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Content

The goal of this talk is to inspire further research into amplitudes
for NRST.

1 Review KLT factorization in rel. strings
2 KLT of wound strings

Pictorial understanding
Example with four closed string tachyons
General factorization

3 In a background Kalb-Ramond field
Modifications

4 Nonrelativistic KLT relations
Derive it in the limit of relativistic string theory
Derive it from the NRST action
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Review of KLT Factorization

KLT shows that tree-level closed string amplitudes factorize into a
sum of quadratic products of open string amplitudes.

Famously
stated as “ Gravity = (YM)2 ” at tree level.

AN
closed =

∑
p,p′

AN
open e

iπF (p,p′)AN
open

Why think about KLT? It has also lead to many insights into QFT
amplitudes in the tension → ∞ limit.

BCJ relations
Born-Infeld, NLSM, and special Galileons fit into the QFT
type of KLT relations via CHY.
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Review of KLT Factorization: Standard Relativistic KLT

Mandelstam Variables:

s = −(k1 + k2)
2 , t = −(k1 + k3)

2 , u = −(k1 + k4)
2

define αx = 1 +
α′

4
x .

Aclosed ∼ Γ(−αs)Γ(−αt)Γ(−αu)

Γ(1 + αs)Γ(1 + αt)Γ(1 + αu)

=
Γ(−αs)Γ(−αt)

Γ(−αs − αt)

1
Γ(−αt)Γ(1 + αt)

Γ(−αt)Γ(−αu)

Γ(−αt − αu)

= B(αs , αt)
sin(παt)

π
B(αt , αu)

Aclosed ∼ Aopen(s, t)
sin(παt)

π
Aopen(t, u)
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KLT of Wound Strings

Goal:
Derive a KLT-like relation for N -point scattering amplitudes of
closed strings when a spatial direction is compactified on a circle.

The string states carry momentum and also winding on the circle.

Puzzle:
Open string state can either carry momentum or winding but not
both!

Dirichlet: X 1 = x1 + 2α′ n

R
τ + . . .

Neumann: X 1 = x1 + 2wR σ + . . .
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KLT of Wound Strings: cont.

The resolution is to include multiple D-branes on the open
strings side.

We introduce a total of n+ + 1 many D-branes in the
compactified direction, with n+ the total incoming momentum
from the closed strings.
The D-branes are equally separated by a distance which is
T-dual to the circumference of the compactified circle, i.e.
L = 2πα′

R .
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KLT of Wound Strings: cont.

R ••

For the i-th open string, the “fractional part” of the winding
number of an open string stretched between two D-branes is
given by ni on the closed string side (in the above picture
ni = 1).

The open string also carries an integer winding number wi (in
the above picture wi = 1). It soaks up the closed string
winding.
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KLT of Wound Strings: cont

In summary we have the following mapping:

closed string open string

momentum fractional winding
winding integer winding
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KLT of Wound Strings: closed string amp

To be more explicit, consider the data of a 4-point closed string
amp.

(n1 = 1,w1)

(n2 = 3,w2)

(n4 = −2,w4)

(n3 = −2,w3)

incoming outgoing

n+ = n1 + n2

V ∼ e iKLXL+iKRXR ,

{
KL = (k i , n

R − wR
α′ )

KR = (k i , n
R + wR

α′ )

XL = xL − i

2
α′
(
n

R
− wR

α′

)
log z + . . .

XR = xR − i

2
α′
(
n

R
+

wR

α′

)
log z + . . .
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KLT of Wound Strings: open string amp

On the open string side, the amplitude is mapped to:

n1 n3

n2
n4

incoming outgoing

ni above are fractional windings. Came from closed string
Kaluza-Klein number.

During the scattering process, the two strings join into one,
then the single intermediate string splits at the third D-brane.

This is how we realize conservation of momentum for closed strings.
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4-point KLT

The closed string tachyon is described by the following vertex
operator:

VC(z , z) = gc exp
[
i
2 πR w (p̂L + p̂R)

]
:e iKL·XL(z)+iKR·XR(z) : ,

XM
L =

(
Xµ, XL

)
, KM

L =
(
kµ, pL

)
,

XM
R =

(
Xµ, XR

)
, KM

R =
(
kµ, pR

)
.

The extra phase factor is known as the cocycle. It is there to
remove the phases from crossing certain branch cuts when vertex
operators are interchanged.
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4-point KLT: cont.

The amplitude for four closed string tachyons on a spherical
worldsheet is

A(4)
c = e−χΦ0

∫
C
d2z2

〈
4∏

i=1

:VCi (zi , z i ) :

〉
S2

∝ i (2π)25 δ(25)(k1 + · · ·+ k4
)
δn1+···+n4, 0 δw1+···+w4, 0 M

(4)
c .

where

M(4)
c =

1
α′ exp

(
iπ
∑4

i ,j=1
i<j

ni wj

)
I(4) .

We can try to factorize I(4), by manipulating complex integrals.
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4-point KLT: cont.

We find that

I(4) =
1
2
i I(4)

L I(4)
R ,

where

I(4)
L = B(αsL

, αuL
) , I(4)

R = −2 i sin(π αsR
)B(αsR

, αtR
) .

Upgraded Mandelstam variables taking into account windings:

sL,R = −(KL,R1 + KL,R2)
2 , tL,R = −(KL,R1 + KL,R3)

2 ,

uL,R = −(KL,R1 + KL,R4)
2 .
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4-point KLT: cont.

We find that M(4)
c from A(4)

c is factorizable as

M(4)
c (1, 2, 3, 4) =

= − 1
α′ C (1, 2, 3, 4) sin

(1
2 πα

′KR1 · KR2
)
ML(1, 2, 3, 4)MR(2, 1, 3, 4)

= − 1
α′ C (1, 2, 3, 4) sin

(1
2 πα

′KR2 · KR3
)
ML(1, 2, 3, 4)MR(1, 3, 2, 4) ,

This is invariant under switching “L” and “R”, on the open string
side.

Recap
In a spacetime with a spatial direction compactified over a circle of
radius R

Closed string amplitude → Open string on an array of D-branes
transverse to the compactified direction.
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N -point KLT

An N -point tree-level closed string amplitude takes the form:

A(N )
c ∝ (2π)25 δ(25)

(∑N

i=1
ki

)
δ∑N

i=1ni , 0
δ∑N

i=1wi , 0

(
iM(N )

c
)
,

We have an N -point KLT:

Mc(1 , . . . , N ) = (−1)N−3
∑
ρ, σ

C
(
1 , σ(2 , . . . , N − 2) , N − 1 , N

)
× SR

[
σ(2 , . . . , N − 2)

∣∣ ρ(2 , . . . , N − 2)
]
KR(N−1)

×ML
(
1 , σ(2 , . . . , N − 2) , N − 1 , N

)
×MR

(
1 , N − 1 , ρ(2 , . . . , N − 2) , N

)
.

With SR the generalized momentum kernel. Cocycle here is
important for KLT to hold and respect permutation invariance.
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Background Kalb-Ramond Field and KLT

We modify the KLT factorization of winding string amplitudes in
the presence of a constant Kalb-Ramond B-field in the longitudinal
sector.

The sigma model is

S =
1

4πα′

∫
Σ
d2σ

(
∂αX

µ ∂αXµ + 2i ϵαβ ∂αX 0 ∂βX
1 B
)
.

To realize such a KLT relation:
D-brane configuration previously discussed
D-branes also need to carry electric gauge potentials.
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Background Kalb-Ramond Field and KLT: cont.

The canonical momentum conjugate to X 0 is

K0 =
1

2πα′

∫ 2π

0
dσ
(
∂tX

0 − B ∂σX
1) = ε− wR

α′ B ,

where

ε =
1

2πα′

∫ 2π

0
dσ ∂tX

0 .

The factorization of winding closed string amplitudes takes the
same form of before, but now the closed string variables are

KL =

(
ε− wR

α′ B ,
n

R
− wR

α′ , kA′

)
,

KR =

(
ε− wR

α′ B ,
n

R
+

wR

α′ , kA′

)
.
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Background Kalb-Ramond Field and KLT: open strings

The associated open string amplitude now takes the form ofML
and MR, but with the open string variables are

K̃L =

(
ε− wR

α′ B − nB

R
,
n

R
− wR

α′ , kA′

)
,

K̃R =

(
ε− wR

α′ B − nB

R
,
n

R
+

wR

α′ , kA′

)
.

This is almost the same as KL,R but with an extra shift nB/R of
the energy.

To compensate for this extra term, we are required to assign to the
s-th brane an electric potential:

Vs = 2πsB
α′

R
.
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Background Kalb-Ramond Field and KLT: open strings

Suppose an open string ends at s-th and s + n-th D-brane, the
boundary action takes the form

Sbdry =
i

2πα′

∫
∂Σ

dy Aµ ∂yX
µ

=
i

2πα′

∫ ∞

0
dy Vs+n ∂yX

0 +
i

2πα′

∫ 0

−∞
dy Vs ∂yX

0 .

As a result, we find

Sbdry =
inB

R

∫
R
dτ ∂τX

0 ,

this boundary terms contributes an extra shift in energy, with

ε → ε+
nB

R
.

The potential that shifts the energy takes K̃L,R → KL,R.
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Connection to Nonrelativistic String Theory

In a critical B-field background, there is a non-singular α′ → 0 limit
of relativistic string theory in the presence of windings, i.e.
nonrelativistic string theory.

The dispersion relation is Galilean
invariant,

ε =
α′

eff
2wR

[
kA′kA′ +

2
α′

eff

(
N + Ñ − 2

)]
.

Describes strings interacting in a string-Galilean invariant
spacetime.
All physical states have non-zero winding number.
Zero-winding sector has no graviton.
Not GR at low energy, instantaneous Newtonian potential
from exchange of off-shell states.
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Nonrelativistic String Amps

Another important feature about nonrel. amps is that they are
finite. Gives quantization of nonrelativistic spacetime geometry-so
called string Newton-Cartan geometry.

Example:
Consider the kinematical quantity

α′KLi · KLj = α′
[
−εi εj + α′

(
ni
R

− wiR

α′

)(
nj
R

−
wjR

α′

)
+ kA

′
i kA

′
j

]
⊃

wiwjR
2

α′ is singular when α′ → 0.

But in the presence of the critical B-field, this term is cancelled.
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Nonrelativistic KLT

The nonrelativistic analogue of the KLT relation can be obtained by
taking α′ → 0 limit of the relativistic KLT relation for winding
string amplitudes in the presence of a critical B-field.

We also need
to take the following rescalings for the nonrelativistic limit to be
nonsingular:

KL,R =

(
ε− wR

α′ B ,
n

R
∓ wR

α′ ,

√
α′

eff
α′ kA′

)

Aµ =
α′

α′
eff

aµ ,

Vs =
α′

α′
eff
vs , vs = 2πsB

α′
eff
R

, B = −1

Proposition

vs = −2πs α′
eff/R gains the interpretation as the electric potential

on the s-th D-brane. Constant electric field between the D-branes.
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Nonrelativistic KLT from first principles

Nonrelativistic string theory in flat spacetime is defined by the
action

S =
1

4πα′
eff

∫
Σ
d2σ

(
∂αX

A′
∂αXA′

+ λ ∂̄X + λ̄ ∂X
)
,

The vertex operator for the closed string tachyon:

V = exp
(
iπ n ŵ

)
: exp

(
i KA′ XA′

+ i pAX
A + i qAX ′

A

)
: .

X 1 is compactified, and q = −q̄ = wR/α′
eff. p0 = ε is the

energy.
Since X 1 is compactified, p1 = n/R is quantized, with n ∈ Z
the KK number.
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A Change of Variables

There is a clever change of variables to make NRST computations
much simpler.

In radial quantization, we use the conformal
mapping, z = eτ+iσ and z̄ = eτ−iσ.

S =
1

4πα′
eff

∫
C
d2z

(
2 ∂zXA′

∂z̄X
A′

+ λz ∂z̄X + λz̄ ∂zX
)
,

Introduce a local redefinition of the one-form fields λ and λ̄ ,

λz = −2 ∂zX ′ , λz̄ = 2 ∂z̄X ′ .

The auxiliary coordinates X ′ = X ′(z) and X ′ = X ′(z̄) are
T-dual to X and X , respectively.
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A Change of Variables: cont.

We further define

φ0
L(z) =

1
2(X + X ′) , φ0

R(z̄) =
1
2(X − X ′) ,

φ1
L(z) =

1
2(X − X ′) , φ1

R(z̄) =
1
2(X + X ′) ,

XA′
= φA′

(z) + φ̄A′
(z̄) µ = 0, 1, . . . d − 1 .

The OPEs are

φµ
L(z1)φ

ν
L(z2) ∼ −

α′
eff
2

ηµν ln
(
z1 − z2

)
,

φµ
R(z̄1)φ

ν
R(z̄2) ∼ −

α′
eff
2

ηµν ln
(
z̄1 − z̄2

)
,
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A Change of Variables: cont.

In doing this transformation, the OPEs look like those arising from
a theory

Sφ =
1

4πα′
eff

∫
d2σ ∂αφ

µ ∂αφµ ,

for relativistic strings. We then perform two steps:

We now rewrite the vertex operator for the tachyon in NRST.
For OPE computations, physical quantities in NRST can be
obtained from relativistic string theory via our mapping.
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The T-dual Frame

Can we make this hidden relativistic nature more manifest?
Transform the theory into a T-dual frame, i.e. the DLCQ of
relativistic string theory.

This is relativistic string theory compactified on a lightlike
circle, where lightlike is defined by taking a double scaling
limit.
We send γ = 1/

√
1 − v2 → ∞ and R0 the radius of a spatially

compact circle to 0 , but hold R̃ ≡ 2 γR0 fixed.
DLCQ has a dispersion relation with Galilei boost symmetry.
We show that the double scaling limit of closed string
amplitude gives DLCQ amplitude, which are T-dual to
nonrelativistic closed string amplitude.
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Nonrelativistic KLT from first principles: cont.

In terms of φµ
L, R in closed string vertex operator becomes

V = exp
[
i
4 πα

′
eff
(
KL − KR

)
·
(
K̂L + K̂R

)]
exp
(
iKL ·φL + iKR ·φR

)
,

where

KLµ = (p + q , p − q , kA′) , KRµ = (p̄ − q̄ , p̄ + q̄ , kA′) .

For a open string tachyons state, with the ends of the open string
anchored on two D-branes located in the compactified direction X 1,
the associated vertex operator is

Vopen = :exp
[
i KL · φL(y) + i KR · φR(y)

]
: ,

KLµ = KRµ = Kµ ≡
(
ε

2
+

WR

α′
eff

,
ε

2
− WR

α′
eff

, kA′

)
, W = w+

L

2πR
.
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Nonrelativistic KLT from first principles: cont.

We compute the N -point closed string scattering amplitude
without using the α′ → 0 limit. It takes the Virasoro-Shapiro form,

MN
c =

C (1, . . . , N )

α′g2
s

∫
CN−3

d2z2 · · · d2zN−2

N−1∏
i ,j=1
i<j

z
1
2α

′KLi ·KLj
ji z̄

1
2α

′KRi ·KRj

ji

the nonrelativistic formalism gives

α′KLi · KLj = − (wi εj + wj εi )R + α′kA
′

i kA
′

j − (ni wj + nj wi ) ,

α′KRi · KRj = − (wi εj + wj εi )R + α′kA
′

i kA
′

j + (ni wj + nj wi ) .

and you can get this from just using the change of variables, and
knowing the relativistic answer.
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Nonrelativistic KLT from first principles: cont.

The N -point KLT relation is given by

MN
c =

(−1)N−3

α′g2
s

∑
ρ, σ

C (1, σ, N − 1, N )SL[ρ|σ]KL1

×ML (ρ, 1, N − 1, N ) MR (1, σ, N − 1, N ) ,

ML, R(1, . . . ,N ) =

∫
0<y2<···<yN−1<1

dy2 · · · dyN−2

N−1∏
i ,j=1
i<j

|yij |
α′
2 KL, Ri ·KL, Rj

The form is the same as the relativistic KLT
The kinematical data differs from before

KM
L, R = KM =

(
ε

2
+

wR

α′ ,
ε

2
− wR

α′ , kA′

)
.

The KLT relation agrees with what is found from taking the
limit.
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One-loops Amplitudes in NRST

Gomis-Ooguri computed the bosonic one-loop free energy at a
finite temperature (thermodynamic partition function) of free
closed strings.

They found that the result localizes to a set of discrete points
in the fundamental domain of SL(2,C) labeled by winding
sectors.
They also found a Hagedorn temperature exists when
performing a sum over the winding states.
We showed that at one-loop, the bosonic open string
amplitudes exhibit a similar localization in the moduli space
(parametrized by t ∈ R+), and computed the free energy for
open strings.
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One-loops Amplitudes in NRST: cont.

We find that the vacuum amplitude takes the following form:

Z =
∑
m,w

1
m

(
2πRW
α′

eff βm

)12 [
η

(
iβm

4πRW

)]−24

.

Performing the sum over m, the Helmholtz free energy is:

F = −TZ = T
∑
ε

D(ε) ln
(
1 − e−β ε

)
,

ε =
α′

eff
2wR

[
kA′kA′ +

1
α′

eff
(N − 1)

]
.

D(ε) to denote the density of states associated with the energy ε .
This is the nonrelativistic open string analog of the result in
Gomis-Ooguri.
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Summary

We found a N -point KLT factorization for closed string
amplitudes with momentum and winding.

Introduced an array of D-branes along a compactified direction
Mapped the quantum numbers from the closed string to open
string

Generalized this further to a background Kalb-Ramond field
The form of the amplitude is the same, but the B-field shifts
the energy
We need to introduce electric potentials on the D-branes

By taking the α′ → 0 and critical B-field limit, we arrive at
nonrelativistic string theory KLT.
Taking the limit matches what we get if we work in a strictly
nonrelativistic famework.
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Fin.
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