Non-invertible symmetries of Cardy-Rabinovici model and mixed gravitational anomaly

Yui Hayashi (Yukawa Institute, Kyoto U.)

in collaboration with Yuya Tanizaki (Yukawa Institute, Kyoto U.)
Categorical aspects of symmetries at Nordita
August 22, 2023
based on JHEP 08036 (2022), arXiv:2204.07440 [hep-th]

Overview

- Model: Cardy-Rabinovici model (a toy model for YM with θ angle)
- Method: non-invertible symmetry from "duality" \& its anomaly
- Results:

1. $S L(2, \mathbb{Z})$ transformations of the CR model can be understood as "dualities" between the CR model and its (appropriately) $\mathbb{Z}_{N}^{[1]}$-gauged model.
2. From these "dualities," at self-dual parameters, we construct non-invertible symmetries and determine their fusion rules.
3. We find a "mixed gravitational anomaly" of this symmetry for some cases, which rules out the trivially-gapped vacuum.
(The conjectured phase diagram is consistent with this new constraint.)

Introduction

- Model: Cardy-Rabinovici model (a toy model for YM with θ angle)
- Method: non-invertible symmetry from "duality" \& its anomaly
- Results:

1. $S L(2, \mathbb{Z})$ transformations of the CR model can be understood as "dualities" between the CR model and its (appropriately) $\mathbb{T}_{N}^{[1]}$-gauged model.
2. From these "dualities," at self-dual parameters, we construct non-invertible symmetries and determine their fusion rules.
3. We find a "mixed gravitational anomaly" of this symmetry for some cases, which rules out the trivially-gapped vacuum.
(The conjectured phase diagram is consistent with this new constraint.)

Non-invertible duality defect

"Half-space gauging": a popular way to construct non-invertible symmetries applicable to higher dimensions
[Koide, Nagoya, Yamaguchi '21; Choi, Córdova, Hsin, Lam, Shao '21; Kaidi, Ohmori, Zheng '21]
Idea: generalization of KW duality defect

2d example: Kramers-Wannier duality in Ising model.

$$
\mathcal{T} / \mathbb{Z}_{2} \simeq \mathcal{J} \quad \longrightarrow \quad \begin{gathered}
\text { KW duality defect line }= \\
\text { "half-space gauging" }
\end{gathered}
$$

Generalization to 4d: self-duality by 1-form symmetry $\mathbb{Z}_{N}^{[1]}$ gauging leads to a similar defect

$$
\mathcal{T} / \mathbb{Z}_{N}^{[1]} \simeq \mathcal{T} \quad \longrightarrow \begin{aligned}
& \text { "half-space } \mathbb{Z}_{N}^{[1]} \text { gauging" } \\
& : 3 \text { 3-dim topological defect }
\end{aligned}
$$

Introduction

- Model: Cardy-Rabinovici model (a toy model for YM with θ angle)
- Method: non-invertible symmetry from "duality" \& its anomaly
- Results:

1. $S L(2, \mathbb{Z})$ transformations of the CR model can be understood as "dualities" between the $C R$ model and its (appropriately) $\mathbb{Z}_{N}^{[1]}$-gauged model.
2. From these "dualities," at self-dual parameters, we construct non-invertible symmetries and determine their fusion rules.
3. We find a "mixed gravitational anomaly" of this symmetry for some cases, which rules out the trivially-gapped vacuum.
(The conjectured phase diagram is consistent with this new constraint.)

Motivation: quark confinement \& θ angle

A popular understanding of quark confinement: dual superconductor picture

Witten effect: monopole acquires electric charge $\theta / 2 \pi$ by increasing θ

Cardy-Rabinovici model

A toy model mimicking such structure:

Cardy-Rabinovici model
 [Cardy and Rabinovici ’82, Cardy ‘82]

- 4d U(1) gauge + charge-N Higgs + monopole
- $\mathbb{Z}_{N}^{[1]}$ symmetry ($\sim \mathbb{Z}_{N}^{[1]}$ center symmetry in $S U(N) \mathrm{YM}$)
- Formulated as a Villain-type lattice gauge theory. Symbolically,

$$
Z_{C R}=\int \mathcal{D} a e^{-S_{U(1)}[d a]} \sum_{C, C^{\prime}: \mathrm{loops}} W^{N}(C) H\left(C^{\prime}\right)
$$

where $S_{U(1)}[d a]=\frac{1}{2 g^{2}} \int d a \wedge * d a+\frac{i N \theta}{8 \pi^{2}} \int d a \wedge d a$,
$W(C)$: Wilson loop, $H(C)$: 't Hooft loop

Conjectured phase diagram

An energy vs. entropy argument for $W^{N e}(C) H^{m}(C)_{\lfloor\text {Cardy and Rabinovicic 's2, carcy } 82\rfloor}$

Complex coupling

$$
\tau:=\frac{\theta}{2 \pi}+i \frac{2 \pi}{N g^{2}}
$$

The same CP\& $\mathbb{Z}_{N}^{[1]}$ mixed anomaly as $S U(N)$ YM [Honda and Tanizaki '19]

Complex coupling

Conjectured phase diagram

$$
\tau:=\frac{\theta}{2 \pi}+i \frac{2 \pi}{N g^{2}}
$$

- This phase diagram has $S L(2, \mathbb{Z})$ invariance: S ("electromagnetic" duality) and $\boldsymbol{T}(\boldsymbol{\theta} \rightarrow \boldsymbol{\theta}+2 \pi)$ transformations.

$$
\begin{array}{rlrl}
S: \tau & \mapsto-\frac{1}{\tau}, & \binom{e}{m} \mapsto\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)\binom{e}{m}=\binom{-m}{e} \\
T: \tau \mapsto \tau+1, & \binom{e}{m} \mapsto\left(\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right)\binom{e}{m}=\binom{e-m}{m}
\end{array}
$$

- However, the standard S transformation is not the duality of the CR model itself, because S-transformed model has electric charge-1 \& magnetic charge-N matters.
\rightarrow duality between the $\mathbf{C R}$ model and its $\mathbb{Z}_{N}^{[1]}$-gauged model

Results

- Model: Cardy-Rabinovici model (a toy model for YM with θ angle)
- Method: non-invertible symmetry from "duality" \& its anomaly
- Results:

1. $S L(2, \mathbb{Z})$ transformations of the CR model can be understood as "dualities" between the CR model and its (appropriately) $\mathbb{Z}_{N}^{[1]}$-gauged model.
2. From these "dualities," at self-dual parameters, we construct non-invertible symmetries and determine their fusion rules.
3. We find a "mixed gravitational anomaly" of this symmetry for some cases, which rules out the trivially-gapped vacuum.
(The conjectured phase diagram is consistent with this new constraint.)

Notations

- (The spacetime manifold is spin and torsion-free).
- The partition function with $\mathbb{Z}_{N}^{[1]}$ background B :

$$
Z_{C R}^{\tau}[B]:=\int \mathcal{D} a e^{-S_{U(1)}[d a+B]} \sum_{C, C^{\prime}: \mathrm{loops}} W_{d a+B}^{N}(C) H_{d a+B}\left(C^{\prime}\right)
$$

- The partition function of level- $p \mathbb{Z}_{N}^{[1]}$-gauged $C R$ model with (dual) $\mathbb{Z}_{N}^{[1]}$ background B :

$$
Z_{C R}^{\tau} /\left(\mathbb{Z}_{N}^{[1]}\right)_{p}[B]:=\int \mathcal{D} b Z_{C R}^{\tau_{*}}[b] e^{\frac{i N p}{4 \pi} \int b \wedge b} e^{\frac{i N}{2 \pi} \int b \wedge B}
$$

with the following normalization,

$$
\int \mathcal{D} b \ldots:=\frac{\left|H^{0}\left(X ; \mathbb{Z}_{N}\right)\right|}{\left|H^{1}\left(X ; \mathbb{Z}_{N}\right)\right|} \sum_{b \in H^{2}\left(X ; \mathbb{Z}_{N}\right)} \ldots
$$

Complex coupling

Warm-up: S-defect

$$
\tau:=\frac{\theta}{2 \pi}+i \frac{2 \pi}{N g^{2}}
$$

For Maxwell theory, constructed in [Choi, Córdova, Hsin, Lam, and Shao '21]

The S "self-duality" at $\tau=i$ can be realized as

$$
[\mathrm{U}(1) \text { gauge }+(\mathrm{N}, 0) \text { matter }+(0,1)
$$ matter] system with coupling $\tau=i$

$[\mathrm{U}(1)$ gauge $+(1,0)$ matter $+(0, \mathrm{~N})$ matter] system at coupling $\tau=i / N^{2}$
electromagnetic S transform

CP symmetry

We can construct non-invertible defects by half-space gauging

$$
\begin{aligned}
\mathcal{D}(M) \times \mathcal{D}(M) & =C(M) \frac{1}{N} \sum_{\Sigma \in H_{2}\left(M, \mathbb{Z}_{N}\right)} \eta(\Sigma) \\
\eta(\Sigma) \times \mathcal{D}(M) & =\mathcal{D}(M) \times \eta(\Sigma)=\mathcal{D}(M)
\end{aligned}
$$

The trivially-gapped phase is ruled out for $N>2$.

A simple guess from the conjectured phase diagram $Z_{\text {mono }}[B]+Z_{\text {Higgs }}[B]$ is consistent with these constraints.

Complex coupling

Nontrivial example: $S T^{-1}$ defect

$$
\tau:=\frac{\theta}{2 \pi}+i \frac{2 \pi}{N g^{2}}
$$

The $S T^{-1}$ "self-duality" at $\tau=\tau_{*}=e^{i \pi / 3}$ can be realized as

We can construct non-invertible defects by half-space gauging
$\mathcal{D}(M) \times \mathcal{D}(M) \times \mathcal{D}(M) \propto \mathrm{C}(M) \sum_{\Sigma \in H_{2}\left(M, \mathbb{Z}_{N}\right)} \eta(\Sigma)$
$\eta(\Sigma) \times \mathcal{D}(M)=\mathcal{D}(M) \times \eta(\Sigma)=\mathcal{D}(M)$

The trivially-gapped phase is ruled out.
\because Any SPT partition function cannot satisfy this relation on, e.g., K3 surface.

Anomaly and conjectured phase diagram

A natural guess for low-energy theories of Higgs, monopolecondensed, and dyon-condensed phases:

A linear combination of them:
$Z[B]=Z_{\text {mono }}[B]+e^{\frac{\pi i}{3} \sigma} Z_{\text {dyon }}[B]+N^{-\frac{\chi}{2}} e^{\frac{2 \pi i}{3} \sigma} Z_{\text {Higgs }}[B]$
matches the anomaly: $Z_{C R}^{\tau_{*}}\left(\mathbb{Z}_{N}^{[1]}\right)_{-1}[B]=N^{\frac{\chi}{2}} e^{-\frac{i \pi}{3} \sigma} Z_{C R}^{\tau_{*}}[B]$!

Summary

- Model: Cardy-Rabinovici model (a toy model for YM with θ angle)
- Method: non-invertible symmetry from "duality" \& its anomaly
- Results:

1. $S L(2, \mathbb{Z})$ transformations of the CR model can be understood as "dualities" between the CR model and its (appropriately) $\mathbb{Z}_{N}^{[1]}$-gauged model.
2. From these "dualities," at self-dual parameters, we construct non-invertible symmetries and determine their fusion rules.
3. We find a "mixed gravitational anomaly" of this symmetry for some cases, which rules out the trivially-gapped vacuum.
(The conjectured phase diagram is consistent with this new constraint.)
