Minimal Stringy Non-Relativistic Supergravity 08-05-2023, Non-Relativistic Strings and Beyond, Nordita

Jan Rosseel, Ruđer Bošković Institute

Mostly based on work with E. Bergshoeff, J. Lahnsteiner, L. Romano, C. Şimşek: arXiv:2107.14636 E. Bergshoeff, J. Lahnsteiner, L. Romano: arXiv:2204.04089

 $\mathbf{A} \equiv \mathbf{A} + \mathbf{A} \mathbf{B} + \mathbf{A} \equiv \mathbf{A} + \mathbf{A} \equiv \mathbf{A}$

Introduction

- Motivational question: What is the gravitational effective field theory description of non-relativistic string theory? (Gomis, Ooguri; Danielsson, Guijosa, Kruczenski)
- Addressed bosonically via worldsheet theory β -function calculations. (Gomis, Oh, Yan, Yu) Gravitational field theory with underlying String Newton-Cartan geometry. (see e.g., Andringa, Bergshoeff, Gomis, de Roo; Bergshoeff, Gomis, JR, Simsek, Yan; Bergshoeff, van Helden, Lahnsteiner, Romano, JR; Bidussi, Harmark, Hartong, Obers, Oling)
- Alternative approaches:
	- \diamond Non-relativistic limit (Bergshoeff, Lahnsteiner, Romano, JR, Şimşek)
	- \Diamond Non-Riemannian backgrounds in Double Field Theory (e.g.; Gallegos, Gürsoy, Verma, Zinnato; Morand, Park; Cho, Park; Park, Sugimoto; Ko, Melby-Thompson, Meyer, Park; Berman, Blair, Otsuki; Blair, Oling, Park)
	- \Diamond Strings in Torsional Newton-Cartan backgrounds (Harmark, Hartong, Menculini, Obers, Oling Yan; Gallegos, Gürsoy, Zinnato)
- To discuss non-relativistic superstrings, need to construct non-relativistic supergravity theories.

Introduction

- Not so much work done yet on non-relativistic supergravity. Mostly in $3D$ for theories with underlying Newton-Cartan geometry:
	- \Diamond gauging of 3D, $\mathcal{N} = 2$ super-Bargmann algebra (Andringa, Bergshoeff, Sezgin, JR)
	- \Diamond superconformal tensor calculus methods (Bergshoeff, JR, Zojer)
	- Chern-Simons supergravity (Bergshoeff, JR; Ozdemir, Ozkan, Tunca, Zorba; Concha, Ipinza, Ravera, Rodriguez)
	- \Diamond via non-relativistic limit (Bergshoeff, JR, Zojer)
- Goal of this talk: obtain non-relativistic supergravity in $10D$, for non-relativistic string theory.
- Method used: careful taking of a non-relativistic limit:
	- \Diamond does not rely on tricks that only work in specific dimensions
	- \Diamond closely related to β -function results
- Starting point: relativistic $10D, \mathcal{N} = (1, 0)$ supergravity. Simplest case common to all superstring theories. $\mathbf{A} \cap \mathbf{B} \rightarrow \mathbf{A} \oplus \mathbf{B} \rightarrow \mathbf{A} \oplus \mathbf{B} \rightarrow \mathbf{B} \oplus \mathbf{B}$ 2990

Relativistic 10D, $\mathcal{N} = (1, 0)$ Supergravity

• Relativistic $10D, \mathcal{N} = (1, 0)$ supergravity: (Bergshoeff, de Roo, de Wit, van Nieuwenhuizen; Chamseddine)

Field content

- \triangleright Bosonic: Vielbein $E_{\mu}{}^{\hat{A}}$, Kalb-Ramond two-form $B_{\mu\nu}$, dilaton Φ
- Fermionic: gravitino Ψ_{μ} (left-handed Majorana-Weyl), dilatino λ (right-handed Majorana-Weyl)
- \Diamond Symmetries:
	- \triangleright local SO(1, 9) Lorentz transformations with parameter $\Lambda^{\hat{A}\hat{B}}$ $(\hat{A}, \hat{B} = 0, 1, \dots, 9)$
	- \triangleright one-form gauge symmetry $\delta B_{\mu\nu} = 2 \partial_{[\mu} \Theta_{\nu]}$
	- local supersymmetry with parameter ε (left-handed Majorana-Weyl)

K ロ ト K 個 ト K 差 ト K 差 ト ニ 差

The non-relativistic limit

• Starting point for the non-rel. limit:

 $\hat{A} \rightarrow A = 0, 1$ or $+,-$ (longitudinal) and $a = 2, 3, \dots, 10$ (transversal) and the invertible field redefinitions

$$
E_{\mu}{}^{A} = c \tau_{\mu}{}^{A} \quad (E_{A}{}^{\mu} = c^{-1} \tau_{A}{}^{\mu}), \qquad E_{\mu}{}^{a} = e_{\mu}{}^{a} \quad (E_{a}{}^{\mu} = e_{a}{}^{\mu}),
$$

\n
$$
\Phi = \phi + \log(c), \qquad B_{\mu\nu} = -c^{2} \epsilon_{AB} \tau_{\mu}{}^{A} \tau_{\nu}{}^{B} + b_{\mu\nu},
$$

\n
$$
\Pi_{\pm} \Psi_{\mu} = c^{\pm 1/2} \psi_{\mu \pm}, \qquad \Pi_{\pm} \lambda = c^{\pm 1/2} \lambda_{\pm} \quad \text{with} \quad \Pi_{\pm} = \frac{1}{2} \left(\mathbb{1} \pm \Gamma_{01} \right).
$$

• Limit of any quantity (action, equations of motion, symmetry transformation rules):

- \Diamond Apply field redefinition and expand in powers of c^{-2}
- \Diamond Limit = leading order term in this expansion

 $\mathbf{A} \equiv \mathbf{A} + \mathbf{A} \mathbf{B} + \mathbf{A} \mathbf{B} + \mathbf{A} \mathbf{B} + \mathbf{A} \mathbf{B}$

The non-relativistic bosonic transformation rules

• Plugging the field redefinitions, along with

$$
\Lambda^{AB} = \lambda_M \epsilon^{AB} , \qquad \Lambda^{Aa} = c^{-1} \lambda^{Aa} , \qquad \Lambda^{ab} = \lambda^{ab} , \qquad \Theta_{\mu} = \theta_{\mu} ,
$$

in the bosonic transformation rules, one finds the expansion

$$
\delta_{\rm bos} = \delta_{\rm bos}^{(0)} + c^{-2} \delta_{\rm bos}^{(-2)}.
$$

In particular

$$
\begin{aligned} &\delta_{\rm bos}\tau_{\mu}{}^{A}=\lambda_{M}\epsilon^{A}{}_{B}\tau_{\mu}{}^{B}+c^{-2}\lambda^{A}{}_{a}e_{\mu}{}^{a}\,,\qquad\qquad\delta_{\rm bos}e_{\mu}{}^{a}=\lambda^{a}{}_{b}e_{\mu}{}^{b}-\lambda_{A}{}^{a}\tau_{\mu}{}^{A}\,,\\ &\delta_{\rm bos}b_{\mu\nu}=2\partial_{[\mu}\theta_{\nu]}-2\epsilon_{AB}\lambda^{A}{}_{a}\tau_{[\mu}{}^{B}e_{\nu]}{}^{a}\,,\qquad\qquad\delta_{\rm bos}\phi=0\,,\\ &\delta_{\rm bos}\psi_{\mu+}=\tfrac{1}{4}\left(\lambda^{ab}\Gamma_{ab}-2\lambda_{M}\right)\psi_{\mu+}+\tfrac{c^{-2}}{2}\lambda^{Aa}\Gamma_{Aa}\psi_{\mu-}\,,\\ &\delta_{\rm bos}\psi_{\mu-}=\tfrac{1}{4}\left(\lambda^{ab}\Gamma_{ab}+2\lambda_{M}\right)\psi_{\mu-}+\tfrac{1}{2}\lambda^{Aa}\Gamma_{Aa}\psi_{\mu+}\,,\\ &\delta_{\rm bos}\lambda_{+}=\tfrac{1}{4}\left(\lambda^{ab}\Gamma_{ab}-2\lambda_{M}\right)\lambda_{+}+\tfrac{c^{-2}}{2}\lambda^{Aa}\Gamma_{Aa}\lambda_{-}\,,\\ &\delta_{\rm bos}\lambda_{-}=\tfrac{1}{4}\left(\lambda^{ab}\Gamma_{ab}+2\lambda_{M}\right)\psi_{\mu+}+\tfrac{1}{2}\lambda^{Aa}\Gamma_{Aa}\lambda_{+}\,. \end{aligned}
$$

• Well-defined $c \to \infty$ limit.

 \equiv

イロト イ団 トイモ トイモト

The non-relativistic bosonic transformation rules

• Plugging the field redefinitions, along with

$$
\Lambda^{AB} = \lambda_M \epsilon^{AB} \,, \qquad \Lambda^{Aa} = c^{-1} \lambda^{Aa} \,, \qquad \Lambda^{ab} = \lambda^{ab} \,, \qquad \Theta_\mu = \theta_\mu \,,
$$

in the bosonic transformation rules, one finds the expansion

$$
\delta_{\rm bos} = \delta_{\rm bos}^{(0)} + c^{-2} \delta_{\rm bos}^{(-2)}.
$$

In particular

$$
\begin{array}{ll} \delta_{\rm bos}^{(0)} \tau_{\mu}{}^{A}=\lambda_{M} \epsilon^{A}{}_{B} \tau_{\mu}{}^{B}\,, & \delta_{\rm bos}^{(0)} e_{\mu}{}^{a}=\lambda^{a}{}_{b} e_{\mu}{}^{b}-\lambda_{A}{}^{a} \tau_{\mu}{}^{A}\,, \\ \delta_{\rm bos}^{(0)} b_{\mu\nu} = 2 \partial_{[\mu} \theta_{\nu]}-2 \epsilon_{AB} \lambda^{A}{}_{a} \tau_{[\mu}{}^{B} e_{\nu]}{}^{a}\,, & \delta_{\rm bos}^{(0)} \phi = 0\,, \\ \delta_{\rm bos}^{(0)} \psi_{\mu+} = \frac{1}{4}\left(\lambda^{ab} \Gamma_{ab}-2\lambda_{M}\right) \psi_{\mu+}\,, & \\ \delta_{\rm bos}^{(0)} \psi_{\mu-} = \frac{1}{4}\left(\lambda^{ab} \Gamma_{ab}+2\lambda_{M}\right) \psi_{\mu-} + \frac{1}{2}\lambda^{Aa} \Gamma_{Aa} \psi_{\mu+}\,, & \\ \delta_{\rm bos}^{(0)} \lambda_{+} = \frac{1}{4}\left(\lambda^{ab} \Gamma_{ab}-2\lambda_{M}\right) \lambda_{+}\,, & \\ \delta_{\rm bos}^{(0)} \lambda_{-} = \frac{1}{4}\left(\lambda^{ab} \Gamma_{ab}+2\lambda_{M}\right) \psi_{\mu+} + \frac{1}{2}\lambda^{Aa} \Gamma_{Aa} \lambda_{+}\,. & \end{array}
$$

• Well-defined $c \to \infty$ limit.

 \equiv

イロト イ団 トイモ トイモト

The non-relativistic bosonic transformation rules

• After the limit τ_{μ}^A , e_{μ}^a , $b_{\mu\nu}$ and the fermions transform under

$$
(\mathrm{SO}(1,1)\times\mathrm{SO}(8))\ltimes\mathbb{R}^{16}\,,
$$

where:

- \Diamond SO(1, 1) = longitudinal Lorentz transformations (parameters λ^{AB})
- \Diamond SO(8) = transversal spatial rotations (parameters λ^{ab})
- $\Diamond \mathbb{R}^{16}$ = String Galilean boosts (parameters λ^{Aa})

$$
\begin{aligned} \delta_\text{bos}\tau_\mu{}^A&=\lambda_M\epsilon^A{}_B\tau_\mu{}^B\,,\qquad \ \ \delta_\text{bos}e_\mu{}^a=\lambda^a{}_b e_\mu{}^b-\lambda_A{}^a\tau_\mu{}^A\,,\\ \delta_\text{bos}b_{\mu\nu}&=-\,2\epsilon_{AB}\lambda^A{}_a\tau_{[\mu}{}^B e_{\nu]}{}^a\,. \end{aligned}
$$

• Fermions $\psi_{\mu\pm}$, λ_{\pm} have characteristic non-relativistic boost transformations:

$$
\delta \psi_{\mu -} = \tfrac{1}{2} \lambda^{Aa} \Gamma_{Aa} \psi_{\mu +} \,, \qquad \delta \psi_{\mu +} = 0 \,, \qquad \delta \lambda_{-} = \tfrac{1}{2} \lambda^{Aa} \Gamma_{Aa} \lambda_{+} \,, \qquad \delta \lambda_{+} = 0 \,.
$$

イロトメ 御 メメ ミトメ 急 メーモー

The appearance of String Newton-Cartan geometry

- $(SO(1, 1) \times SO(8)) \ltimes \mathbb{R}^{16} =$ structure group of String Newton-Cartan geometry. (see e.g., Andringa, Bergshoeff, Gomis, de Roo; Bergshoeff, Gomis, JR, Simsek, Yan; Bergshoeff, van Helden, Lahnsteiner, Romano, JR; Bidussi, Harmark, Hartong, Obers, Oling)
- Metric structure of String Newton-Cartan geometry:

rank-2:
$$
\tau_{\mu\nu} = \tau_{\mu}{}^{A} \tau_{\nu}{}^{B} \eta_{AB}
$$
,
rank-8: $h^{\mu\nu} = e_{a}{}^{\mu} e_{b}{}^{\nu} \delta^{ab}$.

• $b_{\mu\nu}$ couples to non-relativistic string worldsheet via Wess-Zumino action

$$
\frac{T}{2}\int\mathrm{d}^2\sigma\,\epsilon^{\alpha\beta}\,\partial_{\alpha}X^{\mu}\,\partial_{\beta}X^{\nu}\,b_{\mu\nu}\,.
$$

Similar to how central charge gauge field m_{μ} of Newton-Cartan geometry couples to a non-relativistic particle worldline:

$$
\int {\rm d}\tau\, \dot{X}^\mu\, m_\mu\, .
$$

• Newton-Cartan geometry: Newton potential $= m_0$.

String Newton-Cartan geometry: Newton potential = b_{01} [.](#page-7-0)

The appearance of String Newton-Cartan geometry

• Metrics-compatible connection introduced via 3 spin connections:

$$
\omega_{\mu} \ \left(\lambda_M\right), \qquad \qquad \omega_{\mu}{}^{Aa} \ \left(\lambda^{Aa}\right), \qquad \qquad \omega_{\mu}{}^{ab} \ \left(\lambda^{ab}\right).
$$

that obey generalized first Cartan structure equations

$$
\begin{cases} 2\,\partial_{[\mu}\tau_{\nu]}{}^A + 2\,\epsilon^A{}_B\,\omega_{[\mu}\,\tau_{\nu]}{}^B = T_{\mu\nu}{}^A\,,\\ 2\,\partial_{[\mu}e_{\nu]}{}^a + 2\,\omega_{[\mu}{}^a{}_{|b|}\,e_{\nu]}{}^b - 2\,\omega_{[\mu|A|}{}^a\,\tau_{\nu]}{}^A = T_{\mu\nu}{}^a\,,\\ 3\,\partial_{[\mu}b_{\nu\rho]} - 6\,\epsilon_{AB}\,\omega_{[\mu}{}^A{}_a\tau_{\nu}{}^B e_{\rho]}{}^a = T_{\mu\nu\rho}^{(b)}\,. \end{cases}
$$

Equations that contain ω -components express that ω -components depend on $\tau_{\mu}{}^{A}$, $e_{\mu}{}^{a}$, $b_{\mu\nu}$.

• Equations that do not contain ω -components \rightarrow intrinsic torsion. E.g.:

$$
2e_{a}{}^{\mu}e_{b}{}^{\nu}\partial_{[\mu}\tau_{\nu]}{}^{A}=e_{a}{}^{\mu}e_{b}{}^{\nu}T_{\mu\nu}{}^{A}\equiv T_{ab}{}^{A}\,,
$$

$$
2e_{a}{}^{\mu}\tau_{(A}{}^{\nu}\partial_{[\mu}\tau_{\nu]B})=e_{a}{}^{\mu}\tau_{(A}^{\nu}T_{|\mu\nu|B)}\equiv T_{a(A\,,B)}\,.
$$

See talk by Kevin van Helden.

The limit of the action

• After plugging in the field redefinitions, the action S can generically can expanded as:

$$
S = c2 S(2) + S(0) + c-2 S(-2) + c-4 S(-4), S(i) = S(i) [\tau, e, b, \phi, \psi_{\pm}, \lambda_{\pm}].
$$

Due to non-trivial cancellations (e.g. between Einstein-Hilbert term and kinetic term of $B_{\mu\nu}$), one finds

$$
S^{(2)}\equiv 0\,.
$$

• Limit of the action $S^{(0)}$ is invariant under $\delta^{(0)}_{\text{bos}}$:

$$
\delta_{\text{bos}} S = \delta_{\text{bos}}^{(0)} S^{(0)} + c^{-2} \left(\delta_{\text{bos}}^{(0)} S^{(-2)} + \delta_{\text{bos}}^{(-2)} S^{(0)} \right) + \mathcal{O}(c^{-4})
$$

$$
\delta_{\text{bos}} S = 0 \qquad \Rightarrow \qquad \delta_{\text{bos}}^{(0)} S^{(0)} = 0.
$$

In particular, $S^{(0)}$ is invariant under $(SO(1, 1) \times SO(8)) \ltimes \mathbb{R}^{16}$.

E

イロト イ団 トイモト イモド

Emergent dilatations

• $S^{(0)}$ is also invariant under an emergent dilatation symmetry: (Bergshoeff, Lahnsteiner, Romano, JR, Simsek)

$$
\begin{array}{ll} \delta_D\tau_\mu{}^A=\lambda_D\tau_\mu{}^A\,, & \delta_D\phi=\lambda_D\,,\\[1ex] \delta_D\psi_{\mu\pm}=\pm\,\frac{1}{2}\lambda_D\psi_{\mu\pm}\,, & \delta_D\lambda_\pm=\pm\,\frac{1}{2}\lambda_D\lambda_\pm\,. \end{array}
$$

Target space equivalent of symmetry of worldsheet action of bosonic non-rel. string in arbitrary String Newton-Cartan background. (Bergshoeff, Gomis, JR, Şimşek, Yan)

• Consequence: need to introduce dependent dilatation gauge field and change one of the first Cartan structure equations to

$$
2\,\partial_{\lbrack \mu}\tau_{\nu]}{}^A + 2\,\epsilon^A{}_B\,\omega_{\lbrack \mu}\,\tau_{\nu]}{}^B - 2\,b_{\lbrack \mu}\tau_{\nu]}{}^A = T_{\mu\nu}{}^A\,.
$$

 $T_{aA}{}^A$ is no longer intrinsic. Dilatation covariant intrinsic torsion components

$$
T_{ab}{}^A \qquad \qquad \text{and} \qquad \qquad T_{a\{A\},B\}} \ .
$$

 $\mathbf{A} \cap \mathbf{B} \rightarrow \mathbf{A} \oplus \mathbf{B} \rightarrow \mathbf{A} \oplus \mathbf{B} \rightarrow \mathbf{B} \oplus \mathbf{B}$

The limit of the supersymmetry transformations

• With $\Pi_{\pm} \varepsilon = c^{\pm 1/2} \epsilon_{\pm}$, the expansion of the supersymmetry transformation rules is:

$$
\delta_Q = c^2 \delta_Q^{(2)} + \delta_Q^{(0)} + c^{-2} \delta_Q^{(-2)} \, .
$$

 $\delta_Q^{(0)}$ has the right structure for non-relativistic supersymmetry transformation rules. Divergence $\delta_Q^{(2)}$ is only non-zero when acting on the fermions:

$$
\delta_Q^{(2)} \psi_{\mu+} = \frac{1}{4} \tau_{\mu} + T_{ab} - \Gamma^{ab} \epsilon_+, \qquad \delta_Q^{(2)} \psi_{\mu-} = \frac{1}{4} \tau_{\mu} + (T_{ab} - \Gamma^{ab} \epsilon_- + T_{a+} - \Gamma_-^a \epsilon_+),
$$

$$
\delta_Q^{(2)} \lambda_+ = 0, \qquad \qquad \delta_Q^{(2)} \lambda_- = -\frac{1}{4} T_{ab} - \Gamma^{ab}{}_{-} \epsilon_+,
$$

with $\{T_{ab}^-, T_{a+}^-\}$ a subset of the dilatation covariant intrinsic torsion components.

- Presence of divergences has two consequences:
	- \Diamond Need for intrinsic torsion constraints to ensure supersymmetry invariance of $S^{(0)}$
	- Emergence of fermionic Stueckelberg symmetries

KO KKØRKERKER E 1990

Intrinsic torsion constraints

• $S^{(0)}$ is not automatically invariant under $\delta_Q^{(0)}$:

$$
\delta_Q S = c^2 \delta_Q^{(2)} S^{(0)} + \left(\delta_Q^{(0)} S^{(0)} + \delta_Q^{(2)} S^{(-2)} \right) + \mathcal{O}(c^{-2})
$$

$$
\delta_Q S = 0 \qquad \Rightarrow \qquad \delta_Q^{(0)} S^{(0)} = -\delta_Q^{(2)} S^{(-2)}.
$$

Note however that all terms in $\delta_Q^{(2)} S^{(-2)}$ are proportional to T_{a+} , T_{ab} , \Rightarrow S⁽⁰⁾ is invariant under non-rel. supersymmetry $\delta_Q^{(0)}$ if

$$
T_{a+}^{-} = 0
$$
, and $T_{ab}^{-} = 0$ \Leftrightarrow $\tau_{\lbrack \mu}^{-} \partial_{\nu} \tau_{\rho \rbrack}^{^-} = 0$.

• Can be imposed in a supersymmetric way since

$$
\delta_Q^{(0)} \tau_\mu{}^-=0 \qquad \qquad \Rightarrow \qquad \begin{cases} \delta_Q^{(0)} T_{a+}{}^-=0 \\ \delta_Q^{(0)} T_{ab}{}^-=0 \end{cases}
$$

• Also e[ns](#page-14-0)ures that the commutator [o](#page-12-0)f tw[o](#page-14-0) $\delta_Q^{(0)}$ transform[atio](#page-12-0)[n](#page-13-0)s on $\tau_\mu{}^A$ [pr](#page-13-0)o[pe](#page-2-0)[r](#page-3-0)[ly](#page-17-0) [clo](#page-0-0)[ses.](#page-22-0)

.

Emergent fermionic Stueckelberg symmetries

• Note that $S^{(0)}$ is invariant under $\delta_Q^{(2)}$, before imposing the intrinsic torsion constraints:

$$
\delta_Q S = c^2 \delta_Q^{(2)} S^{(0)} + \left(\delta_Q^{(0)} S^{(0)} + \delta_Q^{(2)} S^{(-2)} \right) + \mathcal{O}(c^{-2})
$$

$$
\delta_Q S = 0 \qquad \Rightarrow \qquad \delta_Q^{(2)} S^{(0)} = 0.
$$

Structure of $\delta_Q^{(2)}$ suggests invariance of $S^{(0)}$ under the following fermionic S- and T-symmetries:

$$
\begin{split} \delta_S\psi_{\mu+} &= \tfrac{1}{2}\tau_\mu{}^+\Gamma_+\eta_-\,,\qquad\qquad\qquad \delta_S\lambda_- = \eta_-\,,\\ \delta_T\psi_{\mu-} &= \tau_\mu{}^+\rho_-\,. \end{split}
$$

- The commutator of the S-symmetry with $\delta_Q^{(0)}$ contains the dilatation symmetry.
- The non-relativistic action $S^{(0)}$ is thus invariant under 3 extra symmetries that are emergent and were not present in the relativistic starting point.

Multiplet shortening

• One can redefine the non-relativistic fields $\{\tau_{\mu}{}^{A}, e_{\mu}{}^{a}, b_{\mu\nu}, \phi, \psi_{\mu\pm}, \lambda_{\pm}\}\$ to $\{\tilde\tau_\mu{}^A, e_\mu{}^a, b_{\mu\nu}, \phi, \tilde\psi_{\mu+}, \tilde\psi_-,\tilde\psi_{\mu-}, \tilde\lambda_\pm\}$ via

$$
\begin{split} \tilde{\tau}_{\mu}{}^{A} & \equiv \mathrm{e}^{-\phi} \tau_{\mu}{}^{A} \,, \quad \tilde{\psi}_{\mu+} \equiv \mathrm{e}^{-\phi/2} \left(\psi_{\mu+} - \tfrac{1}{2} \tau_{\mu}{}^{+} \Gamma_{+} \lambda_{-} \right) \,, \quad \tilde{\psi}_{-} \equiv \mathrm{e}^{3\phi/2} \tau_{+}{}^{\mu} \psi_{\mu-} \,, \\ \tilde{\psi}_{\mu-} & \equiv \mathrm{e}^{\phi/2} \left(\psi_{\mu-} - \tau_{\mu}{}^{+} \tilde{\psi}_{-} \right) \,, \qquad \qquad \tilde{\lambda}_{\pm} = \mathrm{e}^{\mp\phi/2} \lambda_{\pm} \,. \end{split}
$$

- These redefined fields can be divided in two sets:
	- $\Diamond \{\tilde{\tau}_{\mu}{}^{A}, e_{\mu}{}^{a}, b_{\mu\nu}, \tilde{\psi}_{\mu+}, \tilde{\psi}_{\mu-}, \tilde{\lambda}_{+}\}$: invariant under the dilatation, S- and T-symmetries.
	- \diamond { ϕ , $\tilde{\psi}$ −, $\tilde{\lambda}$ −}: transform as Stueckelberg fields under the dilatation, S- and T-symmetries:

$$
\delta \phi = \lambda_D \,, \qquad \qquad \delta \tilde{\psi}_- = \mathrm{e}^{3\phi/2} \rho_-\,, \qquad \qquad \delta \tilde{\lambda}_- = \mathrm{e}^{\phi/2} \eta_-\,.
$$

• Invariance of $S^{(0)}$ under δ_D , δ_S and δ_T implies that ϕ , $\tilde{\psi}$ and $\tilde{\lambda}$ do not occur in it. $\Rightarrow S^{(0)}$ is an action for a shortened multiplet $\{\tilde{\tau}_{\mu}{}^{A}, e_{\mu}{}^{a}, b_{\mu\nu}, \tilde{\psi}_{\mu+}, \tilde{\psi}_{\mu-}, \tilde{\lambda}_{+}\}.$

Field equations

Summary

- \diamond Shortened multiplet: $\{\tilde{\tau}_{\mu}{}^{A}, e_{\mu}{}^{a}, b_{\mu\nu}, \tilde{\psi}_{\mu+}, \tilde{\psi}_{\mu-}, \tilde{\lambda}_{+}\}$
- \Diamond Pseudo-action $S^{(0)}[\tilde{\tau}, e, b, \tilde{\psi}_{\pm}, \tilde{\lambda}_{+}]$ to be supplemented with intrinsic torsion constraints:

$$
e_a{}^\mu {\tilde\tau}_+{}^\nu \partial_{[\mu} {\tilde\tau}_{\nu]}{}^-=0\,,\qquad \qquad e_a{}^\mu e_b{}^\nu \partial_{[\mu} {\tilde\tau}_{\nu]}{}^-=0\,.
$$

- The field equations derived from $S^{(0)}$ can be obtained by taking the non-relativistic limit of the relativistic field equations.
- However: multiplet shortening \Rightarrow less independent field equations coming from $S^{(0)}$ than there are relativistic ones.
- 2 fermionic and 1 bosonic equations of motion for the Stueckelberg fields ϕ , $\tilde{\psi}_-$ and $\tilde{\lambda}_$ missing.

Field equations

- It is possible to take the non-relativistic limit of the field equations directly, such that one ends up with as many independent field equations for $\tau_{\mu}{}^{A}$, $e_{\mu}{}^{a}$, $b_{\mu\nu}$, ϕ , $\psi_{\mu\pm}$, λ_{\pm} as in the relativistic parent theory.
- The limit of the field equations taken in this direct way consists of those derived from $S^{(0)}$, as well as 1 bosonic and 2 fermionic 'missing' non-relativistic equations of motion.
- The full set of field equations is
	- \Diamond dilatation covariant
	- \Diamond covariant under the S- and T-symmetries
	- \circ supersymmetric upon imposing the intrinsic torsion constraints $T_{ab}^{\dagger} = 0 = T_{a+}^{\dagger}$.
- The linearization of the missing bosonic equation of motion contains:

$$
\partial_a \partial^a b_{01} + \cdots = 0 \, .
$$

 \Rightarrow covariant generalization of the Poisson equation.

The longitudinal T-duality viewpoint

- Longitudinal T-duality: non-relativistic string theory on a spatial longitudinal circle is dual to relativistic string theory compactified on a null direction.
- From the supergravity point of view: reduction of non-relativistic $10D, \mathcal{N} = (1, 0)$ supergravity = reduction of relativistic $10D, \mathcal{N} = (1, 0)$ supergravity along a null Killing vector (Bergshoeff, Lahnsteiner, Romano, JR)

10D
$$
(\tau_{\mu}{}^{A}, e_{\mu}{}^{a}, b_{\mu\nu}, \phi)
$$

\nwith $\tau_{\mu}{}^{-} \partial_{\nu} \tau_{\rho}{}^{-} = 0$
\nreduction along spatial
\nlongitudinal direction z
\n9D
\nNewton-Cartan geometry $(\tau_{i}, e_{i}{}^{a}, m_{i})$ + matter (ϕ, n_{i}, m_{ij})
\nwith $\partial_{[i} \tau_{j]} = -\partial_{[i} n_{j]}$
\n \Rightarrow

The longitudinal T-duality viewpoint

• Note:

$$
\tau_{[\mu}{}^-\partial_\nu\tau_{\rho]}{}^-=0\qquad\qquad\longleftarrow\qquad\qquad\partial_{[\mu}(\tilde G_{\nu]z}+\tilde B_{\nu]z})=0\,.
$$

- The non-relativistic $10D, \mathcal{N} = (1, 0)$ multiplet is shortened. What about the T-dual side?
- Since z is a null direction, one has $\tilde{G}_{zz} = 0$. Not supersymmetric! Supersymmetric set of constraints:

$$
\tilde{G}_{zz}=0\,,\qquad\qquad \tilde{\Psi}_z=0\,,\qquad\qquad \partial_{[\mu}(\tilde{G}_{\nu]z}+\tilde{B}_{\nu]z})=0\,.
$$

• Multiplet shortening on both sides of the duality:

Non-Rel. Non-Rel. with null Killing vector 1 : δ_D $\tilde{G}_{zz} = 0$, $\mathbf{8} + \mathbf{8}$: $\delta_S + \delta_T$ $\tilde{\Psi}_z = 0$, **36** : $\tau_{\lbrack\mu}^{\dagger}\partial_{\nu}\tau_{\rho]}^{\dagger}=0\,,\qquad\qquad\partial_{\lbrack\mu}^{}(\tilde{G}%)^{\dagger}=\frac{1}{2\pi i}\,.$ $|u|_z + \tilde{B}_{\nu|z} = 0$.

Half-supersymmetric solutions

- Longitudinal T-duality can be used to generate solutions of non-rel. supergravity from those of rel. supergravity that satisfy the necessary constraints.
- Example 1: pp-wave, corresponding to state with winding $w = 0$, momentum $n = 1$

$$
d\tilde{s}_{pp}^2 = -2 dt (dz + K dt) + dz_{(8)}^2, \qquad \qquad \tilde{B} = 0, \qquad \qquad e^{\tilde{\Phi}} = g_s,
$$

dualizes to a non-rel. fundamental string solution:

$$
ds^2_\tau = - dt^2 + dz^2 \,, \qquad \ \ ds^2_e = dz^2_{(8)} \,, \qquad \ \ b = K \, dt \wedge dz \,, \qquad \ \ {\rm e}^{\phi} = g_s \,,
$$

corresponding to state with $w = 1$ and $n = 0$ and dispersion relation $E \propto k^a k_a$.

• From 9D point of view: flat Newton-Cartan geometry with Newton potential $m_t = K$, sourced by massive particle.

Half-supersymmetric solutions

• Example 2: rel. fundamental string, corresponding to state with $w = 1$, $n = 0$

$$
d\tilde{s}^2_{F1} = -2\,H^{-1}dtdz + dz^2_{(8)}\,,\qquad \tilde{B} = (H^{-1} - 1)\,dt\wedge dz\,,\qquad \mathrm{e}^{\tilde{\Phi}} = g_s\,H^{-1/2}\,,
$$

dualizes to 'unwound' string solution with $w = 0$, $n = 1$

$$
ds_{\tau}^2 = -H^{-2} dt^2 + \left(dz + (H^{-1} - 1) dt \right)^2, \qquad ds_e^2 = dz_{(8)}^2, \qquad e^{\phi} = g_s H^{-1/2}
$$

- Note that the rel. anti-fundamental string does not satisfy the constraint $\partial_{[\mu} (\tilde{G}_{\nu]z}+\tilde{B}_{\nu]z})=0!$
- Can also be applied to obtain non-relativistic NS5-brane and KK5-monopole solutions from their relativistic counterparts.

.

[Outlook](#page-22-0)

Outlook

- Minimal 10D supergravity can be constructed via a stringy non-relativistic limit.
- Interesting features that regularize the limit
	- \Diamond emergent dilatation and fermionic shift symmetries
	- \Diamond supersymmetric set of intrinsic torsion constraints
- Result consistent with what one expects from longitudinal T-duality.
- Outlook:
	- \Diamond inclusion of Yang-Mills multiplet
	- \Diamond type II non-relativistic supergravity (see talk by U. Zorba)
	- $\sim 11D$ non-relativistic supergravity (see talk by J. Lahnsteiner)
	- \circ stringy non-relativistic expansions (see talks by J. Musaeus and E. Have)
	- \Diamond DFT techniques (see talk by K. Morand)
	- solutions?

...

イロトイ団トイモトイモト