# Utilization of Convolutional Neural Networks for HI Source Finding

Team FORSKA-Sweden approach to SKA Data Challenge 2

Henrik Håkansson, Anders Sjöberg, M. Carmen Toribio, Magnus Önnheim, Michael Olberg, Emil Gustavsson, Michael Lindqvist, Mats Jirstrand, and John Conway



# SKA Data Challenge 2

- Generate catalog of simulated HI observation
- Finished July 2021
- Approaches
  - SoFiA: highly specialized source finder
  - Deep learning: generic machine learning models

| Group             | Points | Deep<br>learning | SoFiA |
|-------------------|--------|------------------|-------|
| MINERVA           | 23254  | Yes              | No    |
| FORSKA-<br>Sweden | 22489  | Yes              | Yes   |
| SoFiA             | 16822  | No               | Yes   |
| Naoc-<br>Tianlai  | 14416  | No               | Yes   |
| HI-FRIENDS        | 13902  | No               | Yes   |
| EPFL              | 8515   | No               | No    |
| Spardha           | 5614   | No               | Yes   |
| Starmech          | 2095   | No               | Yes   |
| JLRAT             | 1079   | Yes              | No    |
| Coin              | -2     | Yes              | No    |
| Hiraxers          | -2     | Yes              | No    |
| SHAO              | -471   | No               | No    |



## Machine learning setup

- Established procedure:
  - 1. Create a binary mask
  - 2. Estimate source attributes from mask





## Machine learning setup

- Established procedure:
  - 1. Create a binary mask
  - 2. Estimate source attributes from mask
- Similar to semantic segmentation
- Why not learn the mask instead?
  - Access to true source catalog







Håkansson et al., 2023

## Machine learning setup

- Established procedure:
  - 1. Create a binary mask
  - 2. Estimate source attributes from mask
- Similar to semantic segmentation
- Why not learn the mask instead?
  - Access to true source catalog
- New problem: generate ideal target mask from source catalog







Håkansson et al., 2023

## Target mask

- Shape attributes given in the true source catalog
  - Elliptical cylinder
- Covers more than galaxy voxels
- Can masks be tighter and more accurate?





## Target mask

- Shape attributes given in the true source catalog
  - Elliptical cylinder
- Covers more than galaxy voxels
- Can masks be tighter and more accurate?
- Idea: generate mask from plausible rotation curves
- Target <u>any</u> curve fitting inside the colored area





## Target mask

- Shape attributes given in the true source catalog
  - Elliptical cylinder
- Covers more than galaxy voxels
- Can masks be tighter and more accurate?
- Idea: generate mask from plausible rotation curves
- Target <u>any</u> curve fitting inside the colored area





## Deep learning training with mask

Mask resembles occupation with margin







Håkansson et al., 2023

# Deep learning training with mask

- Mask resembles occupation with margin
- Train a convolutional network (deep learning segmentation model) to output target







#### Source characterization

- 1<sup>st</sup> step: Trained deep learning model for creating mask
- 2<sup>nd</sup> step: create source catalog from mask
- Subset of SoFiA modules used
- Merging coherent and almost-coherent segments
- Compute characteristics: disk radius, line flux integral, inclination, etc.
- Next problem: How to configure SoFiA?





# SoFiA configuration

- What do we value most from the pipeline?
  - Reliability or completeness?
  - We can not have both ☺
- Vary only SoFiA configuration  $\rightarrow$  tradeoff!
  - Mask always the same
- How to configure SoFiA?
  - Depends on what you want
- SKA Data Challenge 2 score weighted sum reliability and completeness
  - Not general use case



# Summary

- Tools from modern computer vision prominent for source finding
- Astronomical knowledge beneficial for algorithm development
- Existing routines can be combined with machine learning





## Outlook for machine learning in source finding

- General purpose evaluation metrics
  - Tradeoff common in machine learning
  - Average precision: area under curve
  - Needs domain-specific tuning
- Validating on real data
  - Trained on simulation, validated on simulation
  - How much can we trust the machine learning model?





