9 vs 10

Math

K-theoretic

Physics

and KK modes

partition functions,

invariants,
moduli spaces Precision 3d-3d

Based on:

- S.G., P.-S.Hsin, D.Pei (I, II)
- S.G., A.Sheshmani, S.-T.Yau

See also:

- S.Eckhard, H.Kim, S.Sch afer-Nameki, B.Willett
- C.Cordova, T.Dumitrescu, K.Intriligator
- M.Del Zotto, J.Heckman, D.Park, T.Rudelius

Definition: (6-n)-dimensional theory

$$
T\left[M_{n}, \ldots\right]:=6 \mathrm{~d}(0,2) \text { theory on } M_{n}
$$

6d CFT

$$
\begin{gathered}
4-\mathrm{manifold} \\
M_{4}
\end{gathered}
$$

Definition: (6-n)-dimensional theory

$$
T\left[M_{n}, \ldots\right]:=6 \mathrm{~d}(0,2) \text { theory on } M_{n}
$$ \uparrow G, polarization, ...

$$
\begin{array}{ll}
\text { Today: } & \mathrm{G}=\mathrm{U}(1) \text { single fivebrane } \\
\mathrm{G}=\mathrm{SU}(2)
\end{array}
$$

$$
M_{3}=S^{1} \times S^{2}, T^{3}
$$

$$
L(p, 1)=S^{3} / \mathbb{Z}_{p}, \ldots
$$

mapping tori

Definition: (6-n)-dimensional theory

$$
T\left[M_{n}, \ldots\right]:=6 \mathrm{~d}(0,2) \text { theory on } M_{n}
$$

G, polarization, ...

$$
\begin{array}{ll}
\text { Today: } & \mathrm{G}=\mathrm{U}(1) \text { single fivebrane } \\
\mathrm{G}=\mathrm{SU}(2)
\end{array}
$$

fermions
$6 \mathrm{~d}: \quad B, \quad \phi_{1, \ldots, 5}, \quad \psi=(\mathbf{4}, \mathbf{4})$

$$
\underset{S O(5)_{R}}{U}
$$

Question: $\quad T\left[T^{2}\right]=4 \mathrm{~d} \mathcal{N}=4$ super-Yang-Mills

Question: $T\left[T^{2}\right]=4 \mathrm{~d} \mathcal{N}=4$ super-Yang-Mills

Answer: No

6d: 2-form symmetry C

$$
\begin{aligned}
G=U(1): & C=U(1) \\
G=S U(2): & C=\mathbb{Z}_{2}
\end{aligned}
$$

on T^{2} :
2-form

1-form 1-form

0-form

$$
T\left[M_{n}\right] \text { for } M_{n}=T^{n}
$$

n=1: $T\left[S^{1}\right] \quad 5 \mathrm{~d}$ theory $\quad G=U(1)$

$$
\begin{aligned}
& \underline{6 \mathrm{~d}} \underline{5 \mathrm{~d}} \\
& B \longrightarrow A, \ldots \\
& \vec{\phi} \longrightarrow \vec{\phi}_{m \in \mathbb{Z}} \\
& \psi \longrightarrow \psi_{m \in \mathbb{Z}}
\end{aligned}
$$

${ }^{\star}$ momentum on S^{1}

$T\left[M_{n}\right]$ for $M_{n}=T^{n}$
 ?
 Question: $T\left[S^{1}\right]=5 \mathrm{dYM}$

if yes, what in 5d SYM accounts for
$\vec{\phi}_{m}$ and ψ_{m} with $m \neq 0$

E.Witten
M.Douglas
N.Lambert, C.Papageorgakis, M.Schmidt-Sommerfeld H.-C.Kim, S.Kim, E.Koh, K.Lee, S.Lee
Y.Tachikawa
A.Gustavsson

$T\left[M_{n}\right]$ for $M_{n}=T^{n}$

n=2: $T\left[T^{2}\right]$
$S O(5)$ R-symmetry
$\varphi \in G$

$$
\begin{array}{lc}
\underline{6 \mathrm{~d}} & \underline{4 \mathrm{~d}} \\
B & \longrightarrow A, \varphi, \ldots \\
\vec{\phi} \longrightarrow \vec{\phi}_{m, n} & \text { 2-form } \\
\psi \rightarrow \psi_{m, n} & \text { 1-form } \\
\text { 1-form } \\
\text { 0-form }
\end{array}
$$

Coulomb branches

$$
4 \mathrm{~d} \mathcal{N}=4 \quad G=S U(2)
$$

$$
\begin{aligned}
& \text { n=3: } T\left[T^{3}\right] \quad \mathcal{M}_{U(1)}=\mathbb{C}^{*} \times \mathbb{C}^{*} \times \mathbb{C}^{*} \times \mathbb{C} \\
& \text { 6d } \underline{3 d} \\
& \mathcal{M}_{S U(2)}=\frac{\mathbb{C}^{*} \times \mathbb{C}^{*} \times \mathbb{C}^{*} \times \mathbb{C}}{\mathbb{Z}_{2}} \\
& B \longrightarrow A, \varphi_{1}, \varphi_{2}, \ldots \text { dual to } \varphi_{3} \in S^{1} \\
& \vec{\phi} \longrightarrow \vec{\phi}_{m, n, k} \\
& \psi \longrightarrow \psi_{m, n, k} \\
& \mathcal{M}_{\mathrm{ABJM}}=\mathbb{C}^{4} / \mathbb{Z}_{2} \\
& \text { S.Chun, S.G., S.Park, N.Sopenko }
\end{aligned}
$$

$$
\begin{aligned}
& T\left[M_{3}\right] \text { for } M_{3}=S_{0}^{3}(K) \\
& 9 \text { such theories (polarizations) }
\end{aligned}
$$

Spin

S.Chun, S.G., S.Park, N.Sopenko

Theorem [Lickorish, Wallace]:
Every connected oriented closed 3-manifold arises by performing an integral Dehn surgery along a link in S^{3}.
p / r

Special surgeries:

Property R

Theorem ("property R" conjecture):
D.Gabai (1983)

If the 0 -surgery on $K \subset S^{3}$ is homeomorphic to $S^{1} \times S^{2}$, then K is the unknot.

The trefoil knot and the figure-8 knot are uniquely characterized by 0 -surgery.

$$
M_{3}=S_{0}^{3}(K)
$$

D.Gabai (1987)

Conjecture [Akbulut and Kirby '97]:

If 0 -surgeries on two knots give the same 3 -manifold,

$$
S_{0}^{3}(K) \cong S_{0}^{3}\left(K^{\prime}\right)
$$

then the knots are concordant.

Conjecture:

FALSE
P.Kirk, C.Livingston (1999)

If 0 -surgeries on two knots give the same 3 -manifold, then the knots with relevant orientations are concordant.

Thm: For $M_{3}=S_{0}^{3}(K)$ at least one of Rokhlin invariants vanishes. M.Hedden, M.H.Kim, T.Mark, K.Park (2018)
Cor: If M_{3} is integral homology $S^{1} \times S^{2}$ with two non-trivial Rokhlin invariants, then $M_{3} \neq S_{0}^{3}(K)$.

Thm: If K is slice, then

L.Truong (2021)

$$
b_{2}\left(M_{4}\right) \geq \frac{10}{8}\left|\sigma\left(M_{4}\right)\right|+5
$$

where $\partial M_{4}=S_{0}^{3}(K), b_{2}\left(M_{4}\right) \neq 1$, 3 , or 23 , and M_{4} is a two-handlebody (two-handles attached to a 4 -ball).

Generalized Poincare conjecture:

Every homotopy 4 -sphere is diffeomorphic to the standard 4 -sphere.

Theorem: If one finds a pair of knots which satisfy the following three properties:

- K and K^{\prime} have the same 0-surgery
- K is not slice
- K^{\prime} is slice
then the smooth 4-dimensional Poincare conjecture is false.

3d $\mathcal{N}=2$ theories labeled by

vertex

Not known! non-Lagrangian ?
edge

3d $\mathcal{N}=2$ vector multiplet with Chern-Simons coupling a

a

3d $\mathcal{N}=2$ theories labeled by

vertex $\stackrel{a}{ }$

edge

3d $\mathcal{N}=2$ vector multiplet with Chern-Simons coupling a

IR fixed point of a theory with non-linear matter a la Skyrme
S.Chun, S.G., S.Park, N.Sopenko

Tony Skyrme

Tony Skyrme

All related to complex Chern-Simons and modularity

Examples:

$$
\operatorname{MTC}\left[\begin{array}{c}
\text { Lens } \\
\text { space }
\end{array}\right]=\operatorname{Ver}\left(G_{k}\right)
$$

state-operator in 3d:

$\mathcal{H} \mathcal{H}\left(S^{2}\right)=$ local operators

$$
\mathcal{H}\left(T^{2}\right)=\text { line operators }=K^{0}(\mathcal{C})
$$

6d perspective: ${ }^{T^{2} \times \mathbb{R} \times M_{3}}$

$$
\begin{gathered}
\mathcal{H}_{T\left[M_{3}\right]}\left(T^{2}\right)=K^{0}\left(\operatorname{MTC}\left[M_{3}\right]\right) \\
\mathrm{MCG}\left(M_{3}\right) \times S L(2, \mathbb{Z}) \\
\cap \\
\mathcal{H}_{\mathrm{VW}}\left(M_{3}\right)
\end{gathered}
$$

Homology a la Floer
approximate relations:

differ by KK modes on S^{1}

$\mathcal{H}_{\mathrm{VW}}\left(M_{3}\right) \simeq \mathcal{H}_{T\left[M_{3}\right]}\left(T^{2}\right)=H_{T^{A}\left[M_{3}\right]}\left(S^{1}\right)$
differ by

$$
\cong Q H^{*}\left(\mathcal{M}_{\text {flat }}\left(M_{3}, G_{\mathbb{C}}\right)\right)
$$

$\mathcal{H}_{\mathrm{VW}}\left(M_{3}\right)=$?

Special family:

$$
M_{3}=S^{1} \times \Sigma_{g}
$$

$g=0$: Gluck twist
$g=1$: knot surgeries, log-transforms, ...

On $M_{4}=\mathbb{R} \times M_{3}$ same as $K W$ equations

$$
\begin{array}{cccc}
\mathrm{VW}: & A & B \in \Omega^{2,+}\left(M_{4}, \mathfrak{g}\right) & \phi, \bar{\phi} \in \Omega^{0}\left(M_{4}, \mathfrak{g} \mathrm{C}\right) \\
& \uparrow & C \in \Omega^{0}\left(M_{4}, \mathfrak{g}\right) & \uparrow \\
& \downarrow & \uparrow &
\end{array}
$$

KW: A
$\phi \in \Omega^{1}\left(M_{4}, \mathfrak{g}\right)$
$\sigma, \bar{\sigma} \in \Omega^{0}\left(M_{4}, \mathfrak{g}_{\mathbb{C}}\right)$
play an important role in the gauge theory approach to the geometric Langlands program

THE SELF-DUALITY EQUATIONS ON A RIEMANN SURFACE

N. J. HITCHIN

[Received 15 September 1986]

Introduction

In this paper we shall study a special class of solutions of the self-dual Yang-Mills equations. The original self-duality equations which arose in mathematical physics were defined on Euclidean 4 -space. The physically relevant solutions were the ones with finite action-the so-called 'instantons'. The same equations may be dimensionally reduced to Euclidean 3 -space by imposing invariance under

Theorem: in Vafa-Witten theory on $M_{3}=S^{1} \times \Sigma$

$$
\mathcal{M}_{\mathrm{VW}}\left(G, M_{3}\right) \cong \mathcal{M}_{H}^{\mathcal{E}}(G, \Sigma)
$$

moduli space of \mathcal{E}-valued Higgs bundles
with $R_{i}=(2,0,0)$.
\Rightarrow explicit expression for $\mathcal{H}_{\mathrm{VW}}\left(\Sigma_{g} \times S^{1}\right)$ and its equivariant character
cf. equivariant Verlinde formula

Claim: when $\pi_{1}(G)=1$ the Gluck involution acts trivially on $\mathcal{H}_{\mathrm{VW}}\left(S^{2} \times S^{1}\right)$ and $Z_{\mathrm{VW}}\left(M_{4}, G\right)$ can not detect the Gluck twist.

Remark: the moduli spaces are different for

$$
\begin{equation*}
M_{4}=\mathbb{R} \times S^{1} \times \Sigma_{g} \cong \mathbb{C}^{*} \times \Sigma_{g} \tag{"K-theoretic"}
\end{equation*}
$$

and

$$
M_{4}=\mathbb{R} \times \mathbb{R} \times \Sigma_{g} \cong \mathbb{C} \times \Sigma_{g}
$$

Question: $\quad 9$ vs $10=10 \%$?
$\operatorname{dim} \operatorname{Sk}\left(T^{3}\right)=9 \quad$ whereas analogous computation in Vafa-Witten
A.Carrega
P.M.Gilmer

S.G., P.Koroteev, S.Nawata, D.Pei, I.Saberi
V.Turaev
J.Przytycki
$\operatorname{Sk}\left(M_{3}\right)=\frac{\left.\mathbb{C}\left[q^{ \pm \frac{1}{2}}\right] \text { (isotopy classes of framed links in } M_{3}\right)}{\left(\searrow / \square=q^{-1 / 2}\right)\left(+q^{1 / 2},(\square)=-q-q^{-1}\right)}$

Surprise: New 4-manifold invariant s.G., P.-s.Hsin, D.Pei

C.Vafa, E.Witten
for $G=S U(2)$ has
modular weight $w=-\frac{\chi}{2}$

$$
q_{1}=q_{2}=q
$$

$Z_{T\left[M_{4}\right]}(q)$
Elliptic genus of $T\left[M_{4}\right]$
6d theory on $T^{2} \times M_{4}$
A.Gadde, S.G., P.Putrov B.Feigin, S.G.
$\frac{\chi}{2}+\frac{3}{2} \sigma$

Also different as "decorated TQFTs"

Surprise: New 4-manifold invariant S.G., P.-S.Hsin, D.Pei

C.Vafa, E.Witten
for $G=S U(2)$ has modular weight $w=-\frac{\chi}{2}$

$$
\frac{\chi}{2}+\frac{3}{2} \sigma
$$

$$
G \text { - valued }
$$

$$
B \in \Omega^{2,+}\left(M_{4}, \mathfrak{g}\right) \quad C \in \Omega^{0}\left(M_{4}, \mathfrak{g}\right)^{\prime} \quad \phi, \bar{\phi} \in \Omega^{0}\left(M_{4}, \mathfrak{g}_{\mathbb{C}}\right)
$$

Mark your calendar!

Dec. 10-13: Mathematics and ML

 https://mathml2023.caltech.edu/
Dec. 13-16: String Data 2023

https://stringdata2023.caltech.edu/

@Caltech

$n=$	1	2	3	4	5	6	7	8	9	10	11	12
TOP	1	1	1	1	1	1	1	1	1	1	1	1
PL	1	1	1	$?$	1	1	1	1	1	1	1	1
DIFF	1	1	1	$?$	1	1	28	2	8	6	992	1

The generalized Poincare conjecture:

- Top: true for all n
- PL: true for all $n \neq 4$ ($n=4$ currently not known)
- Diff: true for $n=1,2,3,5$, and 6
PL = Diff

Parameter walls / interfaces / surface operators in 3d:

Kahler / Stab
$\pi_{1}(\{$ parameters $\})$
y

A.Gadde, S.G., P.Putrov (2013)

cf. (codim-1) lines in 2d A-model / B-model:

$\pi_{1}(\{$ parameters $\})=?$

"local"
operators

Logarithmic (non-semisimple)
line
operators

$$
\mathcal{E} \in D^{b}(X)
$$

surface
operators

Symmetries decorated TQFT

Higher groups

"local"
operators
line
operators

$$
\mathcal{E} \in D^{b}(X)
$$

surface operators

Auteq $D^{b}(X) \cong \pi_{1}(\{$ parameters $\})$
Example: $X=K 3$

$$
\operatorname{Pic} X \rtimes \text { Aut } X \times \mathbb{Z}[1]
$$

Modern low-dimensional topology:

Example: $X=K 3$

$$
\operatorname{Pic} X \rtimes \operatorname{Aut} X \times \mathbb{Z}[1]
$$

$\underline{\mathcal{M}_{H}^{\mathcal{E}}(G, \Sigma):} \quad \quad L_{i}=K^{R_{i} / 2} \quad\left(R_{i} \in \mathbb{Z}\right)$
$L_{1} \otimes \operatorname{ad}_{P} \oplus L_{2} \otimes \operatorname{ad}_{P} \oplus L_{3} \otimes \operatorname{ad}_{P}$ valued Higgs bundles or, $\mathcal{E}=L_{1} \oplus L_{2} \oplus L_{3}$ valued, for short

Moreover,

$$
\begin{aligned}
& U(1)_{t} \subset \mathcal{M}_{H}(G, \Sigma) \\
& (A, \Phi) \mapsto\left(A, e^{i \theta} \Phi\right) \quad \text { circle action }
\end{aligned}
$$

Similarly, $\quad U(1)_{x} \times U(1)_{y} \times U(1)_{t} \subset \mathcal{M}_{H}^{\mathcal{E}}(G, \Sigma)$
\Rightarrow explicit expression for $\mathcal{H}_{\mathrm{VW}}\left(\Sigma_{g} \times S^{1}\right)$ and its equivariant character

