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Introduction

e Motivational question: What is the gravitational effective field theory description of
non-relativistic string theory? (Gomis, Ooguri; Danielsson, Guijosa, Kruczenski)

e Addressed bosonically via worldsheet theory S-function calculations. (Gomis, Oh, Yan, Yu)
Gravitational field theory with underlying String Newton-Cartan geometry. (see e.g., Andringa,
Bergshoeff, Gomis, de Roo; Bergshoeff, Gomis, JR, Simsek, Yan; Bergshoeff, van Helden, Lahnsteiner, Romano, JR; Bidussi,

Harmark, Hartong, Obers, Oling)

e Alternative approaches:

& Non-relativistic limit (Bergshoeff, Lahnsteiner, Romano, JR, Simsek)

¢ Non-Riemannian backgrounds in Double Field Theory (e.g.; Gallegos, Giirsoy, Verma, Zinnato;
Morand, Park; Cho, Park; Park, Sugimoto; Ko, Melby-Thompson, Meyer, Park; Berman, Blair, Otsuki; Blair, Oling, Park)

¢ Strings in Torsional Newton-Cartan backgrounds (Harmark, Hartong, Menculini, Obers, Oling Yan;

Gallegos, Giirsoy, Zinnato)

e To discuss non-relativistic superstrings, need to construct non-relativistic supergravity
theories.
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Introduction

Introduction

e Not so much work done yet on non-relativistic supergravity. Mostly in 3D for theories
with underlying Newton-Cartan geometry:

¢ gauging of 3D, N = 2 super-Bargmann algebra (andringa, Bergshoett, Sezgin, JR)
¢ superconformal tensor calculus methods (Bergshoeft, JR, Zojer)

& Chern—Simons supergravity (Bergshoeff, JR; Ozdemir, Ozkan, Tunca, Zorba; Concha, Ipinza, Ravera,
Rodriguez)

¢ via non-relativistic limit (Bergshoeff, IR, Zojer)

e Goal of this talk: obtain non-relativistic supergravity in 10D, for non-relativistic string
theory.

e Method used: careful taking of a non-relativistic limit:
¢ does not rely on tricks that only work in specific dimensions

o closely related to S-function results

e Starting point: relativistic 10D, N" = (1, 0) supergravity. Simplest case common to all
superstring theories.
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Non-Relativistic 10 D AEUUNERIEN Relativistic 10D, N = (1, 0) Supergravity

Relativistic 10D, A" = (1,0) Supergravity

e Relativistic 10D, N = (1, 0) supergravity: (Bergshoeff, de Roo, de Wit, van Nieuwenhuizen; Chamseddine)

¢ Field content

> Bosonic: Vielbein EMA, Kalb-Ramond two-form B,,,,, dilaton ®
> Fermionic: gravitino ¥, (left-handed Majorana-Weyl), dilatino A
(right-handed Majorana-Weyl)

¢ Symmetries:

> local SO(1,9) Lorentz transformations with parameter AAB
(A, B=0,1,---,9)
> one-form gauge symmetry 6 5,,, = 20,0,

> local supersymmetry with parameter € (left-handed Majorana-Weyl)
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Non-Relativistic 10D, N = (1, 0) Supergravity from a limit EEERSIOIBEETGHTII

The non-relativistic limit

e Starting point for the non-rel. limit:

A - A= 0,1 or +,— (longitudinal) and a =2,3,---,10 (transversal)

and the invertible field redefinitions

EMA :CTHA (Ea* :c_lTA”), E.*=eu* (Bo" =edt),
o =0+ IOg(C) ’ B;uz = €EABTu TV + buu s
MaW, = cEY 2y, e =cF/20; with TIp=1(1£T01).

e Limit of any quantity (action, equations of motion, symmetry transformation rules):

o Apply field redefinition and expand in powers of ¢ ™2

¢ Limit = leading order term in this expansion
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Non-Relativistic 10D y from a limit The non-relativistic bosonic transformation rules

The non-relativistic bosonic transformation rules

e Plugging the field redefinitions, along with
AAB _ )\MEAB , AAa _ cflAAcL7 Aab _ Aab7 @H _ 9# ,
in the bosonic transformation rules, one finds the expansion

Bion = Sjoh + 70,0

In particular
A

Jun

6bosTuA = AMEABT”,B +c72 aeu’, Obosen® = /\’lbeub — )\AaTuA ,
Sbosbur =20,0,) — 2eapA?ar,Be,?, Sbosd =0,
Sbosthut =1 ()‘abrab - QAM) Yy + %A‘AGF/}M&* ;
Suosthu— =5 (A™Tap + 2201 ) Ve + AT gt
Shosht =% (A™Tap = 2201 ) Mg + S5 AT A,
)

Buosh— =1 (A®Tap + 2201 ) Gt + EM T a0y

e Well-defined ¢ — oo limit.
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Non-Relativistic 10D ,0)S y from a limit The non-relativistic bosonic transformation rules

The non-relativistic bosonic transformation rules

e Plugging the field redefinitions, along with
AAB _ )\MeAB , AAa _ C—l)\Aa’ Aab _ >\ab7 GH _ 9# ,

in the bosonic transformation rules, one finds the expansion

oo =30, + =207,

In particular
Sosmu™ = et 5, N
Oboubu =208 = 2eanX*ar, Pe,)® Send =0,

bos¢u+ =1 (/\“bFab - 2>\M) Yut s

Sonthu— =5 (ATab + 2Xar) e + SAL T Aty
sOx =1 (,\abr b — 2,\M) Ar,
0 a a
50N =1 (A®Tap + 221 ) Gt + EAT a0y

e Well-defined ¢ — oo limit.
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Non-Relativistic 10D, N* = (1, 0) Supergravity from a limit The non-relativistic bosonic transformation rules

The non-relativistic bosonic transformation rules

o After the limit 7,”, €,,%, b, and the fermions transform under
(SO(1,1) x SO(8)) x R'6
where:
o SO(1,1) = longitudinal Lorentz transformations (parameters A\**%)
o SO(8) = transversal spatial rotations (parameters A*’)

o R = String Galilean boosts (parameters A4%)

A A __ B b A
ObosTu” =Ame " BTu" Obosen” =A"peu” —Aa ",

A B
(sbosb}“, = —QEABA aT[F‘ 6u]a
e Fermions 1,4+, A+ have characteristic non-relativistic boost transformations:

S = AT pa¥uy,  OPuy =0,  A_ = IXT 0, SAy =0.
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Non-Relativistic 10D, N* = (1, 0) Supergravity from a limit The appearance of String Newton-Cartan geometry

The appearance of String Newton-Cartan geometry

1 .
e (SO(1,1) x SO(8)) x R*® = structure group of String Newton-Cartan geometry. seec.g.
Andringa, Bergshoeff, Gomis, de Roo; Bergshoeff, Gomis, JR, Simsek, Yan; Bergshoeff, van Helden, Lahnsteiner, Romano, JR;
Bidussi, Harmark, Hartong, Obers, Oling)

e Metric structure of String Newton-Cartan geometry:
rank-2: 7, = T#ATVB’I’]AB , rank-8: h* = ey ey’ 640 .

e b, couples to non-relativistic string worldsheet via Wess-Zumino action

T
E/d%—eaﬁ Da XM 9 X" by .

Similar to how central charge gauge field m,, of Newton-Cartan geometry couples to a
non-relativistic particle worldline:

/dTX“mM.

e Newton-Cartan geometry: Newton potential = my.

String Newton-Cartan geometry: Newton potential = bo1.
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Non-Relativistic 10D, N* = (1, 0) Supergravity from a limit The appearance of String Newton-Cartan geometry

The appearance of String Newton-Cartan geometry

e Metrics-compatible connection introduced via 3 spin connections:
wu (Am), w A (A9, W (A").
that obey generalized first Cartan structure equations
28[HT,,]A + 2€AB Wi TV]B = TuVA s
20ue0” + 2w % by €] — 2wia)* T = T
30,b,, —6ean w[HAaTVBep]a = T‘i,b,)p .

Equations that contain w-components express that w-components depend on THA, en”,
buv-
e Equations that do not contain w-components — intrinsic torsion. E.g.:
A

A A
2eatep” O, )" = et ey " T ™ = Tap™

2eat 1" 0T B) = €a* T 4T uviB) = Ta(a ,B) -

See talk by Kevin van Helden.
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Non-Relativistic 10D, N = (1, 0) Supergravity from a limit EEEEIRTRVETICRGO]

The limit of the action

e After plugging in the field redefinitions, the action S can generically can expanded as:
S=c5® 450 472502 445D 0 = §OV[re,b, 6,904, Ax]

Due to non-trivial cancellations (e.g. between Einstein-Hilbert term and kinetic term of
B,..), one finds

s® =g.

(0).

bos*

e Limit of the action S©) is invariant under &
e = B0 5® + 77 (50,5 + 52050 + 0
ShosS=0 = 5950 g,

In particular, S is invariant under (SO(1,1) x SO(8)) x R'®.
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Non-Relativistic 10 L ENERONT GG ERE Emergent dilatations

Emergent dilatations

o S js also invariant under an emergent dilatation symmetry: (Bergshoeff, Lahnsteiner, Romano, JR,
Simsek)

Sprut =Apmut, Spp=Ap,

Oput = * %ADwuﬂ:, dpAt = % %ADM: .

Target space equivalent of symmetry of worldsheet action of bosonic non-rel. string in
arbitrary String Newton-Cartan background. (Bergshoeff, Gomis, JR, Simsek, Yan)

e Consequence: need to introduce dependent dilatation gauge field and change one of the
first Cartan structure equations to

28[#7',,]14 + 26AB Wi TV]B —2 b[uTV]A = T,,“JA .
T.4“ is no longer intrinsic. Dilatation covariant intrinsic torsion components

T ™ and Tufa B} -
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Non-Relativistic 10.D y from a limit The limit of the supersymmetry transformations

The limit of the supersymmetry transformations

e With II1e = ¢T/%¢y, the expansion of the supersymmetry transformation rules is:
2 0 —og(—2
5g =25 + 65 +c 2657

5$ ) has the right structure for non-relativistic supersymmetry transformation rules.

Divergence (Sg ) is only non-zero when acting on the fermions:

0 Vs = Lt Ty T, 65 = L (Tap T + Tay T_%),

55 =0, SN = 1T, T ey

with {Tat ™, Ta+ "~ } a subset of the dilatation covariant intrinsic torsion components.
e Presence of divergences has two consequences:

¢ Need for intrinsic torsion constraints to ensure supersymmetry invariance of S ©

<o Emergence of fermionic Stueckelberg symmetries
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Non-Relativistic 10 D, N' = (1, 0) Supergravity from a limit Intrinsic torsion constraints

Intrinsic torsion constraints

o SO js not automatically invariant under 68 ).

88 =268 + (698 + 655D + 0(c7?)

0 2 —
55 =0 = 5505 = 6552

Note however that all terms in 68 )S =2) are proportional to T+, Tup ™ .

= S s invariant under non-rel. supersymmetry 68) ) if

“O,T,

Tor =0, and Tap =0 =4 T p]izo.

"
e Can be imposed in a supersymmetric way since

8 Tay = =0

07~ =0 =
Q@ ST~ =0

e Also ensures that the commutator of two ég) ) transformations on T#A properly closes.
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Non-Relativistic 10.D y from a limit Emergent fermionic Stueckelberg symmetries

Emergent fermionic Stueckelberg symmetries

e Note that S is invariant under 5(@2 ), before imposing the intrinsic torsion constraints:

58S =258 + (5975 1+ 6552 + 0(c7?)
— (2) g(0) _
55 =0 = 558 = 0.
Structure of 5g ) suggests invariance of S(*) under the following fermionic S- and
T-symmetries:
Sstut+ = 57u T, dsA- =mn—,
Sribpu— =7, Tp_ .

e The commutator of the S-symmetry with 68) ) contains the dilatation symmetry.

e The non-relativistic action S® is thus invariant under 3 extra symmetries that are
emergent and were not present in the relativistic starting point.
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Non-Relativistic 10.D ,0)S y from a limit Multiplet shortening

Multiplet shortening

e One can redefine the non-relativistic fields {7,“, €,%, b, ¢, Yut, A+ } to

{Tu »eu ) pw,d’ %+7¢—7¢u—,>\i}VIa

%MA Eeid’TuAa "L,LH— =e¢/2 (d);H— - %TM+F+)\—) ) 1/;— = e3¢/27-+ﬂwu_ )

72’#7 =e?/? (@Z’uf - Tu+7$7) ) At = e¥¢/2>\:t .

e These redefined fields can be divided in two sets:

o {%MA, en” buv, 121,,4., 121#_, :\+}: invariant under the dilatation, S- and
T-symmetries.

o {o, Do, A }: transform as Stueckelberg fields under the dilatation, S- and
T-symmetries:

§é=Ap, S =32, SA_ =e?/?n_

e Invariance of S°) under 6, 65 and 67 implies that ¢, ¥ and A do not occur in it.

= SO js an action for a shortened multiplet {74 eu®, by, zﬁu+7 zh,, 5\+}.
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Non-Relativistic 10.D y from a limit Field equations

Field equations

o Shortened multiplet: {7, €,%, buw, Yt , Vs At }

o Pseudo-action S(®) [T, e, b, 1[&, 5\+] to be supplemented with intrinsic tor-
sion constraints:

ea“%+”8[uﬂ,f =0, ea”ebua[uﬁ]7 =0.

e The field equations derived from S (0) can be obtained by taking the non-relativistic limit
of the relativistic field equations.

e However: multiplet shortening = less independent field equations coming from S ©
than there are relativistic ones.

e 2 fermionic and 1 bosonic equations of motion for the Stueckelberg fields ¢, ¥_ and A_
missing.
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Non-Relativistic 10D, N ,0)S y from a limit Field equations

Field equations

e [t is possible to take the non-relativistic limit of the field equations directly, such that one
ends up with as many independent field equations for T#A, en”, buvs @, Yu+, Ay asin
the relativistic parent theory.

e The limit of the field equations taken in this direct way consists of those derived from
S as well as 1 bosonic and 2 fermionic ‘missing’ non-relativistic equations of motion.

e The full set of field equations is

¢ dilatation covariant
¢ covariant under the S- and T-symmetries
© supersymmetric upon imposing the intrinsic torsion constraints Tg,~ = 0 = T4~

e The linearization of the missing bosonic equation of motion contains:
0a0%01 +---=0.

= covariant generalization of the Poisson equation.
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The longitudinal T-duality viewpoint The longitudinal T-duality viewpoint

The longitudinal T-duality viewpoint

e Longitudinal T-duality: non-relativistic string theory on a spatial longitudinal circle is
dual to relativistic string theory compactified on a null direction.

e From the supergravity point of view: reduction of non-relativistic 10D, ' = (1,0)
supergravity = reduction of relativistic 10D, N' = (1, 0) supergravity along a null Killing
vector (Bergshoeff, Lahnsteiner, Romano, JR)

T i~ ~
10D (TN ’ e# ’ lev ) 4 b (E[LA7 B;uu (I))
with 77, 8,7,)" =0 with 9y, (G,. + B,j.) =0
reduction along spatial
- Lo reduction along lightlike direction z
longitudinal direction z
.

9D

Newton-Cartan geometry (7;, €;%, m;) + matter (¢, n;, m;;)
with a[iTj] = 78[1’!1]]
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The longitudinal T-duality viewpoint [EEVISISTSTONTT K I ARG I ST

The longitudinal T-duality viewpoint

e Note:

T[M_a,/Tp]_ =0 — a[u(éu]z'f'éu]z):()-

The non-relativistic 10D, A = (1, 0) multiplet is shortened. What about the T-dual side?

e Since z is a null direction, one has G, = 0. Not supersymmetric! Supersymmetric set

of constraints:
ézz =0, \ilz =0, a[u(éu]z'i'éu]z):(]'
e Multiplet shortening on both sides of the duality:
Non-Rel. Rel. with null Killing vector
1: 5D ézz =0 5
8+8: 5S+5T ‘1~/Z=0,
36 : T[H_alﬂ'p]_ =0, a[u(éu]z+éu]z):0~
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Half-supersymmetric solutions

Half-supersymmetric solutions

e [ongitudinal T-duality can be used to generate solutions of non-rel. supergravity from
those of rel. supergravity that satisfy the necessary constraints.

e Example 1: pp-wave, corresponding to state with winding w = 0, momentum n = 1
ds?, = —2dt(dz + K dt) + dz% , B=o0, e® = g5,
dualizes to a non-rel. fundamental string solution:
ds? = —dt? + d2?, ds? = dz(28> , b=KdtNdz, e? =g,,
corresponding to state with w = 1 and n = 0 and dispersion relation E < k%k,.

e From 9D point of view: flat Newton-Cartan geometry with Newton potential m; = K,
sourced by massive particle.
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Half-supersymmetric solutions

Half-supersymmetric solutions

e Example 2: rel. fundamental string, corresponding to state withw = 1,n =0

3%y = —2H Ydtdz +defy,  B=(H '-1dindz, =g H V2,

dualizes to ‘unwound’ string solution withw =0, n =1

ds? = —H 2 dt? + (dz + (H™' = V)dt)?,  ds? =dz%), e =g, H /2.

e Note that the rel. anti-fundamental string does not satisfy the constraint
Ou(Guyz + Byj.) = 0!

e Can also be applied to obtain non-relativistic NS5-brane and KK5-monopole solutions
from their relativistic counterparts.
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Outlook

e Minimal 10D supergravity can be constructed via a stringy non-relativistic limit.

e Interesting features that regularize the limit
¢ emergent dilatation and fermionic shift symmetries

¢ supersymmetric set of intrinsic torsion constraints

Result consistent with what one expects from longitudinal T-duality.

e Outlook:
¢ inclusion of Yang-Mills multiplet
o type Il non-relativistic supergravity (see talk by U. Zorba)
¢ 11D non-relativistic supergravity (see talk by J. Lahnsteiner)
© stringy non-relativistic expansions (see talks by J. Musaeus and E. Have)

o DFT techniques (see talk by K. Morand)

< solutions?
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