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Generalized symmetries [Gaiotto, Kapustin, Seiberg, Willett 14]

New paradigm:
symmetries in
(Euclidean) QFT

=
topological defect operators,
of any dimension

Standard 0-form symmetry G: codimension-1 defects Ug[Σ], g ∈ G

along submanifold Σ

that fuse according to G group structure:

Ug

Σ

Ug × Uh = Ugh

Charge conservation = topological character of defects

⋆ U(1) symmetry: Uα∈[0,1) = exp
[
2πiα

∫
Σ
∗j
]

Here only discrete !



Categorical or Non-invertible Symmetries

Various new structures:

Defects of higher codimension: p -form symmetries
L[ℓp]

Ug[Σd−p−1]
Charges carried by p -dimensional extended operators

Symmetries that act on other symmetries (e.g., n-groups):

Ug

O Rg[O] Wa

Ug

Wρg(a)

Fusion algebras instead of groups

from [FB, Cordova, Hsin 18]

Ua × Ub =
∑
c

N c
ab Uc

TQFT coefficients: N c
ab → ZTQFT[Σd−p−1] [Roumpedakis, Seifnashri, Shao 22]

Symmetries obtained by “condensing” other symmetries



In 2d the “most general” structure∗ is well understood

∗: bosonic QFT, discrete & finite symmetries, no spacetime action (internal), . . .

• (Unitary) Fusion category:

Objects: top. line defects
Tensor product: stacking of lines
Morphisms: fusion algebra

Ua × Ub =
∑

c N
c
ab Uc

Associator or F-symbol: d

f

a

e

d

cb = [Fabc
d ]fe

d

Includes standard 0-form symmetry G with ’t Hooft anomaly

One reason for simplicity is that in d dimensions, only up to
(d− 2)-form symmetries are non-trivial [Hellerman, Henriques, Pantev, Sharpe, Ando 06]

• Structure of (2d) fusion categories

is equivalently described by certain (3d) modular tensor categories (MTCs)

Drinfeld center

Related to the concept of Symmetry TFT



In d dimensions: look for (d− 1)-category • •

• n-category:

Objects 0-form symmetry defects
1-morphisms between objects junctions of 0-form defects, and 1-form defects
2-morphisms between 1-morphisms junctions of junctions, . . .
. . .
n-morphisms

In mathematics there are many different definitions.

It is not completely clear which one should appear in physics,
nor how to quantify all pieces of data, relations, constraints, . . .

Topic of active research



Examples of non-invertible symmetries in d > 2 dimensions:

Gauge a 0-form symmetry that acts on a higher-form symmetry.

E.g.: 4d SU(N) Yang-Mills with ZN 1-form symmetry,
gauge charge conjugation C : Ua → U−a

Ua × Ub = Ua+b →
Ũa̸=−a = Ua ⊕ U−a

Ũa × Ũb = Ũa+b + Ũa−b

[Bhardwaj, Bottini, Schafer-Nameki, Tiwari 22; Antinucci, Galati, Rizi 22]

Abelian symmetry with ABJ anomaly.

Q/Z ⊂ U(1) survives as non-invertible:

d ∗ j = F ∧ F ⇒ Uθ∈Q/Z = exp
[
2πiθ

∫
Σ3

∗j +AN,p[F ]
]

[Choi, Lam, Shao 22, Cordova, Ohmori 22]

Self-duality symmetries.

4d SU(N) N = 4 SYM at τ = i is almost self-dual, but SU(N)→ PSU(N)
There exists a non-invertible version of self-duality

[Kaidi, Ohmori, Zheng 21; Choi, Cordova, Hsin, Lam, Shao 21 & 22]



Some questions

• Q: understand the structure of the symmetry.

This is some sort of fusion category, as opposed to a group, so requires more data.

Can we identify all such pieces of data in concrete examples?

Especially difficult in higher dimensions, where we deal with a (d− 1)-category.

Full set of required data is not known.

• Q: understand anomalies.

Anomalies are a very powerful tool: RG invariant, exactly-calculable observables.
Give constraints on IR dynamics (esp. at strong coupling).

“Standard” anomalies are quantified by an integer: an element of a

cohomology group — e.g., α ∈ Hd+1
(
G,U(1)

)
for internal 0-form symmetry G

or more generally of a cobordism group, which are Abelian.

Standard anomalies are additive:

can be cancelled by adding matter or combining theories.

Such numbers not known for non-invertible symmetries. Might not be additive.
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• Not even obvious how to define anomalies.

For standard continuous 0-form symmetry G (Lie group):

Z[A+ dλ] = exp

(∫
X

A(λ,A, dA)

)
Z[A]

For invertible discrete symmetries:

use discrete background fields

background → network of defects
gauge transformations that maintain the bundle → set of moves
anomalies → phases picked up by those moves

For non-invertible symmetries:
not clear what a bundle, a background field, or an allowed move are.

Not clear how to associate a “number” to anomalies.

⋆ Possible definition of anomaly (yes/no):

Anomaly if symmetry cannot be gauged.



Some questions

• Q: how do non-invertible symmetries appear in holography?

Is there a bulk gauge fields for non-invertible symmetries?

At least for discrete symmetries, the answer seems to be very much related to the
concept of Symmetry TFT.

⋆ Example: 2d compact boson at rational R2
[FB, Copetti, Di Pietro 22]

Holographically dual to
U(1)k × U(1)−k

Z[1]
k

3d Chern-Simons theory

U(1)L × U(1)R 0-form symmetry is dual to a gauge field in the bulk.

Non-invertible symmetry of Verlinde lines: not dual to another gauge field,

rather to non-gauge-invariant topological lines that can only lie on the boundary.



Symmetry TFT

⋆ Theory Td with invertible (discrete) symmetry G and ’t Hooft anomaly:

lives at the boundary of invertible TQFTd+1 (or SPT phase) with symmetry G

which captures its anomaly → anomaly TFT

⋆ If part H of the symmetry is anomaly-free: gauge it to obtain

a new theory Td/H with new symmetry and new anomaly

Gauging discrete symmetries does not introduce new dynamics

(it is RG invariant, reversible and topological):

it only reshuffles physical information between twisted and untwisted sectors

Upgrade SPT phase to a full-fledged (i.e., non-invertible) TQFT such that:

∃ topological boundary conditions that reproduces original SPT;

any other topological boundary condition corresponds to a possible gauging;

anomalies appear as “lack of boundary conditions”.

[Gaiotto, Kulp 20; Bhardwaj, Bottini, Schafer-Nameki, Tiwari 22; Freed, Moore, Teleman 22]
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Plan of the talk

Self-duality symmetries (focus on 4d)

Self-duality symmetries in holography — for 4d su(N) N = 4 SYM

RG flows (see L. Tizzano’s talk)

Anomalies of self-duality symmetries (in 2d and 4d) [to appear]

(see A. Antinucci’s poster)

(see also P.-S. Hsin’s talk)



Self-duality Symmetries of 4d su(N) N = 4 SYM

Simple example: 4d N = 4 super-Yang-Mills with gauge algebra su(N)
[Choi, Cordova, Hsin, Lam, Shao 22]

Global variants: SU(N), PSU(N)p,
[
SU(N)/Zk

]
p
with k|N , p ∈ Zk

• SL(2,Z) S-duality. S : τ ↔ − 1
τ

SU(N)↔ PSU(N)0

where τ = θ
2π + 4πi

g2

Try to make S-duality into self-duality symmetry: τ = i

But SU(N) theory does not go to itself.

⋆ Can be corrected by topological operations:

• SU(N) has ZN electric 1-form symmetry (shift A by ZN center of the group)

Measures N -ality of Wilson line operators

• PSU(N) has ZN magnetic 1-form symmetry (π1 of gauge group)

Measures N -ality of ’t Hooft line operators (top. class of bundle)

Gauging those 1-form symmetries maps SU(N)↔ PSU(N)0
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Self-duality Symmetries of 4d su(N) N = 4 SYM

⋆ Combining S-duality with topological gauging → Symmetry

maps the theory to itself

Doing it on a half space:

US

SU(N)

τ = i

PSU(N)/Z[1]
N

∼= SU(N)

τ = itopological defect operator US

• Non-invertible 0-form self-duality symmetry:

US US

SU(N) SU(N)

︸ ︷︷ ︸
CZN

US × US = CZN × 1
US × US = CZN × UC

US × UC = US

...

UC : (invertible) charge conjugation

CZN : 3d condensate of 1-form symmetry [Choi, Cordova, Hsin, Lam, Shao 22]



Similar story for non-invertible triality symmetry

at τ = e2πi/3

because (CST )3 = 1 in SL(2,Z)

Other examples , e.g. in U(1) Maxwell theory
[Kaidi, Ohmori, Zheng 21; Choi, Cordova, Hsin, Lam, Shao 21]



Self-duality in holography

AdS/CFT: 4d su(N) N = 4 SYM ←→ IIB string theory on AdS5 × S5

⋆ How does self-duality symmetry and its non-invertibility appear

from the holographic description?

SL(2,Z) S-duality of τ ←→ SL(2,Z) S-duality of axiodilaton τ = C0 + i e−ϕ

• Global variants are described by boundary conditions for the topological sector:
[Aharony, Witten 98; Witten 98; Belov, Moore 04; Kravec, McGreevy, Swingle 14]∫

X10

C2 ∧H3 ∧ F5 −→ N

2π

∫
X5

B2 dC2 ≡
N

4π

∫
BTdB

5d 2-form ZN gauge theory (Chern-Simons-like) B = (B2, C2)

electric top. b.c. B2

∣∣
∂X5

= 0 SU(N)

magnetic top. b.c. C2

∣∣
∂X5

= 0 PSU(N)

conformal b.c. B2 − ∗C2

∣∣
∂X5

= 0 U(N)
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Self-duality in holography

S-duality as SL(2,Z) gauge theory in the bulk, spontaneously broken by ⟨τ⟩

SL(2,ZN ) acts on 5d Z[1]
N gauge theory (on spin manifolds) [Witten 98]

At special point part of it is unbroken: τ = i or τ = e2πi/3 (C always unbroken)

• Relevant topological theory is 5d Z[1]
N gauge theory,

further gauged by Z4 or Z6 → Symmetry TFT

⋆ Consider su(N) with N odd prime.

5d Z[1]
N gauge theory has ZN × ZN 2-form symmetry

its surface symmetry defects Un are generated by

exp
(
i

∫
B2

)
and exp

(
i

∫
C2

)
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• 0-form SL(2,ZN ) defects:

condensation defects of Z[2]
N × Z[2]

N (or subgroups) in 4d, with discrete torsion

E.g.: elements M ∈ SL(2,ZN ) s.t. TrM ̸= 2: condense full ZN × ZN with

T = ϵ
2 (1+M)(1−M)−1 T : 2× 2 symm. matrix

For instance: S → T = 1
21, C → T = 0, T : gauge a ZN subgroup

⋆ Lagrangian description:

S[T ] =
N

2π

∫
Σ4

[
BT(Φ + dΓ) + ΦTdΨ+

1

2
ΦTT Φ

]
T is invertible ⇔ TrM ̸= −2. In this case the 4d TQFT is invertible

(The case that T is not invertible is a bit special)



Symmetry defects admit a boundary → twist defects

use gauge invariance to write a boundary action

4d invertible TQFT is IT (B) = N
2π

∫ [
BTdΓ− 1

2
BTT −1B

]
determine [Hsin, Lam, Seiberg 18]

D[T ] = AN,−T (B) minimal 3d TQFT (MTC)

For C: D[T = 0] = (ZN × ZN )0(B,Φ)

• Fusion of twist defects (from Lagrangian description or using MTC’s):

5d bulk contributes!

Lines in D[T ] are endpoints of surfaces in 5d, that braid.

AN,−T2(B)×B AN,−T1(B) = AN,−T1−T2 ×AN,−T12(B)

D[T2]×D[T1] = AN,−T1−T2D[T21]

(assuming T1, T2 or T1 + T2 are invertible)



Symmetry defects admit a boundary → twist defects

use gauge invariance to write a boundary action

4d invertible TQFT is IT (B) = N
2π

∫ [
BTdΓ− 1

2
BTT −1B

]
determine [Hsin, Lam, Seiberg 18]

D[T ] = AN,−T (B) minimal 3d TQFT (MTC)

For C: D[T = 0] = (ZN × ZN )0(B,Φ)

• Fusion of twist defects (from Lagrangian description or using MTC’s):

5d bulk contributes!

Lines in D[T ] are endpoints of surfaces in 5d, that braid.

AN,−T2(B)×B AN,−T1(B) = AN,−T1−T2 ×AN,−T12(B)

D[T2]×D[T1] = AN,−T1−T2D[T21]

(assuming T1, T2 or T1 + T2 are invertible)



• Project to gapped boundaries, labelled by L ⊂ ZN × ZN

Un

∣∣
X

= 1 if n ∈ L ⇔ certain Dirichlet b.c.’s for B

When D[T ] lies on gapped boundary,

part of AN,−T (B) decouples and can be thrown away:

AN,−T (B) = AN,−tℓ(bℓ)︸ ︷︷ ︸
drop

×AN,−t⊥(b⊥)︸ ︷︷ ︸
DL [T ]

Decoupling is consistent with ×B. What is left gives the fusion rules:

DL [T2]×DL [T1] = N21 DL [T21]

We found explicit formulas for computing N21

⋆ For instance, on the electric boundary we find:

DL[T ]×DL[−T ] = CZN

DL[TS ]×DL[TS ] = CZN DL[0]
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• Finally, gauge the appropriate Zn subgroup of SL(2,Z):
4d surfaces being gauged become transparent

corresponding 3d boundaries get liberated
[use Bhardwaj, Bottini, Schafer-Nameki, Tiwari 22]

More precisely, gauge-invariant combinations are combination with Gukov-Witten
operators:

D[T ] = GWM(T ) ×D[T ]

Resulting fusion rules are not modified: are the ones presented before.

Comments:

Twisted sectors of SL(2,Z) in SUGRA are 7-branes

Holographic construction extendable to class S [Antinucci, Copetti, Galati, Rizi 22]

[cfr. Bashmakov, Del Zotto, Hasan, Kaidi 22]



RG flows [Argurio, Aguilera Damia, FB, Bevenuti, Copetti, Tizzano 22]

• Consider deformations that preserve the non-invertible symmetries

→ Constraints on dynamics: prevent generation of symmetry-breaking operators

→ Constraints on low-energy theory (in particular in presence of anomalies)

Depending on IR phase, may or may not have spontaneous symmetry breaking

• SL(2,Z) action on operators: [Intriligator 98; Kapustin, Witten 06]

Operators are assigned charge q under modular transformations if

M · Oq =

(
|c τYM + d|
c τYM + d

)q/2

Oq for M =
( a b
c d

)
∈ SL(2,Z)

(square root signals extension SL(2,Z) → Mp(2,Z) because S4 = C2 = (−1)F )

ϕI=1...6 have q = 0; λA
α and QA

α have q = 1; 1√
Im τ

(F − τ F̃ ) has q = 2

At Zk self-dual point: M ·QA
α = e−

iπ
k QA

α



For N = 4 SYM, a simple class of local deformations is by superpotential:

W ∼ TrΦ1[Φ2,Φ3] δW =
∑3

i=1
mi TrΦ

2
i

(topological gauging involved in S does not act on local operators)

Superpotential should transform as M ·W = e
2πi
k W to give invariant Lagrangian

→ combine with suitable R-symmetry rotation

⋆ Examples:

m1,m2,m3 ̸= 0 N = 1∗ theory gapped vacua or free photons

m1=m2 ̸= 0, m3=0 N = 2∗ theory Coulomb branch

m1 ̸= 0, m2=m3=0 N = 1 Leigh-Strassler CFT

(for details see L. Tizzano’s talk)



su(N) N = 1∗ theory

The vacua are related to partitions of N . Can be gapped or have free photons.

Gapped vacua are related to divisors of N (“rectangular” partitions)

and counted by σ1 =
∑

d|N d [Donagi, Witten 95; Dorey 99; Dorey, Hollowood, Kumar 01]

⋆ E.g.: SU(2) 3 gapped vacua: 1 Higgsed H and 2 confined C(0), C(1)

H : D(1,0) = Wilson condenses Z2 gauge theory (TQFT)

C(0) : D(0,1) = non-genuine ’t Hooft cond. SPT0

C(1) : D(1,1) = non-genuine dyon cond. SPT1

S-duality: H
S←→ C(0) while C(1) is a singlet

(check using order parameter ⟨TrΦ2
i ⟩ = ∂miW )

• Spontaneous symmetry breaking of (discrete) non-invertible symmetry

→ degenerate vacua with inequivalent physical properties

Non-invertible symmetry relates untwisted and twisted sectors
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SU(2)

Vacuum H C(0) C(1)

Cond. line D(1,0) DU
(0,1) DU

(1,1)

TQFT Z2 SPT0 SPT1

SSB ✓ ✓ ×

PSU(2)1

Vacuum H C(0) C(1)

Cond. line DU
(1,0) DU

(0,1) D(1,1)

TQFT SPT0 SPT1 Z2

SSB ✓ ✓ ×

In PSU(2)1 S-duality is an invertible symmetry.

⋆ Further information from cubic anomalies:
S has no cubic anomaly
TS can have cubic anomaly:

only in the absence of anomaly there can be a trivially-gapped IR phase (not guaranteed)

See Tizzano’s talk.

• Other examples: IR CFTs with non-invertible symmetry. Inherited duality.

Gauge coupling does not run. Action of S-duality matches with SUGRA.



SU(2)

Vacuum H C(0) C(1)

Cond. line D(1,0) DU
(0,1) DU

(1,1)

TQFT Z2 SPT0 SPT1

SSB ✓ ✓ ×

PSU(2)1

Vacuum H C(0) C(1)

Cond. line DU
(1,0) DU

(0,1) D(1,1)

TQFT SPT0 SPT1 Z2

SSB ✓ ✓ ×

In PSU(2)1 S-duality is an invertible symmetry.

⋆ Further information from cubic anomalies:
S has no cubic anomaly
TS can have cubic anomaly:

only in the absence of anomaly there can be a trivially-gapped IR phase (not guaranteed)

See Tizzano’s talk.

• Other examples: IR CFTs with non-invertible symmetry. Inherited duality.

Gauge coupling does not run. Action of S-duality matches with SUGRA.



Anomalies of self-duality symmetries

• A symmetry is anomalous if it cannot be gauged

This definition requires precise definition of n-category and of gauging

⋆ Strategy: Start in 2d, where the problem is solved.

Rephrase in terms of 3d Symmetry TFT. The result has a natural generalization.

Leads to a Proposal for 4d, that can be considered in examples.

• 2 dimensions. Eg: Ising CFT

η × η = 1 , η ×N = N × η = N , N ×N = 1⊕ η

η: generator of Z2 symmetry N : generator of Kramers-Wannier self-duality

⋆ Tambara-Yamagami fusion category TY(A)γ,ϵ: [Tambara, Yamagami 98]

a× b = (a+ b) , N × a = a×N = N , N ×N =
⊕

a∈A
a

A: non-anomalous Abelian symmetry group (self-duality under gauging it)

γ: symmetric non-degenerate bi-character on A that fixes F -symbols

ϵ = ±1: Frobenius-Schur indicator

of N (F -symbol of N )
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Rephrase in terms of 3d Symmetry TFT. The result has a natural generalization.

Leads to a Proposal for 4d, that can be considered in examples.

• 2 dimensions. Eg: Ising CFT

η × η = 1 , η ×N = N × η = N , N ×N = 1⊕ η

η: generator of Z2 symmetry N : generator of Kramers-Wannier self-duality

⋆ Tambara-Yamagami fusion category TY(A)γ,ϵ: [Tambara, Yamagami 98]

a× b = (a+ b) , N × a = a×N = N , N ×N =
⊕

a∈A
a

A: non-anomalous Abelian symmetry group (self-duality under gauging it)

γ: symmetric non-degenerate bi-character on A that fixes F -symbols

ϵ = ±1: Frobenius-Schur indicator

of N (F -symbol of N )



• Gauging: exhibit symmetric Frobenius algebra A [Fuchs, Runkel, Schweigert 02]

A =
(⊕

b∈B
b
)
⊕ nN m : A×A → A

Gauging depends on subgroup B ⊂ A and discrete torsion [ν] ∈ H2
(
B, U(1)

)
Conditions for gauging: [Tambara 00; Meir, Musicantov 12; Thorngren, Wang 19]

known, boil down to 1st and 2nd obstruction

• Symmetry TFT: [Gelaki, Naidu, Nikshych 09]

3d gauge theory for A dubbed DW(A). Has 1-form symmetry A× A∨.

γ induces isomorphism ϕ : A→ A∨

and automorphism Φ of A× A∨ : (a, α) 7→
(
ϕ−1(α), ϕ(a)

)
Gauge Z2[Φ] with discrete torsion ϵ ∈ H3

(
Z2, U(1)

) ∼= Z2

This is Drinfeld center of TY category.

⋆ Topological boundary conditions ↔ discrete gaugings in boundary theory

↔ gaugings of the bulk theory that trivialize it completely
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Our result: [Antinucci, FB, Copetti, Galati, Rizi (to appear)]

⋆ Topological b.c.’s where N is trivial at the boundary require:

A duality-invariant Lagrangian algebra LD in DW(A):

Φ(LD) = LD

Lag. algebras classified by B and [ν]↔ χν alternating bicharacter on B

Conditions for duality invariance are equivalent to 1st obstruction

Gauging LD in DW(A) gives an SPT for Z2[Φ] dubbed Y .

(We find a simpler formula for Y , equivalent to the one in the literature)

Gauging of Z2 is possible only if Y ϵ = 1 — equivalent to 2nd obstruction



Self-duality symmetries in 4d

4d theory with 1-form symmetry A, (on spin manifolds)

self-dual under gauging of A (possibly with torsion)

Symmetric non-degenerate bicharacter γ
induced by braiding on symmetry defect:

Cubic anomaly ϵ ∈ Ωspin
5 (G) for self-duality

• 5d Symmetry TFT:
2-form gauge theory for A, with 2-form symmetry A× A∨

Natural SL(2,Z) action: S : (a, α) 7→ (−ϕ−1(α), ϕ(a))
T : (a, α) 7→

(
a+ ϕ−1(α), α

)
Gauge Z4[S] or Z3[CST ] with discrete torsion ϵ

Obstructions: Impose that ∃ duality-invariant Lagrangian algebra LD in DW(A)
and that the resulting SPT for G cancels ϵ

Lagrangian algebras are classified by B ⊂ A
and [ν] ∈ H4(B2B, U(1)) ↔ χν symmetric bicharacter on B
Duality invariance boils down to certain algebraic conditions (1st obstruction)

After gauging LD in DW(A), we find a simple formula for SPTG (2nd obstr.)
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Conclusions

We discussed various aspects of self-duality symmetries:

their structure

how it can be obtained from holography

dynamics they can lead to along RG flows

part of their anomalies

Self-duality symmetries are just one example

All should fit into the correct definition of a (d− 1)-category

Thank you!


