Polarization in the ELAIS-N1 LOFAR deep field: Probing the sub-mJy regime of polarized extragalactic sources

Sara Piras Onsala Space Observatory, Chalmers University of Technology , Sweden National SKA Science Day February 2, 2023

INTRODUCTION: FARADAY ROTATION

$$\chi(\lambda^2) = \chi_0 + RM\lambda^2$$

RM = Rotation Measure

$$\mathcal{P} = Q + iU = pIe^{2i\chi} = pIe^{(\chi_0 + RM\lambda^2)}$$
$$\chi = \frac{1}{2}\arctan\frac{U}{Q}$$

For a synchrotron-emitting source behind a magneto-ionic medium: $RM = \phi$ Faraday depth

INTRODUCTION: POLARIZATION WITH LOFAR

- Polarization with LOFAR:
- ► Frequency range of HBA: ≈115 177 MHz (wavelengths of 1.7 2.6 m)
- ► High precision on rotation measures: ~1 rad/m²
- But stronger Faraday depolarization at long wavelengths
- Polarized counts are unknown at low frequencies

Polarized sources per square degree	Resolution	Sigma	Field	
0.16	4.3'	1 mJy/beam	HETDEX DR1 (Van Eck et al. 2018)	
0.3	20"	100 µJy/beam	M51 (Neld et al. 2018)	
0.6	20"	26 µJy/beam	ELAIS-N1 (Herrera Ruiz et al. 2021)	
0.48 0.29	20"	80 µJy/beam	LoTSS DR2 (O'Sullivan et al. 2023)	

► RM grid

LOFAR SURVEYS DEEP FIELD: ELAIS-N1

- European Large Area ISO Survey-North 1
- Multiwavelength coverage: optical, infrared, radio
- With LOFAR (HBA at 114.9-177.4 MHz, 1.69-2.61 m) (Sabater et al. 2021):
 - 22 available epochs of 8 h each
 = 176 h
 - In Stokes I: final sensitivity of ~20 μJy/beam (central region), resolution of 6", 68 deg²
 - ~80 000 sources detected in continuum (~3 000 above 1 mJy/ beam)
 - ~30 000 host-galaxies in ~7.15 deg² (Kondapally et al. 2021)
 - ► Redshifts (Duncan et al. 2021)

POLARIZATION IN ELAIS-N1

Catalog	Reference	Frequency	Sensitivity in Q and U	Resolution	Area	Number of polarized sources	
			$(\mu Jy \text{ beam}^{-1})$	(arcsec)	(deg ²)		
NVSS RM	(1)	1.4 GHz	290	45	25	25	Taylor et al. 2009
DRAO ELAIS-N1	(2)	1.4 GHz	78	49×59	7.43	83	Taylor et al. 2007
DRAO ELAIS-N1	(3)	1.4 GHz	45	42×62	15.16	136	Grant et al. 2009
LOFAR	(4)	150 MHz	26	20	16	10	Herrera Ruiz et al. 2021
LOFAR	(5)	150 MHz	22	6	25	32	This work

THIS WORK

- ➤ 25 deg² region
- > 19 epochs out of 22 epochs imaged at 6 arcsec resolution
 - ► Align polarization angles
 - Stack the data
- Search in field \rightarrow threshold = $8\sigma_{QU}$
- ► Search for polarization of radio sources known to be polarized at 1.4 GHz (Grant et al. 2010; NVSS RM catalog, Taylor et al. 2009) → threshold = $6\sigma_{QU}$
- ► Epochs
 - ► 10 with 800 frequency channels (Cycle 2)
 - ► 9 with 640 frequency channels (Cycle 4)
 - 4 epochs in common with Herrera Ruiz et al. (2021)

THE DATA

For each of the 19 epochs:

- ➤ 1 Q cube → ~50 GB compressed, >400 GB uncompressed
- ➤ 1 U cube → ~50 GB compressed, >400 GB uncompressed
- For a QU cube: 12005 pix (RA) x12005 pix (Dec)x 2 (Stokes) x 640 or 800 channels = (1.8 or 2.3) x10e11 pix
- ► Pixel size = 1.5 arcsec

STACKING TECHNIQUE

Polarization angles can be different in different observing runs : it's crucial to adopt a method to align polarization angles from different epochs before stacking

(Herrera Ruiz et al. 2021)

Reference source as calibrator: we align the polarization angle, coherently bandaveraged, of the reference source of epoch to be correct with the reference polarization angle

$$\mathscr{P}_{\rm Ep}^{\rm corr}(i,j,\nu) = \mathscr{P}_{\rm Ep}(i,j,\nu) e^{2i\Delta\chi_{\rm Ep}}$$

Alignment in Faraday depth space for cycles with different number of frequency channels

 $\mathscr{F}_{\text{Cycle 4}}^{\text{corr}}(i, j, \phi) = \mathscr{F}_{\text{Cycle 4}}(i, j, \phi)e^{2i\phi\Delta\lambda_0^2}$

See also Šnidarić et al. (subm.)

RESULTS

Reference source

Piras et al. in prep.

Found 32 polarized sources in $25deg^2$ = 1.3 sources/deg² Lower noise level = 18 μ Jy/beam

Variety of source morphologies

Piras et al. in prep.

RESULTS: COMPARISON WITH THE 20" DATA (HERRERA RUIZ ET AL. 2021)

Piras et al. in prep.

150 MHz

RMs in excellent agreement

Evidence for beam depolarization at 20"

RESULTS: COMPARISON WITH THE 1.4 GHZ DATA FROM GRANT ET AL. (2010)

Piras et al. in prep.

Frequency	Π_{med}
1.4 GHz	7.06 %
150 MHz, this work (∩ 1.4 GHz)	1.43 %
150 MHz, this work	1.75 %

RESULTS: WIDE (LOTSS DR2) VS DEEP (THIS WORK)

Piras et al. in prep.

RESULTS ON NUMBER COUNTS

➤ Polarized source counts as convolution of source counts in total flux density with a probability function of fractional polarization Π

RESULTS: ELAIS-N1 DEEP FIELD RM GRID

Piras et al. in prep.

CONCLUSIONS

- Not much is known about how the fractional polarization behaves (increase/decrease toward lower flux densities? implications for future RM grid)
- We have developed new methods to stack polarization and probe the faint (sub-mJy) regime in polarization and applied them to data from ELAIS-N1.
- > Deepest LOFAR polarization data so far: noise level at the center of the field of 18 μ Jy/beam
- We confidently detected polarization in 32 radio galaxies (1.3 polarized sources per deg2) in the ELAIS-N1 LOFAR deep field (25 deg²), after stacking data from 19 epochs
- Detected polarized sources show a variety of morphologies
- ► Still low number statistics

WORK IN PROGRESS AND FUTURE WORK:

- Further optimize the algorithm for searching for polarized sources
- Characterize the sources (morphology, redshift, etc)
- ➤ Comparison with other frequencies → depolarization properties
- ► Source counts modelling
 - ► Taking account of depolarization
- > Apply the analysis to other fields (LoTSS and LOFAR deep fields: GOODS-North, Boötes and Lockman Hole)
- ► International baselines provide a resolution of 0.4". Unknown territory in polarization but likely reduced depolarization.