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The goal of this talk is to inspire further research into amplitudes
for NRST.

© Review KLT factorization in rel. strings

@ KLT of wound strings

o Pictorial understanding
o Example with four closed string tachyons
o General factorization

@ In a background Kalb-Ramond field
o Modifications
@ Nonrelativistic KLT relations

o Derive it in the limit of relativistic string theory
o Derive it from the NRST action
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Review of KLT Factorization

KLT shows that tree-level closed string amplitudes factorize into a
sum of quadratic products of open string amplitudes.
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Why think about KLT? It has also lead to many insights into QFT
amplitudes in the tension — oo limit.
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Review of KLT Factorization

KLT shows that tree-level closed string amplitudes factorize into a
sum of quadratic products of open string amplitudes. Famously
stated as " Gravity = (YM)2?" at tree level.

ZA o o™ F(p.p") Aé\;/)en

closed

Why think about KLT? It has also lead to many insights into QFT
amplitudes in the tension — oo limit.

o BCJ relations

@ Born-Infeld, NLSM, and special Galileons fit into the QFT
type of KLT relations via CHY.
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Review of KLT Factorization: Standard Relativistic KLT

4/34



Review of KLT Factorization: Standard Relativistic KLT

Mandelstam Variables:

s=—(k+hk), t=—(k+k), uv=—(k+ k)
/

define a,=1+ %x.
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Review of KLT Factorization: Standard Relativistic KLT

Mandelstam Variables:

s=—(k+hk), t=—(k+k), uv=—(k+ k)
/

define a,=1+ %x.

? K. e T(a)M(—adl(~ay)
closed M1+ as)M(1+ a)M(1+ ay)
_ T(—as)l(—ar) 1 M(—adl (—aw)
M(—as —ae) T(=a)l(L+ae) T(-ar—au)
K, ks ~ Blag, a0) ™) g4 ay)
sin(maz)

Aclosed ™~ Aopen(sv t) -Aopen(t; U)
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KLT of Wound Strings

Derive a KLT-like relation for A -point scattering amplitudes of
closed strings when a spatial direction is compactified on a circle.
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KLT of Wound Strings

Goal:

Derive a KLT-like relation for A -point scattering amplitudes of
closed strings when a spatial direction is compactified on a circle.

The string states carry momentum and also winding on the circle.

Puzzle:

Open string state can either carry momentum or winding but not
both!

Dirichlet: X! = x! + 20/% T+ ...

Neumann: X! =x'+2wRo + ...

5/34



KLT of Wound Strings: cont.

@ The resolution is to include multiple D-branes on the open
strings side.
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KLT of Wound Strings: cont.

@ The resolution is to include multiple D-branes on the open
strings side.

e We introduce a total of ny + 1 many D-branes in the
compactified direction, with n the total incoming momentum
from the closed strings.

@ The D-branes are equally separated by a distance which is

T-dual to the circumference of the compactified circle, i.e.
| — 2ra’
= 2m
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KLT of Wound Strings: cont.

N

@ For the i-th open string, the “fractional part” of the winding
number of an open string stretched between two D-branes is
given by n; on the closed string side (in the above picture

n;y = 1)
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KLT of Wound Strings: cont.

N

@ For the i-th open string, the “fractional part” of the winding
number of an open string stretched between two D-branes is
given by n; on the closed string side (in the above picture
n;y = 1)

@ The open string also carries an integer winding number w; (in
the above picture w; = 1). It soaks up the closed string
winding.
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KLT of Wound Strings: cont

In summary we have the following mapping:

closed string open string
momentum fractional winding
winding integer winding
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KLT of Wound Strings: closed string amp

To be more explicit, consider the data of a 4-point closed string
amp.

(m=1,w) (na = —2,wq)
incoming outgoing

(m2 =3, wy) (m=—-2,w3)

ny =m-+m
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KLT of Wound Strings: closed string amp

To be more explicit, consider the data of a 4-point closed string

amp.
(m=1,w) (na = =2, ws)
incoming outgoing
(n2 =3, wp) ny = ni+ no (n3 = —2,ws3)
— i n wR
V ~ eiKLXL+iKRXR KL - (k 'R 7)
’ R
KR = (kla % + Y

XR:XR—;O/<

i n  wR
XL—XL_QO/< —a/>|0g2—|—
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KLT of Wound Strings: open string amp

On the open string side, the amplitude is mapped to:

n n3

fxgj /oo

incoming outgoing

@ n; above are fractional windings. Came from closed string
Kaluza-Klein number.
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KLT of Wound Strings: open string amp

On the open string side, the amplitude is mapped to:

n n3

fxgj /oo

incoming outgoing
@ n; above are fractional windings. Came from closed string
Kaluza-Klein number.

@ During the scattering process, the two strings join into one,
then the single intermediate string splits at the third D-brane.

This is how we realize conservation of momentum for closed strings.
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4-point KLT

The closed string tachyon is described by the following vertex
operator:

efK|_~X|_(Z)+I'KR4XR(E) .
*y

Ve(z,2) = g exp[é TRw (P + Pr)] :
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4-point KLT

The closed string tachyon is described by the following vertex
operator:

Ve(z,2) = geexp[f TR w (B + pg)] : O HHRAER(E)

XIIYI = (XN7 XL) ) KIIVI = (kM, pL) )
XR = (X", Xg) , K&' = (K", pR) -

The extra phase factor is known as the cocycle. It is there to
remove the phases from crossing certain branch cuts when vertex
operators are interchanged.
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4-point KLT: cont.

The amplitude for four closed string tachyons on a spherical
worldsheet is

4
C i=1

s2
oc i (2m) 2 63 (ky + -+ + Ka) Syt n,0 Ot s, 0 MED
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4-point KLT: cont.

The amplitude for four closed string tachyons on a spherical
worldsheet is

4
C i=1

s2
oc i (2m) 2 63 (ky + -+ + Ka) Syt n,0 Ot s, 0 MED

where

./\/l£4) = $ exp<i7r2?,j:1 n; Wj) AN

i<j

We can try to factorize Z(*), by manipulating complex integrals.
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4-point KLT: cont.

We find that
7(4) _ % 79 1@

where

I = Blas, ,au), T4 = —2isin(ras,) Blas,, ar, ) -
Upgraded Mandelstam variables taking into account windings:
sir = —(Kiri + Kire)?,  tigr = —(Kiri + KLrs)?,

u g = —(KLr1 + KLRra)®.
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4-point KLT: cont.

We find that M£4) from A£4) is factorizable as
MP(1,2,3,4) =

1
= —=((1,2,3,4) sin(3 ma/Kr1 - Kra) M (1,2,3,4) Mg(2,1,3,4)

a/

/

1
== C(1,2,3,4) sin(3 ma/ Ko - Kr3) M((1,2,3,4) Mg(L,3,2,4),

This is invariant under switching “L" and “R", on the open string
side.
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4-point KLT: cont.

We find that M£4) from A£4) is factorizable as

MI(1,2,3,4) =
= —é C(1,2,3,4) sin(3 ma/Kr1 - Kro) M((1,2,3,4) Mg(2,1,3,4)
= —é C(1,2,3,4) sin(3 ma/ Ko - Kr3) M((1,2,3,4) Mg(L,3,2,4),

This is invariant under switching “L" and “R", on the open string
side.

Recap

In a spacetime with a spatial direction compactified over a circle of
radius R

Closed string amplitude — Open string on an array of D-branes

transverse to the compactified direction.
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N -point KLT

An N -point tree-level closed string amplitude takes the form:

.AS;N) - (27T)25 525 (ZN

i=1

: N
ki) (SZ"',\:flr"'70 52{!1%‘,0 (IM‘(: )) )
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N-point KLT

An N -point tree-level closed string amplitude takes the form:
N N (N
.A<(; ) -~ (27T)25 5(25) (Zizlki> 52{\21”[70 52',-,\:[1Wi,0 (IMC ) ,
We have an N-point KLT:
M1, M) =1V (1,002, N =2), N =1, N)
><SR[a(z,...,N—2)|p(2,...,N—2)]KR

XML(1,0(2,..., N=2),N -1, N)
X Mg(1, N =1,p(2,..., N =2),N).

W-1)

With Sgr the generalized momentum kernel. Cocycle here is
important for KLT to hold and respect permutation invariance.
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Background Kalb-Ramond Field and KLT

We modify the KLT factorization of winding string amplitudes in
the presence of a constant Kalb-Ramond B-field in the longitudinal
sector.
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Background Kalb-Ramond Field and KLT

We modify the KLT factorization of winding string amplitudes in
the presence of a constant Kalb-Ramond B-field in the longitudinal
sector.

The sigma model is

5_1

4o/

/ o2 (9aX" 0 X, + 21 €7 0, X° 95X B)
pN

To realize such a KLT relation:
@ D-brane configuration previously discussed

@ D-branes also need to carry electric gauge potentials.
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Background Kalb-Ramond Field and KLT: cont.

The canonical momentum conjugate to X° is

1 2m 0 1 wR
Ko = 27ra’/0 do (0 X’ — B9, X') =e — — B,
where
1 27
g = PYY] do 8tX0 .
27'('0[ 0
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Background Kalb-Ramond Field and KLT: cont.

The canonical momentum conjugate to X° is

1 2m 0 1 wR
Ko = 2m’/o do (0 X’ — B9, X') =e — — B,
where
1 27
g = PYY] do 8tX0 .
27'('06 0

The factorization of winding closed string amplitudes takes the
same form of before, but now the closed string variables are

R R
m:G_W&"_WM>,

o R o’
wR n wR
“—G‘w&R+w’“)
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Background Kalb-Ramond Field and KLT: open strings

The associated open string amplitude now takes the form of M
and MR, but with the open string variables are

RL_(E_WRB_"B,"_WR kA,>,
v

o R 'R 1
~ wR nB n wR
Kr = - — B — -+ — )
R <€ O/B R’R+o/’kA>
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Background Kalb-Ramond Field and KLT: open strings

The associated open string amplitude now takes the form of M
and MR, but with the open string variables are

RL_(E_WRB_"B,"_WR kA,>,
(6

o R 'R 1
~ wR nB n wR
KR—<€‘Q/B‘R’R+O/’“'>-

This is almost the same as K| g but with an extra shift nB/R of
the energy.
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Background Kalb-Ramond Field and KLT: open strings

The associated open string amplitude now takes the form of M
and MR, but with the open string variables are

RL_<€_WRB_"B,"_WR kA,>,
v

o R 'R .
~ wR nB n wR
KR_<€_0/B_R’R+0/’/{AI>'

This is almost the same as K| g but with an extra shift nB/R of
the energy.

To compensate for this extra term, we are required to assign to the
s-th brane an electric potential:

/

o
Vs = 27TSBE .
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Background Kalb-Ramond Field and KLT: open strings

Suppose an open string ends at s-th and s + n-th D-brane, the
boundary action takes the form

i
dery = m /az dy AN 8yX’u
_ oodv 9, X° i [ 0
= onar Jy Y Ve XA oy [ VO XT
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Background Kalb-Ramond Field and KLT: open strings

Suppose an open string ends at s-th and s + n-th D-brane, the
boundary action takes the form

i
dery = m /az dy AN 8yX’u

i[> o, i [° 0
= |, WV X0t [ dy Vo X,

As a result, we find
inB
Sbdry = m/ dr 0-X°,
R Jr
this boundary terms contributes an extra shift in energy, with
nB

— —
€ E+R
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Background Kalb-Ramond Field and KLT: open strings

Suppose an open string ends at s-th and s + n-th D-brane, the
boundary action takes the form

i
= A XH
Shdry ool /E)z dy Ay Oy
i > 0 i 0 0
= onar Jy Y Ve XA oy [ VO XT
As a result, we find

inB
Sbary = % /R dr 9. X°,

this boundary terms contributes an extra shift in energy, with

et 22
€—>e€ R

The potential that shifts the energy takes RL,R — KLR.
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Connection to Nonrelativistic String Theory

In a critical B-field background, there is a non-singular o/ — 0 limit
of relativistic string theory in the presence of windings, i.e.
nonrelativistic string theory.
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Connection to Nonrelativistic String Theory

In a critical B-field background, there is a non-singular o/ — 0 limit
of relativistic string theory in the presence of windings, i.e.
nonrelativistic string theory. The dispersion relation is Galilean
invariant,

/
Qeff 2< Y )
= lkaky +—(N+N-=-2])]|.
) 2WR[AA+alefF i
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Connection to Nonrelativistic String Theory

In a critical B-field background, there is a non-singular o/ — 0 limit
of relativistic string theory in the presence of windings, i.e.
nonrelativistic string theory. The dispersion relation is Galilean
invariant,

Ot [hkon 1+ 2 <N+/V 2)
E= —— ’ ’ —_— — .
2wR |TATA o

@ Describes strings interacting in a string-Galilean invariant
spacetime.

@ All physical states have non-zero winding number.
Zero-winding sector has no graviton.

@ Not GR at low energy, instantaneous Newtonian potential
from exchange of off-shell states.
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Nonrelativistic String Amps

Another important feature about nonrel. amps is that they are
finite. Gives quantization of nonrelativistic spacetime geometry-so
called string Newton-Cartan geometry.
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Nonrelativistic String Amps

Another important feature about nonrel. amps is that they are
finite. Gives quantization of nonrelativistic spacetime geometry-so
called string Newton-Cartan geometry.

Example:

Consider the kinematical quantity

i ,'R [ R i /
O/KL,'-KLJ':Q/I |:—€,'EJ‘+O/ (n——W > (ﬂ—WJ—,)-Fk,A kJA]
Q

R o R

W,'WjR2

- is singular when o’ — 0.

a
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Nonrelativistic String Amps

Another important feature about nonrel. amps is that they are
finite. Gives quantization of nonrelativistic spacetime geometry-so
called string Newton-Cartan geometry.

Example:

Consider the kinematical quantity

ni  wiR nj  wR N
CY,KL,- . KLJ = o/ |:—€,'Ej +O/ (ﬁ - o > (EJ — #) aF k,A kJA:|

W,'WjR2

- is singular when o’ — 0.

a

But in the presence of the critical B-field, this term is cancelled.
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Nonrelativistic KLT

The nonrelativistic analogue of the KLT relation can be obtained by
taking o/ — 0 limit of the relativistic KLT relation for winding
string amplitudes in the presence of a critical B-field.
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Nonrelativistic KLT

The nonrelativistic analogue of the KLT relation can be obtained by
taking o/ — 0 limit of the relativistic KLT relation for winding
string amplitudes in the presence of a critical B-field. We also need
to take the following rescalings for the nonrelativistic limit to be

nonsingular:
wR n _ wR o
_ eff
Fir = (g‘afB’ RT o Vw "A’)
/
!
A, =—a
1] / B
Ceff
o a
Vs = —vs, vs:27r58%, B=-1
eff
vs = —27s ot/ R gains the interpretation as the electric potential

on the s-th D-brane. Constant electric field between the D-branes.
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Nonrelativistic KLT from first principles

Nonrelativistic string theory in flat spacetime is defined by the
action

s 1! / o (aaxA’ XA £ NOX + A aY) ,
>

- /
Aoy off
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Nonrelativistic KLT from first principles

Nonrelativistic string theory in flat spacetime is defined by the
action

s 1! / o (aaxA’ XA £ NOX + A aY) ,
>

- /
Aoy off

The vertex operator for the closed string tachyon:

V= exp(i7r n v“v) :exp(i Kar XA+ iPAXA + "qAX/() ‘e

o X1 is compactified, and g = —§ = wR /. py = ¢ is the
energy.

e Since X! is compactified, p; = n/R is quantized, with n € Z
the KK number.
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A Change of Variables

There is a clever change of variables to make NRST computations
much simpler.
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A Change of Variables

There is a clever change of variables to make NRST computations
much simpler. In radial quantization, we use the conformal
mapping, z=¢e" "7 and z =" '7.

1

= 7
Ao off

/ a2z (2 XA 9:XA + X, 05X + As azY) :
C

e Introduce a local redefinition of the one-form fields \ and \,
)\Z:—232X’, )\22282Y,.

@ The auxiliary coordinates X’ = X’(z) and X' = X'(2) are
T-dual to X and X, respectively.
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A Change of Variables: cont.

We further define

pL(2) = 3(X+X), k(@) =3(X =X,
pl2)=3(X =X, ¢r(@)=3(X+X),
X =M+ 3(2) p=0,1,...d 1.
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A Change of Variables: cont.

We further define

Pl(2)=3(X+ X)), wk(2)=3(X-X),
pl(2) =3(X =X),  wr(2)=3(X+X),
X =M+ 3(2) p=0,1,...d 1.

The OPEs are

/
(6
o1 (z1) ¢l (22) ~ —fﬁ " In(z1 — z),

!
«
©oR(21) pR(22) ~ —%ﬁ ' In(z — 2),
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A Change of Variables: cont.

In doing this transformation, the OPEs look like those arising from
a theory
s _ 1
» =
4ol

/ d?0 Ot 0“pu s

for relativistic strings. We then perform two steps:
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A Change of Variables: cont.

In doing this transformation, the OPEs look like those arising from
a theory

1
S

= d?o Dapt O
© 47ragff/ 0 O P Pu s

for relativistic strings. We then perform two steps:

@ We now rewrite the vertex operator for the tachyon in NRST.

@ For OPE computations, physical quantities in NRST can be
obtained from relativistic string theory via our mapping.
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The T-dual Frame

Can we make this hidden relativistic nature more manifest?

@ Transform the theory into a T-dual frame, i.e. the DLCQ of
relativistic string theory.
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relativistic string theory.

@ This is relativistic string theory compactified on a lightlike
circle, where lightlike is defined by taking a double scaling
limit.

@ We send v = 1/v1 — v? — 0o and Ry the radius of a spatially
compact circle to 0, but hold R = 2Ry fixed.
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The T-dual Frame

Can we make this hidden relativistic nature more manifest?

@ Transform the theory into a T-dual frame, i.e. the DLCQ of
relativistic string theory.

@ This is relativistic string theory compactified on a lightlike
circle, where lightlike is defined by taking a double scaling
limit.

@ We send v = 1/v1 — v? — 0o and Ry the radius of a spatially
compact circle to 0, but hold R = 2Ry fixed.

e DLCQ has a dispersion relation with Galilei boost symmetry.

@ We show that the double scaling limit of closed string
amplitude gives DLCQ amplitude, which are T-dual to
nonrelativistic closed string amplitude.
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Nonrelativistic KLT from first principles: cont.

In terms of ¢’ » in closed string vertex operator becomes

YV = exp [ﬁ Waéff(KL — KR) . (RL + RR)} exp(iKL L+ iKR . SDR) ,
where

Ki,=P+a,p—q, ka), Kr,=(p—G,P+3q,ka).
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Nonrelativistic KLT from first principles: cont.

In terms of ¢’ » in closed string vertex operator becomes

YV = exp [ﬁ Waéff(KL — KR) . (RL + RR)} exp(iKL L+ iKR . SDR) ,
where

KLu:(p+q7p_q7kA')7 KR#:(ﬁ_C_Iaﬁ+a7kA’)‘

For a open string tachyons state, with the ends of the open string
anchored on two D-branes located in the compactified direction X1,
the associated vertex operator is

Vopen ::exp[iKL'@L(y)'f'iKR'QDR(Y)]:a

e WR ¢ WR
KLu_KRu_KuE(2+O/fF72—,
€

Qe

L
ko W = —
7A>7 W+27TR
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Nonrelativistic KLT from first principles: cont.

We compute the A/-point closed string scattering amplitude
without using the o/ — 0 limit. It takes the Virasoro-Shapiro form,

C(1,...,N) La/Ky ;K Lo/ Ki-Kry
N Li* Lj = Ri*N\Rj
_— d?zy - - d?

M « gS /(CN?’ ZN ? H JI

ij=1
i<j

the nonrelativistic formalism gives
O/KL,'-KLJ': (W,€J+WJ )RJrakAkA (niV|{,'+an;),
O/KR,'-KRJ': (W,€J—|-Wj )R—I—akAkA (niM{,'+an;).
and you can get this from just using the change of variables, and

knowing the relativistic answer.
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Nonrelativistic KLT from first principles: cont.

The N-point KLT relation is given by

N -3
My = a)g S0, N — 1, N)Silplolk,
s oo
XML(/}, 1’N_1’N) MR(L U,N_].,N),
N-1
ML,R(L---,N):/ dyr - dyn_s H |yj|2KLRIKLRj
0<yn<-<yn—1<1 =1
i<j

@ The form is the same as the relativistic KLT
@ The kinematical data differs from before

M _m_ (€ wR & wR
For=H —<2+aw2‘awk/*'>'

@ The KLT relation agrees with what is found from taking the
limit.
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One-loops Amplitudes in NRST

@ Gomis-Ooguri computed the bosonic one-loop free energy at a
finite temperature (thermodynamic partition function) of free
closed strings.
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in the fundamental domain of SL(2,C) labeled by winding
sectors.
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One-loops Amplitudes in NRST

@ Gomis-Ooguri computed the bosonic one-loop free energy at a
finite temperature (thermodynamic partition function) of free
closed strings.

@ They found that the result localizes to a set of discrete points
in the fundamental domain of SL(2,C) labeled by winding
sectors.

@ They also found a Hagedorn temperature exists when
performing a sum over the winding states.

@ We showed that at one-loop, the bosonic open string
amplitudes exhibit a similar localization in the moduli space
(parametrized by t € R™"), and computed the free energy for
open strings.
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One-loops Amplitudes in NRST: cont.

We find that the vacuum amplitude takes the following form:

z-% 1 (2nRW\" ipm \17**
_mwm oL fm "\ axRW '

Performing the sum over m, the Helmholtz free energy is:

F=-TZ=TY D) In (1—e—55),

it [k + — (N — 1)
g = KA/ — — .
2wR [T Al

D(e) to denote the density of states associated with the energy ¢.
This is the nonrelativistic open string analog of the result in
Gomis-Ooguri.
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e We found a N-point KLT factorization for closed string
amplitudes with momentum and winding.
e Introduced an array of D-branes along a compactified direction
o Mapped the quantum numbers from the closed string to open
string
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e We found a N-point KLT factorization for closed string
amplitudes with momentum and winding.

e Introduced an array of D-branes along a compactified direction
o Mapped the quantum numbers from the closed string to open
string
@ Generalized this further to a background Kalb-Ramond field

o The form of the amplitude is the same, but the B-field shifts
the energy
o We need to introduce electric potentials on the D-branes

@ By taking the o/ — 0 and critical B-field limit, we arrive at
nonrelativistic string theory KLT.

33/34



e We found a N-point KLT factorization for closed string
amplitudes with momentum and winding.

e Introduced an array of D-branes along a compactified direction
o Mapped the quantum numbers from the closed string to open
string
@ Generalized this further to a background Kalb-Ramond field

o The form of the amplitude is the same, but the B-field shifts
the energy
o We need to introduce electric potentials on the D-branes

@ By taking the o/ — 0 and critical B-field limit, we arrive at
nonrelativistic string theory KLT.

@ Taking the limit matches what we get if we work in a strictly
nonrelativistic famework.
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Fin.
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