9 vs 10

Math

K-theoretic ...

partition functions, invariants, moduli spaces

and KK modes

Physics

Precision 3d-3d

<u>Based on:</u>	 S.G., PS.Hsin, D.Pei (I, II) S.G., A.Sheshmani, ST.Yau
<u>See also:</u>	 S.Eckhard, H.Kim, S.Sch afer-Nameki, B.Willett C.Cordova, T.Dumitrescu, K.Intriligator M Del Zotto, J Heckman, D Park, T Rudelius

:

Definition: (6-n)-dimensional theory

$$T[M_n,\ldots]:=$$
 6d (0,2) theory on M_n

Definition: (6-n)-dimensional theory

 $T[M_n, \ldots] := 6d$ (0,2) theory on M_n G, polarization, ...

Today: G=U(1) single fivebrane G=SU(2)

$$M_3 = S^1 \times S^2, T^3,$$
$$L(p,1) = S^3 / \mathbb{Z}_p, \dots$$

mapping tori

Definition: (6-n)-dimensional theory

 $T[M_n, \ldots] := 6d$ (0,2) theory on M_n G, polarization, ...

Today: G=U(1) single fivebrane G=SU(2)

6d: $B, \phi_{1,\dots,5}, \psi = (4, 4)$ $O(5)_R$

Question:
$$T[T^2] = 4d \mathcal{N} = 4$$
 super-Yang-Mills

Question:
$$T[T^2] = 4d \mathcal{N} = 4$$
 super-Yang-Mills

Answer: No

 $T[M_n]$ for $M_n = T^n$

$$T[M_n] \text{ for } M_n = T^n$$

$$?$$
Question: $T[S^1] = 5d \text{ SYM}$

if yes, what in 5d SYM accounts for $\vec{\phi}_m$ and ψ_m with $m \neq 0$

E.Witten M.Douglas N.Lambert, C.Papageorgakis, M.Schmidt-Sommerfeld H.-C.Kim, S.Kim, E.Koh, K.Lee, S.Lee Y.Tachikawa A.Gustavsson :

 $T[M_n]$ for $M_n = T^n$

Coulomb branches

4d $\mathcal{N} = 4$ G = SU(2)

$$\underline{\mathbf{n=3:}} \quad T[T^3] \qquad \qquad \mathcal{M}_{U(1)} = \mathbb{C}^* \times \mathbb{C}^* \times \mathbb{C}^* \times \mathbb{C}$$
$$\mathcal{M}_{SU(2)} = \frac{\mathbb{C}^* \times \mathbb{C}^* \times \mathbb{C}^* \times \mathbb{C}}{\mathbb{Z}_2}$$
$$\underline{\mathbf{6d}} \qquad \underline{\mathbf{3d}}$$
$$B \longrightarrow A, \varphi_1, \varphi_2, \dots \text{ dual to } \varphi_3 \in S^1$$
$$\vec{\phi} \longrightarrow \vec{\phi}_{m,n,k}$$
$$\psi \longrightarrow \psi_{m,n,k}$$
$$\mathcal{M}_{ABJM} = \mathbb{C}^4/\mathbb{Z}_2$$

S.Chun, S.G., S.Park, N.Sopenko

S.Chun, S.G., S.Park, N.Sopenko

Theorem [Lickorish, Wallace]:

Every connected oriented closed 3-manifold arises by performing an integral Dehn surgery along a link in S^3 .

Property R

Theorem ("property R" conjecture):D.Gabai (1983)If the 0-surgery on $K \subset S^3$ is homeomorphicto $S^1 \times S^2$, then K is the unknot.

The trefoil knot and the figure-8 knot are uniquely characterized by 0-surgery.

D.Gabai (1987)

$$M_3 = S_0^3(K)$$

Conjecture [Akbulut and Kirby '97]:

If 0-surgeries on two knots give the same 3-manifold,

$$S_0^3(K) \cong S_0^3(K')$$

then the knots are concordant.

FALSE P.Kirk, C.Livingston (1999)

Conjecture:

If 0-surgeries on two knots give the same 3-manifold, then the knots with relevant orientations are concordant.

False if slice-ribbon conjecture is true. FALSE K.Yasui (2015)

<u>Thm</u>: For $M_3 = S_0^3(K)$ at least one of Rokhlin invariants vanishes. M.Hedden, M.H.Kim, T.Mark, K.Park (2018)

<u>Cor:</u> If M_3 is integral homology $S^1 \times S^2$ with two non-trivial Rokhlin invariants, then $M_3 \neq S_0^3(K)$.

<u>Thm:</u> If K is slice, then

L.Truong (2021)

$$b_2(M_4) \ge \frac{10}{8} |\sigma(M_4)| + 5$$

where $\partial M_4 = S_0^3(K)$, $b_2(M_4) \neq 1$, 3, or 23, and M_4 is a two-handlebody (two-handles attached to a 4-ball).

Generalized Poincare conjecture:

Every homotopy 4-sphere is diffeomorphic to the standard 4-sphere.

<u>**Theorem:</u>** If one finds a pair of knots which satisfy the following three properties:</u>

- K and K' have the same 0-surgery
- K is not slice
- K' is slice

then the smooth 4-dimensional Poincare conjecture is false.

3d $\mathcal{N} = 2$ theories labeled by

3d $\mathcal{N} = 2$ vector multiplet with Chern-Simons coupling *a*

Not known! non-Lagrangian ? H.-J. Chung (2019, 2018, ...) J.Eckhard, H.Kim, S.Schafer-Nameki, B.Willett 3d $\mathcal{N} = 2$ theories labeled by

3d $\mathcal{N} = 2$ vector multiplet with Chern-Simons coupling *a*

IR fixed point of a theory with non-linear matter *a la* Skyrme

S.Chun, S.G., S.Park, N.Sopenko

Tony Skyrme

Tony Skyrme

All related to complex Chern-Simons and modularity

S.G., P.Putrov, C.Vafa (2016)

$$\mathrm{MTC} \begin{bmatrix} \mathrm{Lens} \\ \mathrm{space} \end{bmatrix} = \mathrm{Ver} \left(G_k \right)$$

state-operator in 3d:

$$\mathcal{H}(S^2) = \text{local operators}$$

$$\mathcal{H}(T^2) = \text{line operators} = K^0(\mathcal{C})$$

Homology a la Floer

approximate relations:

 $\begin{aligned} & \operatorname{differ} \operatorname{by} \operatorname{KK} \operatorname{modes} \operatorname{on} S^{1} \\ & & \\ \mathcal{H}_{\mathrm{VW}}(M_{3}) \simeq \mathcal{H}_{T[M_{3}]}(T^{2}) = H_{T^{A}[M_{3}]}(S^{1}) \\ & \\ & & \\ & \\ & \\ & \operatorname{differ} \operatorname{by}_{\operatorname{KK} \operatorname{modes} \operatorname{on} T^{2}} \end{aligned} \cong QH^{*}\left(\mathcal{M}_{\operatorname{flat}}(M_{3}, G_{\mathbb{C}})\right) \end{aligned}$

$$\mathcal{H}_{\rm VW}(M_3) = ?$$

Special family:

$$M_3 = S^1 \times \Sigma_g$$

$$g = 0$$
: Gluck twist

g = 1: knot surgeries, log-transforms, ...

On $M_4 = \mathbb{R} \times M_3$ same as KW equations

play an important role in the gauge theory approach to the geometric Langlands program

THE SELF-DUALITY EQUATIONS ON A RIEMANN SURFACE

N. J. HITCHIN

[Received 15 September 1986]

Introduction

In this paper we shall study a special class of solutions of the self-dual Yang-Mills equations. The original self-duality equations which arose in mathematical physics were defined on Euclidean 4-space. The physically relevant solutions were the ones with finite action—the so-called 'instantons'. The same equations may be dimensionally reduced to Euclidean 3-space by imposing invariance under translation in one direction. These equations also have physical relevance—the

<u>**Theorem:**</u> in Vafa-Witten theory on $M_3 = S^1 \times \Sigma$

 $\mathcal{M}_{\rm VW}(G, M_3) \cong \mathcal{M}_H^{\mathcal{E}}(G, \Sigma)$

moduli space of \mathcal{E} -valued Higgs bundles with $R_i = (2, 0, 0)$. S.G., A.Sheshmani, S.-T.Yau $\implies \text{explicit expression for } \mathcal{H}_{VW}(\Sigma_g \times S^1)$ and its equivariant character \mathbb{C} cf. equivariant Verlinde formula

<u>Claim</u>: when $\pi_1(G) = 1$ the Gluck involution acts trivially on $\mathcal{H}_{VW}(S^2 \times S^1)$ and $Z_{VW}(M_4, G)$ can not detect the Gluck twist.

Remark: the moduli spaces are different for

and
$$\begin{aligned} M_4 &= \mathbb{R} \times S^1 \times \Sigma_g \cong \mathbb{C}^* \times \Sigma_g \\ M_4 &= \mathbb{R} \times \mathbb{R} \times \Sigma_q \cong \mathbb{C} \times \Sigma_q \end{aligned} \tag{"K-theoretic"}$$

Question: 9 vs 10 = 10% ?

ABJM

ABJM

ABJM

ABJM

ABJM

ABJM

ABJM

ABJM

$$\begin{array}{ll} \dim \operatorname{Sk}(T^3) = 9 & \text{whereas analogous} \\ & \text{A.Carrega} \\ & \text{P.M.Gilmer} & \text{theory gives } \dim \mathcal{H}_{\operatorname{VW}}(T^3) = 10 \\ & \text{S.G., P.Koroteev, S.Nawata, D.Pei, I.Saberi} \end{array}$$

$$\operatorname{Sk}(M_3) = \frac{\mathbb{C}[q^{\pm \frac{1}{2}}](\text{isotopy classes of framed links in } M_3)}{\left(\bigvee = q^{-1/2} \right) \left(+ q^{1/2} \bigvee, \bigcirc = -q - q^{-1} \right)}$$

Also different as "decorated TQFTs"

Surprise: New 4-manifold invariant S.G., P.-S.Hsin, D.Pei $Z(M_4; q_1, q_2)$ $q_2 o 1$ $Z_{VW}(M_4) = q_1^{\frac{\chi}{12}} \sum a_n q_1^n$ $q_1 = q_2 = q$ $Z_{T[M_4]}(q)$ Elliptic genus of $T[M_4]$ $n \in \mathbb{Z}_{>0}$ 6d theory on $T^2 \times M_4$ C.Vafa, E.Witten A.Gadde, S.G., P.Putrov B.Feigin, S.G. for G = SU(2) has $\frac{\chi}{2} + \frac{3}{2}\sigma$ modular weight $w = -\frac{\chi}{2}$ $B \in \Omega^{2,+}(M_4, \mathfrak{g})$ $C \in \Omega^0(M_4, \mathfrak{g})$ $\phi, \overline{\phi} \in \Omega^0(M_4, \mathfrak{g}_{\mathbb{C}})$

Mark your calendar!

Dec. 10-13: Mathematics and ML

https://mathml2023.caltech.edu/

Dec. 13-16: String Data 2023

https://stringdata2023.caltech.edu/

@Caltech

DeepMind

American Institute of Mathematics

Chalkboard of David Gabai at Princeton Jessica Wynne

1 2 3 4 5 6 7 8 9 10 11 12n =TOP 1 1 1 1 1 ? \mathbf{PL} $1 \quad 1 \quad 1$ 1 1 1 1 1 1 $1 \ 1 \ ? \ 1 \ 1 \ 28 \ 2 \ 8 \ 6 \ 992$ DIFF 1 1

The generalized Poincare conjecture:

- **Top**: true for all *n*
- **PL**: true for all $n \neq 4$ (n = 4 currently not known)
- **Diff**: true for *n* = 1, 2, 3, 5, and 6

John Milnor

late 1950s

Parameter walls / interfaces / surface operators in 3d:

A.Gadde, S.G., P.Putrov (2013)

cf. (codim-1) lines in 2d A-model / B-model:

Modern low-dimensional topology:

Example: X = K3

 $\operatorname{Pic} X \rtimes \operatorname{Aut} X \times \mathbb{Z}[1]$

$$\mathcal{M}_{H}^{\mathcal{E}}(G,\Sigma): \qquad L_{i} = K^{R_{i}/2} \quad (R_{i} \in \mathbb{Z})$$

 $L_1 \otimes \operatorname{ad}_P \oplus L_2 \otimes \operatorname{ad}_P \oplus L_3 \otimes \operatorname{ad}_P$ valued Higgs bundles or, $\mathcal{E} = L_1 \oplus L_2 \oplus L_3$ valued, for short

Moreover, $U(1)_t \rightleftharpoons \mathcal{M}_H(G, \Sigma)$ $(A, \Phi) \mapsto (A, e^{i\theta}\Phi)$ circle action

Similarly,
$$U(1)_x \times U(1)_y \times U(1)_t \subset \mathcal{M}^{\mathcal{E}}_H(G, \Sigma)$$

 $\Rightarrow \text{ explicit expression for } \mathcal{H}_{VW}(\Sigma_g \times S^1)$ and its equivariant character s.G., A.Sheshmani, S.-T.Yau cf. V.Munoz