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Mostly based on work with
E. Bergshoeff, J. Lahnsteiner, L. Romano, C. Şimşek: arXiv:2107.14636
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Introduction

Introduction

• Motivational question: What is the gravitational effective field theory description of
non-relativistic string theory? (Gomis, Ooguri; Danielsson, Guijosa, Kruczenski)

• Addressed bosonically via worldsheet theory β-function calculations. (Gomis, Oh, Yan, Yu)

Gravitational field theory with underlying String Newton-Cartan geometry. (see e.g., Andringa,

Bergshoeff, Gomis, de Roo; Bergshoeff, Gomis, JR, Şimşek, Yan; Bergshoeff, van Helden, Lahnsteiner, Romano, JR; Bidussi,

Harmark, Hartong, Obers, Oling)

• Alternative approaches:

� Non-relativistic limit (Bergshoeff, Lahnsteiner, Romano, JR, Şimşek)

� Non-Riemannian backgrounds in Double Field Theory (e.g.; Gallegos, Gürsoy, Verma, Zinnato;

Morand, Park; Cho, Park; Park, Sugimoto; Ko, Melby-Thompson, Meyer, Park; Berman, Blair, Otsuki; Blair, Oling, Park)

� Strings in Torsional Newton-Cartan backgrounds (Harmark, Hartong, Menculini, Obers, Oling Yan;

Gallegos, Gürsoy, Zinnato)

• To discuss non-relativistic superstrings, need to construct non-relativistic supergravity
theories.
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Introduction

Introduction

• Not so much work done yet on non-relativistic supergravity. Mostly in 3D for theories
with underlying Newton-Cartan geometry:

� gauging of 3D,N = 2 super-Bargmann algebra (Andringa, Bergshoeff, Sezgin, JR)

� superconformal tensor calculus methods (Bergshoeff, JR, Zojer)

� Chern-Simons supergravity (Bergshoeff, JR; Ozdemir, Ozkan, Tunca, Zorba; Concha, Ipinza, Ravera,

Rodriguez)

� via non-relativistic limit (Bergshoeff, JR, Zojer)

• Goal of this talk: obtain non-relativistic supergravity in 10D, for non-relativistic string
theory.

• Method used: careful taking of a non-relativistic limit:

� does not rely on tricks that only work in specific dimensions

� closely related to β-function results

• Starting point: relativistic 10D,N = (1, 0) supergravity. Simplest case common to all
superstring theories.
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Non-Relativistic 10D,N = (1, 0) Supergravity from a limit Relativistic 10D,N = (1, 0) Supergravity

Relativistic 10D, N = (1, 0) Supergravity

• Relativistic 10D,N = (1, 0) supergravity: (Bergshoeff, de Roo, de Wit, van Nieuwenhuizen; Chamseddine)

� Field content

� Bosonic: Vielbein EµÂ, Kalb-Ramond two-form Bµν , dilaton Φ

� Fermionic: gravitino Ψµ (left-handed Majorana-Weyl), dilatino λ
(right-handed Majorana-Weyl)

� Symmetries:

� local SO(1, 9) Lorentz transformations with parameter ΛÂB̂

(Â, B̂ = 0, 1, · · · , 9)

� one-form gauge symmetry δBµν = 2 ∂[µΘν]

� local supersymmetry with parameter ε (left-handed Majorana-Weyl)
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Non-Relativistic 10D,N = (1, 0) Supergravity from a limit The non-relativistic limit

The non-relativistic limit

• Starting point for the non-rel. limit:

Â → A = 0, 1 or +,− (longitudinal) and a = 2, 3, · · · , 10 (transversal)

and the invertible field redefinitions

Eµ
A = c τµ

A (EA
µ = c−1τA

µ) , Eµ
a = eµ

a (Ea
µ = ea

µ) ,

Φ = φ+ log(c) , Bµν = −c2εABτµAτνB + bµν ,

Π±Ψµ = c±1/2ψµ± , Π±λ = c±1/2λ± with Π± = 1
2

(1± Γ01) .

• Limit of any quantity (action, equations of motion, symmetry transformation rules):

� Apply field redefinition and expand in powers of c−2

� Limit = leading order term in this expansion
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Non-Relativistic 10D,N = (1, 0) Supergravity from a limit The non-relativistic bosonic transformation rules

The non-relativistic bosonic transformation rules

• Plugging the field redefinitions, along with

ΛAB = λM ε
AB , ΛAa = c−1λAa , Λab = λab , Θµ = θµ ,

in the bosonic transformation rules, one finds the expansion

δbos = δ
(0)
bos + c−2δ

(−2)
bos .

In particular

δbosτµ
A =λM ε

A
Bτµ

B + c−2λAaeµ
a , δboseµ

a =λabeµ
b − λAaτµA ,

δbosbµν = 2∂[µθν] − 2εABλ
A
aτ[µ

Beν]
a , δbosφ = 0 ,

δbosψµ+ = 1
4

(
λabΓab − 2λM

)
ψµ+ + c−2

2
λAaΓAaψµ− ,

δbosψµ− = 1
4

(
λabΓab + 2λM

)
ψµ− + 1

2
λAaΓAaψµ+ ,

δbosλ+ = 1
4

(
λabΓab − 2λM

)
λ+ + c−2

2
λAaΓAaλ− ,

δbosλ− = 1
4

(
λabΓab + 2λM

)
ψµ+ + 1

2
λAaΓAaλ+ .

• Well-defined c→∞ limit.
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Non-Relativistic 10D,N = (1, 0) Supergravity from a limit The non-relativistic bosonic transformation rules
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Non-Relativistic 10D,N = (1, 0) Supergravity from a limit The non-relativistic bosonic transformation rules

The non-relativistic bosonic transformation rules

• After the limit τµA, eµa, bµν and the fermions transform under

(SO(1, 1)× SO(8)) n R16 ,

where:

� SO(1, 1) = longitudinal Lorentz transformations (parameters λAB)

� SO(8) = transversal spatial rotations (parameters λab)

� R16 = String Galilean boosts (parameters λAa)

δbosτµ
A =λM ε

A
Bτµ

B , δboseµ
a =λabeµ

b − λAaτµA ,

δbosbµν = − 2εABλ
A
aτ[µ

Beν]
a .

• Fermions ψµ±, λ± have characteristic non-relativistic boost transformations:

δψµ− = 1
2
λAaΓAaψµ+ , δψµ+ = 0 , δλ− = 1

2
λAaΓAaλ+ , δλ+ = 0 .
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Non-Relativistic 10D,N = (1, 0) Supergravity from a limit The appearance of String Newton-Cartan geometry

The appearance of String Newton-Cartan geometry

• (SO(1, 1)× SO(8)) n R16 = structure group of String Newton-Cartan geometry. (see e.g.,

Andringa, Bergshoeff, Gomis, de Roo; Bergshoeff, Gomis, JR, Şimşek, Yan; Bergshoeff, van Helden, Lahnsteiner, Romano, JR;

Bidussi, Harmark, Hartong, Obers, Oling)

• Metric structure of String Newton-Cartan geometry:

rank-2: τµν = τµ
Aτν

BηAB , rank-8: hµν = ea
µeb

νδab .

• bµν couples to non-relativistic string worldsheet via Wess-Zumino action

T

2

∫
d2σ εαβ ∂αX

µ ∂βX
ν bµν .

Similar to how central charge gauge field mµ of Newton-Cartan geometry couples to a
non-relativistic particle worldline: ∫

dτ Ẋµmµ .

• Newton-Cartan geometry: Newton potential = m0.

String Newton-Cartan geometry: Newton potential = b01.
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Non-Relativistic 10D,N = (1, 0) Supergravity from a limit The appearance of String Newton-Cartan geometry

The appearance of String Newton-Cartan geometry

• Metrics-compatible connection introduced via 3 spin connections:

ωµ (λM ) , ωµ
Aa (λAa) , ωµ

ab (λab) .

that obey generalized first Cartan structure equations
2 ∂[µτν]

A + 2 εAB ω[µ τν]
B = Tµν

A ,

2 ∂[µeν]
a + 2ω[µ

a
|b| eν]

b − 2ω[µ|A|
a τν]

A = Tµν
a ,

3 ∂[µbνρ] − 6 εAB ω[µ
A
aτν

Beρ]
a = T

(b)
µνρ .

Equations that contain ω-components express that ω-components depend on τµA, eµa,
bµν .

• Equations that do not contain ω-components→ intrinsic torsion. E.g.:

2ea
µeb

ν∂[µτν]
A = ea

µeb
νTµν

A ≡ TabA ,

2ea
µτ(A

ν∂[µτν]B) = ea
µτν(AT|µν|B) ≡ Ta(A ,B) .

See talk by Kevin van Helden.
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Non-Relativistic 10D,N = (1, 0) Supergravity from a limit The limit of the action

The limit of the action

• After plugging in the field redefinitions, the action S can generically can expanded as:

S = c2S(2) + S(0) + c−2S(−2) + c−4S(−4) , S(i) = S(i)[τ, e, b, φ, ψ±, λ±] .

Due to non-trivial cancellations (e.g. between Einstein-Hilbert term and kinetic term of
Bµν ), one finds

S(2) ≡ 0 .

• Limit of the action S(0) is invariant under δ(0)
bos:

δbosS = δ
(0)
bosS

(0) + c−2
(
δ
(0)
bosS

(−2) + δ
(−2)
bos S(0)

)
+O(c−4)

δbosS = 0 ⇒ δ
(0)
bosS

(0) = 0 .

In particular, S(0) is invariant under (SO(1, 1)× SO(8)) n R16.

Jan Rosseel, Ruder Bošković Institute Minimal Stringy Non-Relativistic Supergravity 10 / 22



Non-Relativistic 10D,N = (1, 0) Supergravity from a limit Emergent dilatations

Emergent dilatations

• S(0) is also invariant under an emergent dilatation symmetry: (Bergshoeff, Lahnsteiner, Romano, JR,

Şimşek)

δDτµ
A =λDτµ

A , δDφ =λD ,

δDψµ± = ± 1
2
λDψµ± , δDλ± = ± 1

2
λDλ± .

Target space equivalent of symmetry of worldsheet action of bosonic non-rel. string in
arbitrary String Newton-Cartan background. (Bergshoeff, Gomis, JR, Şimşek, Yan)

• Consequence: need to introduce dependent dilatation gauge field and change one of the
first Cartan structure equations to

2 ∂[µτν]
A + 2 εAB ω[µ τν]

B − 2 b[µτν]
A = Tµν

A .

TaA
A is no longer intrinsic. Dilatation covariant intrinsic torsion components

Tab
A and Ta{A ,B} .
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Non-Relativistic 10D,N = (1, 0) Supergravity from a limit The limit of the supersymmetry transformations

The limit of the supersymmetry transformations

• With Π±ε = c±1/2ε±, the expansion of the supersymmetry transformation rules is:

δQ = c2δ
(2)
Q + δ

(0)
Q + c−2δ

(−2)
Q .

δ
(0)
Q has the right structure for non-relativistic supersymmetry transformation rules.

Divergence δ(2)
Q is only non-zero when acting on the fermions:

δ
(2)
Q ψµ+ = 1

4
τµ

+Tab
−Γabε+ , δ

(2)
Q ψµ− = 1

4
τµ

+
(
Tab
−Γabε− + Ta+

−Γ−
aε+

)
,

δ
(2)
Q λ+ = 0 , δ

(2)
Q λ− = − 1

4
Tab
−Γab−ε+ ,

with {Tab−, Ta+
−} a subset of the dilatation covariant intrinsic torsion components.

• Presence of divergences has two consequences:

� Need for intrinsic torsion constraints to ensure supersymmetry invariance of S(0)

� Emergence of fermionic Stueckelberg symmetries
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Non-Relativistic 10D,N = (1, 0) Supergravity from a limit Intrinsic torsion constraints

Intrinsic torsion constraints

• S(0) is not automatically invariant under δ(0)
Q :

δQS = c2δ
(2)
Q S(0) +

(
δ
(0)
Q S(0) + δ

(2)
Q S(−2)

)
+O(c−2)

δQS = 0 ⇒ δ
(0)
Q S(0) = −δ(2)

Q S(−2) .

Note however that all terms in δ(2)
Q S(−2) are proportional to Ta+

−, Tab−.

⇒ S(0) is invariant under non-rel. supersymmetry δ(0)
Q if

Ta+
− = 0 , and Tab

− = 0 ⇔ τ[µ
−∂ντρ]

− = 0 .

• Can be imposed in a supersymmetric way since

δ
(0)
Q τµ

− = 0 ⇒

δ
(0)
Q Ta+

− = 0

δ
(0)
Q Tab

− = 0
.

• Also ensures that the commutator of two δ(0)
Q transformations on τµA properly closes.
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Non-Relativistic 10D,N = (1, 0) Supergravity from a limit Emergent fermionic Stueckelberg symmetries

Emergent fermionic Stueckelberg symmetries

• Note that S(0) is invariant under δ(2)
Q , before imposing the intrinsic torsion constraints:

δQS = c2δ
(2)
Q S(0) +

(
δ
(0)
Q S(0) + δ

(2)
Q S(−2)

)
+O(c−2)

δQS = 0 ⇒ δ
(2)
Q S(0) = 0 .

Structure of δ(2)
Q suggests invariance of S(0) under the following fermionic S- and

T -symmetries:

δSψµ+ = 1
2
τµ

+Γ+η− , δSλ− = η− ,

δTψµ− = τµ
+ρ− .

• The commutator of the S-symmetry with δ(0)
Q contains the dilatation symmetry.

• The non-relativistic action S(0) is thus invariant under 3 extra symmetries that are
emergent and were not present in the relativistic starting point.
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Non-Relativistic 10D,N = (1, 0) Supergravity from a limit Multiplet shortening

Multiplet shortening

• One can redefine the non-relativistic fields {τµA, eµa, bµν , φ, ψµ±, λ±} to
{τ̃µA, eµa, bµν , φ, ψ̃µ+, ψ̃−, ψ̃µ−, λ̃±} via

τ̃µ
A ≡ e−φτµ

A , ψ̃µ+ ≡ e−φ/2
(
ψµ+ − 1

2
τµ

+Γ+λ−
)
, ψ̃− ≡ e3φ/2τ+

µψµ− ,

ψ̃µ− ≡ eφ/2
(
ψµ− − τµ+ψ̃−

)
, λ̃± = e∓φ/2λ± .

• These redefined fields can be divided in two sets:

� {τ̃µA, eµa, bµν , ψ̃µ+, ψ̃µ−, λ̃+}: invariant under the dilatation, S- and
T -symmetries.

� {φ, ψ̃−, λ̃−}: transform as Stueckelberg fields under the dilatation, S- and
T -symmetries:

δφ = λD , δψ̃− = e3φ/2ρ− , δλ̃− = eφ/2η− .

• Invariance of S(0) under δD , δS and δT implies that φ, ψ̃− and λ̃− do not occur in it.

⇒ S(0) is an action for a shortened multiplet {τ̃µA, eµa, bµν , ψ̃µ+, ψ̃µ−, λ̃+}.
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Non-Relativistic 10D,N = (1, 0) Supergravity from a limit Field equations

Field equations

Summary

� Shortened multiplet: {τ̃µA, eµa, bµν , ψ̃µ+, ψ̃µ−, λ̃+}
� Pseudo-action S(0)[τ̃ , e, b, ψ̃±, λ̃+] to be supplemented with intrinsic tor-

sion constraints:

ea
µτ̃+

ν∂[µτ̃ν]
− = 0 , ea

µeb
ν∂[µτ̃ν]

− = 0 .

• The field equations derived from S(0) can be obtained by taking the non-relativistic limit
of the relativistic field equations.

• However: multiplet shortening⇒ less independent field equations coming from S(0)

than there are relativistic ones.

• 2 fermionic and 1 bosonic equations of motion for the Stueckelberg fields φ, ψ̃− and λ̃−
missing.

Jan Rosseel, Ruder Bošković Institute Minimal Stringy Non-Relativistic Supergravity 16 / 22



Non-Relativistic 10D,N = (1, 0) Supergravity from a limit Field equations

Field equations

• It is possible to take the non-relativistic limit of the field equations directly, such that one
ends up with as many independent field equations for τµA, eµa, bµν , φ, ψµ±, λ± as in
the relativistic parent theory.

• The limit of the field equations taken in this direct way consists of those derived from
S(0), as well as 1 bosonic and 2 fermionic ‘missing’ non-relativistic equations of motion.

• The full set of field equations is
� dilatation covariant
� covariant under the S- and T -symmetries
� supersymmetric upon imposing the intrinsic torsion constraints Tab− = 0 = Ta+

−.

• The linearization of the missing bosonic equation of motion contains:

∂a∂
ab01 + · · · = 0 .

⇒ covariant generalization of the Poisson equation.
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The longitudinal T-duality viewpoint The longitudinal T-duality viewpoint

The longitudinal T-duality viewpoint

• Longitudinal T-duality: non-relativistic string theory on a spatial longitudinal circle is
dual to relativistic string theory compactified on a null direction.

• From the supergravity point of view: reduction of non-relativistic 10D,N = (1, 0)
supergravity = reduction of relativistic 10D,N = (1, 0) supergravity along a null Killing
vector (Bergshoeff, Lahnsteiner, Romano, JR)

A B

C

T
(τµ

A, eµ
a, bµν , φ)

with τ[µ
−∂ντρ]

− = 0

(Ẽµ
Â, B̃µν , Φ̃)

with ∂[µ(G̃ν]z + B̃ν]z) = 0

Newton-Cartan geometry (τi, ei
a, mi) + matter (φ, ni, mij)

with ∂[iτj] = −∂[inj]

9D

10D

reduction along spatial

longitudinal direction z
reduction along lightlike direction z
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The longitudinal T-duality viewpoint The longitudinal T-duality viewpoint

The longitudinal T-duality viewpoint

• Note:

τ[µ
−∂ντρ]

− = 0
T←−−→ ∂[µ(G̃ν]z + B̃ν]z) = 0 .

• The non-relativistic 10D,N = (1, 0) multiplet is shortened. What about the T-dual side?

• Since z is a null direction, one has G̃zz = 0. Not supersymmetric! Supersymmetric set
of constraints:

G̃zz = 0 , Ψ̃z = 0 , ∂[µ(G̃ν]z + B̃ν]z) = 0 .

• Multiplet shortening on both sides of the duality:

Non-Rel. Rel. with null Killing vector

1 : δD G̃zz = 0 ,

8 + 8 : δS + δT Ψ̃z = 0 ,

36 : τ[µ
−∂ντρ]

− = 0 , ∂[µ(G̃ν]z + B̃ν]z) = 0 .
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The longitudinal T-duality viewpoint Half-supersymmetric solutions

Half-supersymmetric solutions

• Longitudinal T-duality can be used to generate solutions of non-rel. supergravity from
those of rel. supergravity that satisfy the necessary constraints.

• Example 1: pp-wave, corresponding to state with winding w = 0, momentum n = 1

ds̃2pp = −2 dt(dz +K dt) + dz2
(8) , B̃ = 0 , eΦ̃ = gs ,

dualizes to a non-rel. fundamental string solution:

ds2τ = −dt2 + dz2 , ds2e = dz2
(8) , b = K dt ∧ dz , eφ = gs ,

corresponding to state with w = 1 and n = 0 and dispersion relation E ∝ kaka.

• From 9D point of view: flat Newton-Cartan geometry with Newton potential mt = K,
sourced by massive particle.

Jan Rosseel, Ruder Bošković Institute Minimal Stringy Non-Relativistic Supergravity 20 / 22



The longitudinal T-duality viewpoint Half-supersymmetric solutions

Half-supersymmetric solutions

• Example 2: rel. fundamental string, corresponding to state with w = 1, n = 0

ds̃2F1 = −2H−1dtdz + dz2
(8) , B̃ = (H−1 − 1) dt ∧ dz , eΦ̃ = gsH

−1/2 ,

dualizes to ‘unwound’ string solution with w = 0, n = 1

ds2τ = −H−2 dt2 +
(
dz + (H−1 − 1)dt

)2
, ds2e = dz2

(8) , eφ = gsH
−1/2 .

• Note that the rel. anti-fundamental string does not satisfy the constraint
∂[µ(G̃ν]z + B̃ν]z) = 0!

• Can also be applied to obtain non-relativistic NS5-brane and KK5-monopole solutions
from their relativistic counterparts.
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Outlook

Outlook

• Minimal 10D supergravity can be constructed via a stringy non-relativistic limit.

• Interesting features that regularize the limit

� emergent dilatation and fermionic shift symmetries

� supersymmetric set of intrinsic torsion constraints

• Result consistent with what one expects from longitudinal T-duality.

• Outlook:

� inclusion of Yang-Mills multiplet

� type II non-relativistic supergravity (see talk by U. Zorba)

� 11D non-relativistic supergravity (see talk by J. Lahnsteiner)

� stringy non-relativistic expansions (see talks by J. Musaeus and E. Have)

� DFT techniques (see talk by K. Morand)

� solutions?

� ...
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