  4d su(N) N =4 SYM < |IB string theory on AdS; x S°

* How does self-duality symmetry and its non-invertibility appear
from the holographic description?

SL(2,7) S-duality of 7 +—  SL(2,Z) S-duality of axiodilaton 7 = Cy +ie™?



Self-duality in holography

AdS/CFT:  4d su(N) N =4 SYM < |IB string theory on AdS; x S°

* How does self-duality symmetry and its non-invertibility appear
from the holographic description?

SL(2,7) S-duality of 7 +—  SL(2,Z) S-duality of axiodilaton 7 = Cy +ie™?

e Global variants are described by boundary conditions for the topological sector:
[/\harony, Witten 98; Witten 98; Belov, Moore 04; Kravec, McGreevy, Swingle 14]

N N
Cy A Hy A Fy — o Bde’QE?/BTdB
T

X10 T JXs
5d 2-form Zy gauge theory (Chern-Simons-like) B = (B, (Cs)
electric top. b.c. BQ‘aX5 =0 SU(N)
magnetic top. b.c. C2|0X5 =0 PSU(N)
conformal b.c. By — *02’6X5 =0 U(N)



Self-duality in holography

S-duality as SL(2,7Z) gauge theory in the bulk, spontaneously broken by (7)
SL(2,ZN) acts on 5d Zg\l,] gauge theory (on spin manifolds) [Witten 98]

At special point part of it is unbroken: 7 =14 or 7 = €27/3 (C always unbroken)

e Relevant topological theory is 5d Zg\l,] gauge theory,
further gauged by Z4 or Zg¢ —  Symmetry TFT



Self-duality in holography

S-duality as SL(2,7Z) gauge theory in the bulk, spontaneously broken by (7)

SL(2,ZN) acts on 5d Zg\l,] gauge theory (on spin manifolds) [Witten 98]

At special point part of it is unbroken: 7 =14 or 7 = €27/3 (C always unbroken)

e Relevant topological theory is 5d Zg\l,] gauge theory,
further gauged by Z4 or Zg¢ —  Symmetry TFT
* Consider su(N) with N odd prime.

5d Zgi,] gauge theory has Zn X Zx 2-form symmetry

its surface symmetry defects U,, are generated by

exp(i/Bg> and exp(i/02>



e 0O-form SL(2,Zy) defects:

condensation defects of ZE\Q,] X 25\2,] (or subgroups) in 4d, with discrete torsion

=2

U

5?

E.g.: elements M € SL(2,Zy) s.t. Tr M # 2: condense full Zy x Zy with
T=s1+M)(1-M)" T :2 x 2 symm. matrix

For instance: S — 7T = %]l, C—7T =0, T:gaugea Zy subgroup

* Lagrangian description:

S[T] = 25 {BT@ +dD) + ®'d¥ + %@Tﬂp
T Jy,

T is invertible < TrM # —2. In this case the 4d TQFT is invertible

(The case that 7 is not invertible is a bit special)



Symmetry defects admit a boundary —  twist defects
@ use gauge invariance to write a boundary action
o 4d invertible TQFT is  Z7(B) = 2 [[B"dl' — 1BTT'B]

determine [Hsin, Lam, Seiberg 18]

D[T] = AY-T(B) minimal 3d TQFT (MTC)

For C- D[TZ 0] = (ZN X ZN)O(B,(I))



Symmetry defects admit a boundary —  twist defects
@ use gauge invariance to write a boundary action
o 4d invertible TQFT is  Z7(B) = 2 [[B"dl' — 1BTT'B]

determine [Hsin, Lam, Seiberg 18]

D[T] = AY-T(B) minimal 3d TQFT (MTC)

For C- D[TZ 0] = (ZN X ZN)O(B,(I))

e Fusion of twist defects (from Lagrangian description or using MTC's):
5d bulk contributes!

Lines in D[T] are endpoints of surfaces in 5d, that braid.

AV (B) s AN TTH(B) = ANTTTE s AN T ()
DITs) x D[Ti] = AN =TT [T

(assuming 71, T2 or Ti + T2 are invertible)

W we we WO



e Project to gapped boundaries, labelled by £ C Zn X Zy
Uy =1 ifne¥ &  certain Dirichlet b.c.'s for B

When D[T] lies on gapped boundary,
part of AN'=7(B) decouples and can be thrown away:

ANTT(B) = AN (by) x AN T (b))

drop D[T]




e Project to gapped boundaries, labelled by £ C Zn X Zy
Uy =1 ifne¥ &  certain Dirichlet b.c.'s for B

When D[T] lies on gapped boundary,
part of AN'=7(B) decouples and can be thrown away:

ANTT(B) = AN (by) x AN T (b))

drop D[T]

Decoupling is consistent with xz. What is left gives the fusion rules:
Do [Ts] x Dg[Ti] = Na1 Do[T21]
We found explicit formulas for computing A5

* For instance, on the electric boundary we find:

De[T] x Dg[-T] =C?
D[Ts] x De[Ts] = C*N D, [0]



e Finally, gauge the appropriate Z,, subgroup of SL(2,Z):
4d surfaces being gauged become transparent

corresponding 3d boundaries get liberated
[use Bhardwaj, Bottini, Schafer-Nameki, Tiwari 22]

More precisely, gauge-invariant combinations are combination with Gukov-Witten
operators:

D[T) = GW (1) x D[T]

Resulting fusion rules are not modified: are the ones presented before.

Comments:
o Twisted sectors of SL(2,Z) in SUGRA are 7-branes
@ Holographic construction extendable to class S [Antinucci, Copetti, Galati, Rizi 22]

[cfr. Bashmakov, Del Zotto, Hasan, Kaidi 22]



RG ﬂOWS [Argurio, Aguilera Damia, FB, Bevenuti, Copetti, Tizzano 22]

e Consider deformations that preserve the non-invertible symmetries

— Constraints on dynamics: prevent generation of symmetry-breaking operators
— Constraints on low-energy theory (in particular in presence of anomalies)

Depending on IR phase, may or may not have spontaneous symmetry breaking

e SL(2,7Z) action on operators: [Intriligator 98; Kapustin, Witten 06]

Operators are assigned charge ¢ under modular transformations if

_{|letym +d| o2 _(a b
M.oﬁ(icwﬁ 0, for M=(" 1)esLez)
(square root signals extension SL(2,Z) — Mp(2,7Z) because S* = C? = (1))
¢r—1..¢ have ¢ = 0; /\ﬁ and Qg‘ have ¢ = 1; \/ﬂiTT(F — 7-15) has ¢ =2

At Zj, self-dual point: M-QA =eFQ4



For N'=4 SYM, a simple class of local deformations is by superpotential:
3
_ 4 2
W ~ Tr &, [®y, B3] oW = Zi:l m; Tr &
(topological gauging involved in S does not act on local operators)
Superpotential should transform as M - W = e W to give invariant Lagrangian

— combine with suitable R-symmetry rotation

* Examples:

mi,mz,mz 7 0 N = 1% theory gapped vacua or free photons
mi=mz # 0, m3=0 N = 2" theory Coulomb branch
my # 0, ma=m3=0 N =1 Leigh-Strassler CFT

(for details see L. Tizzano's talk)



su(N) N = 1* theory

The vacua are related to partitions of N. Can be gapped or have free photons.

Gapped vacua are related to divisors of N (“rectangular” partitions)

and counted by g1 = Zle d [Donagi, Witten 95; Dorey 99; Dorey, Hollowood, Kumar 01]

* Eg: SU(2)
H:
c© .

3 gapped vacua: 1 Higgsed H and 2 confined C(® ()

D(1,0y = Wilson condenses

7> gauge theory (TQFT)
D(o,1y = non-genuine 't Hooft cond. SPTo
cW . D1,1) = non-genuine dyon cond. SPT,

S-duality:  H <25 O© while () is a singlet
(check using order parameter (Tr ®?) = 0,,, W)



su(N) N = 1* theory

The vacua are related to partitions of N. Can be gapped or have free photons.
Gapped vacua are related to divisors of N (“rectangular” partitions)

and counted by g1 = Zle d [Donagi, Witten 95; Dorey 99; Dorey, Hollowood, Kumar 01]
*~ Eg: SU(2) 3 gapped vacua: 1 Higgsed H and 2 confined C(® ()
H: D 1,0y = Wilson condenses Zs gauge theory (TQFT)
c . D(o,1y = non-genuine 't Hooft cond. SPTo
cW . D1,1) = non-genuine dyon cond. SPT,

S-duality: H <25 0 while M s a singlet
(check using order parameter (Tr ®?) = 0,,, W)

e Spontaneous symmetry breaking of (discrete) non-invertible symmetry

— degenerate vacua with inequivalent physical properties

Non-invertible symmetry relates untwisted and twisted sectors

Zs SPT Zy 1 SPT

=~ [

D10 ) Do,y



SU(2) PSU(2).

Vacuum ‘ H ‘ c® ‘ oW Vacuum ‘ H ‘ c® ‘ oW
Cond. line | Dy oy | D(o.1y | Diany Cond. line | D(} oy | D{o1y | Diany
TQFT Z; | SPTo | SPT, TQFT | SPTo | SPT: [ 7
SSB v v X SSB v v X

In PSU(2); S-duality is an invertible symmetry.



SU(2) PSU(2):

Vacuum ‘ H ‘ c® ‘ oW Vacuum ‘ H ‘ c® ‘ oW
Cond. line | Dy oy | D(o.1y | Diany Cond. line | D(} oy | D{o1y | Diany
TQFT Z; | SPTo | SPT, TQFT | SPTo | SPT: [ 7
SSB v v X SSB v v X

In PSU(2); S-duality is an invertible symmetry.

% Further information from cubic anomalies:
S has no cubic anomaly
TS can have cubic anomaly:
only in the absence of anomaly there can be a trivially-gapped IR phase (not guaranteed)

See Tizzano's talk.

e Other examples: IR CFTs with non-invertible symmetry. Inherited duality.
Gauge coupling does not run. Action of S-duality matches with SUGRA.



Anomalies of self-duality symmetries

e A symmetry is anomalous if it cannot be gauged

This definition requires precise definition of n-category and of gauging
* Strategy: Start in 2d, where the problem is solved.

Rephrase in terms of 3d Symmetry TFT. The result has a natural generalization
Leads to a Proposal for 4d, that can be considered in examples.



Anomalies of self-duality symmetries

e A symmetry is anomalous if it cannot be gauged

This definition requires precise definition of n-category and of gauging

* Strategy: Start in 2d, where the problem is solved.
Rephrase in terms of 3d Symmetry TFT. The result has a natural generalization.
Leads to a Proposal for 4d, that can be considered in examples.

e 2 dimensions. Eg: Ising CFT
nxn=1, nXN=Nxn=N, NxN=1an
1: generator of Zo symmetry N generator of Kramers-Wannier self-duality

* Tambara-Yamagami fusion category TY(A), [Tambara, Yamagami 98]
axb=(a+Db), Nxa=axN=N, NXNZ@HVGACL

A: non-anomalous Abelian symmetry group (self-duality under gauging it)
~: symmetric non-degenerate bi-character on A that fixes F-symbols
e = £1: Frobenius-Schur indicator
of N (F-symbol of \V) . o) = @) o B 9(6).



e Gauging: exhibit symmetric Frobenius algebra A [Fuchs, Runkel, Schweigert 02]
A= (D, b) @nN m:Ax A A
Gauging depends on subgroup B C A and discrete torsion [v] € H? (IB%, U(l))

Conditions for gauging: [Tambara 00; Meir, Musicantov 12; Thorngren, Wang 19]
known, boil down to 1%t and 2" obstruction



e Gauging: exhibit symmetric Frobenius algebra A [Fuchs, Runkel, Schweigert 02]
A= (D, b) @nN m:Ax A A
Gauging depends on subgroup B C A and discrete torsion [v] € H? (IB%, U(l))

Conditions for gauging: [Tambara 00; Meir, Musicantov 12; Thorngren, Wang 19]
known, boil down to 1%t and 2" obstruction

e Symmetry TFT: [Gelaki, Naidu, Nikshych 09]

3d gauge theory for A dubbed DW(A). Has 1-form symmetry A x AV.
~ induces isomorphism ¢ : A — AV
and automorphism ® of A x A" : (a,a) — (¢! (), #(a))

Gauge Z[®] with discrete torsion € € H?(Zy,U(1)) = Zs

This is Drinfeld center of TY category.

* Topological boundary conditions <> discrete gaugings in boundary theory
< gaugings of the bulk theory that trivialize it completely



Our result: [Antinucci, FB, Copetti, Galati, Rizi (to appear)]

* Topological b.c.'s where A is trivial at the boundary require:

@ A duality-invariant Lagrangian algebra .-Zp in DW(A):
O(Lp) =%p
Lag. algebras classified by B and [v] <> x, alternating bicharacter on B

Conditions for duality invariance are equivalent to 15% obstruction

e Gauging .Zp in DW(A) gives an SPT for Zy[®] dubbed Y.
(We find a simpler formula for Y, equivalent to the one in the literature)

Gauging of Zs is possible only if Ye = 1 — equivalent to 2" obstruction



Self-duality symmetries in 4d

4d theory with 1-form symmetry A,

self-dual under gauging of A (possibly with torsion)
Symmetric non-degenerate bicharacter ~y

induced by braiding on symmetry defect: v “

- D40 NS <@
Cubic anomaly € € QP"(G) for self-duality O " Q-

(on spin manifolds)



Self-duality symmetries in 4d

4d theory with 1-form symmetry A, (on spin manifolds)
self-dual under gauging of A (possibly with torsion)

Symmetric non-degenerate bicharacter ~y
induced by braiding on symmetry defect:

: D@ NS @
Cubic anomaly € € QP"(G) for self-duality @ ) @ -~

N N

e 5d Symmetry TFT:

2-form gauge theory for A, with 2-form symmetry A x AV

Natural SL(2,Z) action: S : (a,a) — (—¢~ (), ¢(a))
T: (a,a)— (a+ ¢ Ha), a)

Gauge Z4[S] or Z3[CST] with discrete torsion ¢

Obstructions: Impose that 3 duality-invariant Lagrangian algebra .Zp in DW(A)
and that the resulting SPT for G cancels €

@ Lagrangian algebras are classified by B C A

and [v] € HY(B?B,U(1)) <> X, symmetric bicharacter on B

Duality invariance boils down to certain algebraic conditions (1°* obstruction)
o After gauging .#p in DW(A), we find a simple formula for SPT (2" obstr.)



Conclusions

We discussed various aspects of self-duality symmetries:
@ their structure
@ how it can be obtained from holography

@ dynamics they can lead to along RG flows

@ part of their anomalies

Self-duality symmetries are just one example

o All should fit into the correct definition of a (d — 1)-category

Thank you!



