Scientific exploitation of LOFAR international baseline observations

Dr. Leah Morabito Feb 2023 National SKA Science Day Sweden

LOFAR: a great survey instrument!

- Wide field of view
- High sensitivity
- ~arcsec resolution

Comparisons

LOFAR Two-metre Sky Survey (LoTSS)

• 150 MHz, 6" resolution, 70 µJy/bm

Faint Images of the Radio Sky at 21cm (FIRST)

• 1.4 GHz, 5" resolution, 150 µJy/bm

VLA Sky Survey (VLASS)

• 3 GHz, 2.5" resolution, 69 µJy/bm (combined)

What do we get with sub-arcsecond resolution?

Challenges in high resolution at MHz frequencies

- **Ionosphere:** requires directional dependent calibration
- **Data volume:** datasets are 4-20TB per observation
- **<u>Clocks</u>**: remote and international stations on individual clocks
- **<u>Calibrators</u>**: need 'Goldilocks' calibrators for resolution / frequency
- **Source characteristics:** low-frequency absorption, source structure

Challenges in high resolution at MHz frequencies

- **Ionosphere:** requires directional dependent calibration **> pathfinder for SKA-Low**
- **Data volume:** datasets are 4-20TB per observation → SKA-like data volumes <u>now</u>
- **<u>Clocks</u>**: remote and international stations on individual clocks
- **<u>Calibrators</u>**: need 'Goldilocks' calibrators for resolution / frequency
- **Source characteristics:** low-frequency absorption, source structure

Long Baseline Calibrator Survey (LBCS)

Covers entire Northern sky for HBA (Jackson et al, 2022, 2016)

- Multi-beaming with 3 MHz, 3 min observations of calibrator candidates
- ~30,000 sources in final catalogue, about 1 good calibrator per square degree

• Extending this to LBA (PI: Jackson)

Developing a user-friendly calibration strategy

LoTSS processing Full array – instrumental effects Dutch array – phases

de Gasperin et al. 2019

Developing a user-friendly calibration strategy

LoTSS processing Full array – instrumental effects Dutch array – phases

de Gasperin et al. 2019

LOFAR-VLBI pipeline

Dispersive delay Phase calibration

Techniques

- Combine core stations
- Solve directly for TEC
- Phase-shift & average to reduce FOV

Calibration uses LOFAR-native tools but borrowing from VLBI techniques

Developing a user-friendly calibration strategy

Wide-field VLBI with LOFAR

LOFAR-VLBI pipeline

Application: wide area surveys

Widefield LOFAR-VLBI

Application: deep field surveys

Sweijen et al. 2022

Field of View limited to radius ~1.25 deg (~5 deg²)

Early results

Set the record for high resolution at MHz freqs!

nJy/beam

- <u>**Compact objects:**</u> seven new objects, investigated radio spectra of those previously detected at higher frequencies
- **Diffuse emission:** associated with outflow, reduced brightness in region of edge-on star-forming disk

Set the record at <100 MHz!

including HBA

Science exploitation

Many science cases, including:

- Jets launched from active galactic nuclei
- Jets interacting with the interstellar medium
- Star formation in nearby galaxies
- Brightness temperature identification of AGN

Special issue of Astronomy & Astrophysics with 10 new articles (*published Jan 2022*)

- More than doubling the number of scientific results using LOFAR sub-arcsec resolution!
- Most papers lead by early career researchers

Nature Astronomy article on full-field imaging *(Sweijen et al. 2022)*

NEW TECHNIQUES DRIVE NEW SCIENCE

Using new data calibration techniques to make high-resolution images, astronomers are uncovering low frequency radio emission on never-before-seen scales. This is a gallery of new science results, revealing the shape of the radio emission in distant galaxies.

INTERNATIONAL LOFAR TELESCOPE

The LOw Frequency ARray (LOFAR) is a radio telescope with antennas spread across 8 European countries. It operates at frequencies around the FM radio band, where jets from black holes are particularly bright.

(Ultra) Luminous Infrared Galaxies

Spatially separated radio spectra allows modelling of absorption; favours clumpy model

(Ultra) Luminous Infrared Galaxies

Spatially separated radio spectra allows modelling of absorption; favours clumpy model

Spatial resolution is crucial for estimating accurate star formation rates 11/15

(Ultra) Luminous Infrared Galaxies

Spatially separated radio spectra allows modelling of absorption; favours clumpy model

Spatial resolution is crucial for estimating accurate star formation rates 11/15

Star formation / supernovae remnants in M51

Star formation / supernovae remnants in M51

Ongoing Work

Wide area (individual sources)

• Post-processing LoTSS

Deep fields (full FoV)

Lockman, Boötes, ELAIS-N1

- Initial imaging + going deeper
- Intermediate resolution ~1"

LOFAR2.0

• LOFAR2.0 Ultra Deep Observation: Euclid Deep Field North (*PIs: Best, Morabito*)

LOFAR Two-metre Sky Survey + High Resolution

Post-processing LoTSS at high resolution will yield *the first sub-arcsecond Northern sky radio survey*

	LoTSS	LoTSS-HR	VLASS
resolution	6"	0.3"	2.5"
Area [deg ²]	20,000	20,000	33,885
noise	70 µJy/bm	~50 µJy/bm	69 µJy/bm
Sources per deg ²	780	~50 (> 10 mJy)	~148

Main takeaways

• The International LOFAR Telescope (ILT) provides otherwise inaccessible spatially resolved information at low frequencies - particularly powerful when combined with higher frequency observations at similar resolutions

• Sweden has a strong track record with LOFAR-VLBI, focused on detailed studies of star-forming and starburst galaxies

• LOFAR-VLBI is becoming more accessible thanks to our Long Baseline Working Group, which is driven by active early career researchers

Extra slides

20/16

Higher resolution at cost of Field of View (FoV)

Wide-field Very Long Baseline Interferometry (VLBI)

Multiple simultaneous phase centre observing (Deller et al. 2011, Morgan et al. 2011, Keimpema et al. 2015)

Radcliffe et al., 2018

EVN observations of HDF

- ★ 1.6 GHz
- \star 0.025" resolution
- \bigstar 42 µJy/bm noise
- ★ 5 arcmin² FoV

3 sources detected

EVN observations of HDF

- ★ 1.6 GHz
- ★ 0.05 0.016" resolution
- ★ 10 40 μJy/bm noise
- ★ ~177 arcmin² FoV (+bright sources <25 arcmin)

31 sources detected

Long Baseline Calibrator Survey (LBCS)

Quality indicators / metrics

Atmospheric coherence statistics

Reproducibility 1.0 - 0.9 DE603 DE604 DEGO FR606 SE607 UK608 DE609 PI 610 PI 611 0 F PL612 E613 ż Difference in S:N parameter Sources observed more than once:

results very similar for all baselines

Science with LBCS

Interplanetary Scintillation

In conjunction with MWA; J. Morgan

Developing a calibration strategy

Use LOFAR-native tools to:

- Correct clock offsets ($\tau = 100 200$ ns)
- Combine core stations into a 'super-station' to help anchor calibration / reduce data volume
- Solve for dispersive delay ($\tau \sim 200 300 \text{ ns}$)

Publicly available on github (Morabito et al. 2022)

Built as an extension to the processing for the LOFAR Two-metre Sky Survey (*Shimwell et al. 2017,2019,2022*)

Basis for imaging full field of view (Sweijen et al. 2022)

Developing a calibration strategy

Calibration at high resolution has to handle lower signal to noise on long baselines

To cope with this a technique called *fringe-fitting* was developed to increase the solution intervals by solving for *delays* and *rates* in addition to a phase offset:

$$\Delta \phi_{\nu,t} = \phi_0 + \left(\frac{\delta \phi}{\delta \nu} \Delta \nu + \frac{\delta \phi}{\delta t} \Delta t \right)$$

Developing a calibration strategy

Fringe-fitting algorithms have, until very recently, only been able to cope with *non-dispersive delays* (i.e., phase is linear with frequency)

Demonstration: P205+55

Astrometry and flux density scale

Compare original LoTSS image with 6" image m

- LoTSS has 20 mas offset from PanSTARRS → compared to LoTSS is 28 mas
- Flux density scatter around one-to-one lir sources in LoTSS to 6" image

Brightness temperature at 150 MHz

- Identified 795 (790) high brightness temperature sources in Lockman Hole
 - 83% are otherwise identified as AGN (91% when using only peak intensity)
 - 66 new AGN identifications!
- Comparison to SED fitting shows:
 - 22% of detected radio-quiet AGN and 12% of star-forming galaxies have high brightness temperatures
 - → implies mixture of different radio emission mechanisms in populations
- Detected vs. detectable sources split below 2 mJy
 - Consistent with mixed populations of sources at low flux densities

Using brightness temperature measurements with sub-arcsecond ILT observations is a reliable way to select AGN, in particular when ancillary data is inadequate

How much of the radio emission is due to AGN?

For unresolved, non-radio excess sources, we make the simple assumption that:

• L_{AGN} = peak intensity, high resolution map

• L_{SFR} = (total flux density, 6" resolution map) - LAGN

L_{AGN}/L_{SFR}			
Class	Median		
RQAGN	$0.89{\pm}0.69$		
SFG	$0.79 {\pm} 0.42$		
Unclass	$1.07 {\pm} 0.64$		
Total	$0.90{\pm}0.55$		
L_{AG}	$_N/L_{total}$		
L_{AG} . Class	$_N/L_{total}$ Median		
$L_{AG.}$ Class RQAGN	$\frac{N/L_{total}}{\text{Median}}$ 0.47±0.21		
L_{AG} . Class RQAGN SFG	$\frac{N/L_{total}}{Median}$ 0.47 ± 0.21 0.44 ± 0.14		
L_{AG} Class RQAGN SFG Unclass	$\frac{N/L_{total}}{Median}$ 0.47±0.21 0.44±0.14 0.49±0.16		

Jets from active galactic nuclei

Timmerman et al., 2022)

Spectral information - aided by LOFAR - shows rings are consistent with the active galactic nuclei intermittently turning 'on' and 'off' The jet in 3C273

Low-x properties of jet in 30273 (Harwood, Mooney et al., 2022) 10-1 s (Jy) ίλ S (Jy) 10-10-3 10-2 109 1010 109 1010 109 1010 v (Hz) v (Hz) v (Hz) 100 Cl B3 C2 100 (Å) S 10-S (Jy) S (Jy) 10-1 10^{-1} 1010 1010 1010 109 109 109 v (Hz) v (Hz) v (Hz) D1 10¹ D2/H3 H1/H2 (j) s () () () () () s (Jy) 100 10° 109 1010 109 1010 109 1010 v (Hz) v (Hz) v (Hz)

Jet power consistent with high frequencies Low- ν high resolution enabled spectral modelling of individual components!

Jets interacting with the interstellar medium

st galaxy (Kukreti et al., 2022)

Low-frequency spectra in young jet components show evidence for interaction with interstellar medium

Star formation in nearby galaxies

ez-Olivencia et al. 2022)

LOFAR images reveal diffuse emission in outflow powered by a starburst, possibly triggered by merger with galaxy hosting an active galactic nucleus

Extending to < 100 MHz with the LBA

elow 100 MHz! They allow us to

Enabling science: the cutting edge

Imaging of complete 5 deg² field of view for Lockman Hole (*Sweijen et al. 2022*) <u>https://home.strw.leidenuniv.nl/~sweijen/lockman_aladin.php</u>

LOFAR wide-field high resolution imaging on Lockman Hole

Fun fact: This high resolution image contains about 7 billion pixels, almost as much as the FIRST survey!

Left: A hypical direction dependent calibrated dirigheepine image of the Dutch array at 6', using roughly 46 MHz of bandwidth. The RMS level is ~75 uJy/beam. Right: A 0.11/px direction dependent calibrated image at 0.4'x0.3', using 46 MHz of bandwidth, made with WSClean-IBG using both TEC and gain screens. Initial and self-calibration was done on an LBCS source upper left, just outside the first circle, followed by secondary self-calibration on 41 sources that had peak flux sensity 25 mJy/baem on the ''may. The RMS noise level is currently -30 JJy/beam neer the center.

Usage: The high-resolution view is locked to the low-resolution view. Pan around on the left image, and the high-resolution map will follow (the other way around does not work). The cyan circles indicate 1 deg and 2 deg diameter, respectively. The red circle indicates a 2.5 deg diameter

The main challenge at low frequencies

Before ionospheric correction

After ionospheric correction

More info on direction-dependent calibration: Tasse et al. (2014, 2017), Yatawatta (2015), van Weeren (2016)