# Black Holes in Non-Relativistic **HOOGRADNY** Based mainly on 2207.12477 with N. Dorey and B. Zhao (and a little on 2302.14850 with N. Dorey)

#### **Rishi Mouland (DAMTP, Cambridge)** Non-Relativistic Strings and Beyond, Nordita, 9<sup>th</sup> April 2023

# The point of this talk

#### 1. There is a natural **bottom-up framework** that relates:

**Non-relativistic conformal field theory** in (d-2) spatial dimensions

#### 2. There exists an explicit such dual pair, that can be stated as

Superconformal quantum mechanics on instanton moduli space

#### 3. In this setup, we derive a quantitative relationship of the form

Degeneracy of **BPS states** 

1/22 **Rishi Mouland** 



M-theory on an  $X_7 \times S^4$  background

**Bekenstein-Hawking entropy** of a **BPS black hole** 



# Part I: General aspects of non-

relativistic holography

### **Some inspiration Basic tenets of AdS/CFT**

Gravity in  $AdS_{d+1}$ 

Part I: NR holography

Part II: A case study





Killing symmetries <br/>
 Conformal Killing symmetries



### **Some inspiration Basic tenets of AdS/CFT**



Part I: NR holography

Part II: A case study





### An NRCFT primer Symmetries and spectrum

Symmetries given by the Schrödinger group Schr(d-2) (with z=2)

| Hamiltonian | Dilatation | Special | Sp |
|-------------|------------|---------|----|
| H           | D          | С       |    |

 $\mathfrak{gl}(2,\mathbb{R})$ 

**Operator state map** relates: [Nishida, Son]

Operators of definite scaling dimension

Part I: NR holography

Part II: A case study

3/22 **Rishi Mouland** 





A sector of fixed particle number described by a **conformal quantum mechanics** 



### An NRCFT primer **Relation to higher-dimensional CFT**

in (1, d - 1) dimensions

Particle number  $\longrightarrow$  Momentum on compact null circle

- Operator-state map rephrased as a conformal map

  - $Y_{\mathcal{A}}$  is just the null-compactified pp-wave spacetime!

$$ds^{2} = -2d\xi dt - x^{i}x^{i}dt^{2} + dx^{i}dx^{i}, \qquad \xi \sim \xi + 2\pi, \qquad \Delta = i\partial_{t}$$

• Schr(d-2) is the centraliser of null translations in the conformal group SO(2,d)

 $\implies$  Can recast NRCFT as (generically non-local) CFT on null-compactified  $\mathbb{R}^{1,d-1}$ 

• Operators on null-compactified  $\mathbb{R}^{1,d-1} \leftrightarrow$  States on (time slices of)  $Y_A$ 

Part II: A case study





### The bulk geometry **Some nice coordinates**

• A simple step: pp-wave is conformally flat

$$ds_{AdS}^2 = \frac{dr^2}{g^2 r^2} + r^2 \left(-2d\xi \, dt - x^i x^i dt^2 + dx^i dx^i\right) - \frac{dt^2}{g^2}$$

- Define  $X_{d+1}$  simply by identifying  $\xi \sim \xi + 2\pi$  throughout the bulk
  - Conformal boundary is  $Y_d$

5/22 **Rishi Mouland** 

 $\implies$  There exist coordinates on  $AdS_{d+1}$  with pp-wave conformal boundary

Part II: A case study







Part I: NR holography

Part II: A case study

6/22 Rishi Mouland

c.f. a bunch of 2008/2009 papers: [Goldberger] [Son] [Balasubramanian, McGreevy] [Barbon, Fuertes] [Adams, Balasubramanian, McGreevy] [Herzog, Rangamani, Ross] [Maldacena, Martelli, Tachikawa] [Balasubramanian, de Boer, Sheikh-Jabbari, Simón]

#### Killing symmetries <br/> Conformal Killing symmetries







# The bulk geometry A pretty picture



Part I: NR holography

Part II: A case study

**Rishi Mouland** 6/22







# How to build a black hole

- The pp-wave spacetime arises in the Penrose limit of  $\mathbb{R}_{\star} imes S^{d-1}$
- Only works for rotating black holes
  - Penrose limit
  - This precisely coincides with the "ultra-spinning" limit [Mouland, Dorey] [Klemm] [Hennigar, Kubiznak, Mann, Musoke], c.f. [Emperan, Myers],...

#### Part I: NR holography

**Rishi Mouland** 

• Follows that an asymptotically  $AdS_{d+1}$  black hole admits a limit which, after a null orbifold, is an asymptotically  $X_{d+1}$  black hole [Maldacena, Martelli, Tachikawa]

• One angular momentum becomes very large, in a way coordinated with the

An ultra-spinning black hole is dual to an ensemble of states in conformal QM

Part II: A case study





# Part II: An explicit case study

# Plug and play

- One way to get a dual pair: plug in your favourite AdS/CFT dual pair!
- CFT
- or else find some way to deal with them
- One setting where we have control: M5-branes! [Aharony et al.]

#### 6d U(N)superconformal field theory

8/22 **Rishi Mouland** 

#### The NRCFT is precisely the Discrete Lightcone Quantisation (DLCQ) of the original

Notoriously subtle: to get something sensible, one must "integrate out" zero modes,

#### M-theory on an $AdS_7 \times S^4$ background

Part II: A case study





### The boundary theory **Basic features**

$$\mathscr{L} = \frac{1}{2} g_{\mu\nu}(X) \dot{X}^{\mu} \dot{X}^{\nu} + g_{\mu\nu}(X)$$

- Target space is  $\mathcal{M}_{K,N}$ , the moduli space of K Yang-Mills instantons in SU(N)

#### **Maximal SUS**

Part I: NR holography

**Rishi Mouland** 9/22

# • In a sector of fixed particle number K, NRCFT becomes a (0 + 1)-dim $\sigma$ -model $D_{\mu\nu}^{\dagger\mu}D_{t}\psi^{\nu} - \frac{1}{2}R_{\mu\nu\rho\sigma}(X)\psi^{\dagger\mu}\psi^{\dagger\nu}\psi^{\rho}\psi^{\sigma}$

# Hyper-Kähler cone **Conformal symmetry**

#### In summary, the theory is an $\mathcal{N} = (4,4)$ superconformal quantum mechanics

**Actually super-Schrödinger!** 

Part II: A case study





### The boundary theory **Organising states**

**States labelled** by eigenvalues under... 

**Oscillator Hamiltonian** 

Scaling dimension  $\Delta$ 

Chosen **BPS** bound takes the form

$$\{\mathbb{Q}, \mathbb{S}\} = \mathcal{U} = \Delta - J_1 - J_2 - 2Q_1 - 2Q_2 \ge 0 \qquad (\mathbb{Q}^\dagger = \mathbb{S})$$

Part I: NR holography

10/22 **Rishi Mouland** 

### **R- and Global symmetries** $SO(5) \times SU(2) \times SU(2) \times SU(N)$

Charges  $J_1, J_2, Q_1, Q_2, n_a$ 

#### Part II: A case study





### The boundary theory A stringy perspective

Yang-Mills theory



#### Part I: NR holography

**Rishi Mouland** 11/22

#### QM describes slow motion of K instanton-particles in an auxiliary 5d $\mathcal{N} = 2 U(N)$

• Think like a D0  $\longrightarrow$  QM on  $\mathcal{M}_{K,N}$  is the strongly-coupled fixed-point of a U(K) matrix quantum mechanics.

(Resolution = Turning on FI parameters)

(U(K) BFSS)+ N fund. hypers)

Part II: A case study





## **Statement of the duality**

**Superconformal Quantum** Mechanics on  $\mathcal{M}_{K,N}$ 



Cartan generators  $\Delta, J_1, J_2, Q_1, Q_2$ 

Restrict to SU(N)singlet sector (i.e. treat as a gauge symmetry)

Part I: NR holography



**Rishi Mouland** 12/22





N units of flux on  $S^4$ 

K units of momentum on circle in  $X_7$ 

$$R_{AdS} = 2R_{S^4} = 2(\pi N)^{1/3} l_p$$

 $\Delta, J_1, J_2$  isometries of  $X_7$ 

 $Q_1, Q_2$  isometries of  $S^4$ 

Part III: Counting BH microstates

Self-contained!

 $J_{+} = J_{1} \pm J_{2}$  $Q_{+} = Q_{1} \pm Q_{2}$ 

Part II: A case study





### **Ultra-spinning black holes Construction from known solution**

- So, we just do  $BH_{AdS_7}[E, J_1, J_2, J_3, Q_1, Q_2] \longrightarrow BH_{X_7}[\Delta, J_1, J_2, Q_1, Q_2, K]$ , right?
- Almost: Most general known AdS<sub>7</sub> solution has  $Q_1 = Q_2 = Q$  [Chow]

- Admits a BPS limit:  $\Delta = J_+ + 2Q_+$ . Supersymmetric and extremal
- "Non-linear • BPS BH labelled by K, L, J\_. Remaining charge F = -2Q fixed  $\checkmark$ constraint" • Compute  $\mathcal{S}_{BH}(K, L, J_{-}) = \frac{A}{4G}$ ; e.g. §

**Rishi Mouland** 

 $\longrightarrow X_7$  BH: Energy  $\Delta$ , angular mom.  $J_1, J_2$ , charges  $Q = Q_1 = Q_2$ , momentum K

$$S_{BH}(K, L, 0) = 2\pi\sqrt{K}\sqrt{\frac{N^3}{12}}\sqrt{1+\sqrt{1+\frac{6L^2}{KN^3}}}$$

Part II: A case study







### Ultra-spinning black holes But what good is supergravity?

- To be a good approximation to M-theory, we need:
  - Weak curvature in Planck units  $\longrightarrow N \gg 1$
  - The circle in  $X_7$  should become large and spacelike in the bulk [Dine et al.]  $\longrightarrow K \gg N^{7/3}$  c.f. [Maldacena, Martelli, Tachikawa]
- In summary:  $K \gg N^{7/3} \gg 1$ 
  - Charges scale like  $\Delta, J_1, J_2, Q \sim \sqrt{KN^3}$ . Also the entropy  $\mathcal{S}_{RH} \sim \sqrt{KN^3}$

Part II: A case study





# Part III: Counting black hole microstates

### A quantitative test What to compute

- QM must provide a microscopic derivation of black holes' entropy
- Let  $d(K, \Delta, J_1, J_2, Q_1, Q_2)$  denote the degeneracy of QM states with these charges.
- In the supergravity regime  $K \gg N^{7/3} \gg 1$ , we must find

$$\log d(K, \Delta, J_1, J_2, Q_1, Q_2)$$

• Specialise to BPS states  $\Delta = J_+ + 2Q_+$  with  $Q_- = 0$ , and swap  $(J_1, J_2, Q_1, Q_2)$  for

$$L(=J_+ + Q_+)$$
  $J_ F(=-2Q_2)$ 

Should find  $\log d_{BPS}(K)$ 

Part I: NR holography

Part II: A case study

 $(Q_2) \sim \mathcal{S}_{BH}(K, \Delta, J_1, J_2, Q_1, Q_2)$ 

$$(L, J_{-}, F) \sim \mathcal{S}_{BH}^{BPS}(K, L, J_{-}, F)$$





### A quantitative test **Counting BPS states in the QM**

- Compute a maximally-refined superconformal index
  - commute with  $\mathbb{Q}, \mathbb{S}$

$$\mathscr{I}_{K}(t, x, y, w_{a}) = \operatorname{Tr}_{\mathscr{H}}\left[(-1)^{F}t^{L}x^{J}-y^{Q}-\prod_{a}w_{a}^{n_{a}}\right]$$
Hilbert space on  $\mathscr{M}_{KN}$ 

 $\mathcal{M}_{K,N}$ : a particular equivariant Euler characteristic in sheaf cohomology [Barns-Graham, Dorey]

Compute using localisation theorems in equivariant K-theory

#### Part I: NR holography

• Counts BPS states, with alternating sign for B/F, graded by all charges that

• Rephrase superconformal symmetry geometrically.  $\mathcal{F}_{K}$  is a topological invariant of

Part II: A case study





### A quantitative test **Counting BPS states in the QM**

- Compute a maximally-refined superconformal index
  - commute with  $\mathbb{Q}, \mathbb{S}$

$$\mathcal{F}_{K}(t, x, y, w_{a}) = \operatorname{Tr}_{\mathscr{H}} \left[ (-1)^{F} t^{L} x^{J} y^{Q} \prod_{a} w_{a}^{n_{a}} \right]$$
$$= \sum_{||\lambda||=K} \prod_{i,j} \prod_{s \in Y(\lambda_{i})} \operatorname{Pexp} \left( \frac{z_{i}}{z_{j}} t^{g_{ij}(s)} x^{f_{ij}(s)} [ty] [t/y] \right]$$

Part I: NR holography

Counts BPS states, with alternating sign for B/F, graded by all charges that

Part II: A case study







### A quantitative test **Counting BPS states in the QM**

- Compute a maximally-refined superconformal index
  - commute with  $\mathbb{Q}, \mathbb{S}$

$$\mathscr{F}_{K}(t,x,y,w_{a}) = \operatorname{Tr}_{\mathscr{H}}\left[(-1)^{F}t^{L}x^{J}y^{Q}-\prod_{a}w_{a}^{n_{a}}\right]$$

- Point is: it is known
- function of a 5d  $\mathcal{N} = 2^*$  theory
  - Agrees with proposal of [Kim, Kim, Koh, Lee, Lee '11]

Counts BPS states, with alternating sign for B/F, graded by all charges that

Coincides precisely with the *K*-instanton contribution to the Nekrasov partition

• Alternative approach: Extract  $\mathcal{F}_{K}$  from index of 6d (2,0) theory [Dorey, Mouland '23]

Part II: A case study







### **Extracting the BPS degeneracy (a sketch)** Setting up the problem

- $\mathscr{C}(K, L, J_{-})$  is the coefficient of  $e^{-\beta K}t^{L}x^{J_{-}} \longrightarrow \text{Extract by contour integral}$

$$\mathscr{C}(K, L, J_{-}) = \frac{1}{(2\pi i)^4} \oint \frac{dq}{q^{K+1}} \frac{dq}{t^L}$$
$$= \sum_{F \in \mathbb{Z}} (-1)^F d_{BPS}(K)$$

- Want asymptotics as  $K \to \infty$

Part I: NR holography

**Rishi Mouland** 



• Hardy-Ramanujan  $\longrightarrow$  Integral dominated region near essential singularity  $\beta \rightarrow 0$ 

Part II: A case study





### **Extracting the BPS degeneracy (a sketch) Exploiting S-duality**

- Reinterpret  $\mathcal{F}(\beta; t, x, y)$  in terms of inst. part of a Nekrasov partition function  $\mathcal{Z}_{Nek}$ •  $\mathscr{Z}_{Nek}$  understood as twisted Euclidean partition function of 6d (2,0) theory on  $T^2 \times \mathbb{R}^4$ •  $\beta = 2\pi i \tau$ , with  $\tau$  the complex structure on  $T^2$

- S-duality maps  $\tau \to -1/\tau$ . Get  $\beta \to 0$  behaviour from  $\beta \to \infty$  behaviour!
- To do this properly, need the modular properties of  $\mathscr{Z}_{Nek}$ 
  - Use conjectured equivalence  $\mathscr{X}_{Nek} = \mathscr{X}_{Ell}$  to the index that counts bound states of the self-dual string in the (2,0) theory ("M-strings") [Vafa et al.]
  - Manifest modular transformation  $\longrightarrow \mathcal{J}(\beta; t, x, y)$  as  $\beta \to 0$  accessible!



Part II: A case study



### **Extracting the BPS degeneracy (a sketch)** Final result by saddle-point



- Recall,  $\mathscr{C}(K, L, J_{-}) = \sum_{F} (-1)^{F} d_{BPS}$ 
  - other known holographic microstate counting examples

**Rishi Mouland** 19/22

Chemical potentials

e.g. 
$$t = e^{(\epsilon_1 + \epsilon_2)/2}$$

Taking also  $N \gg 1$ , finally obtain  $\log \mathcal{J}(\beta; t, x, y) \sim -\frac{N^3}{24} \frac{\Delta_1^2 \Delta_2^2}{\epsilon_1 \epsilon_2 \beta}$ 

**Bekenstein-Hawking entropy** 

$$S(K, L, J_{-}, F)$$

• Our BH solution (GR arguments fix  $F = F(K, L, J_{-})$ ) dominates the index, like in all

• If there are more BHs, they contribute subleadingly to  $\mathscr{C}$  (S subleading? B/F pairs?)

Part II: A case study











Summary, directions, and a question

### **In summary**

- Discussed the basic rules of holography for non-relativistic conformal field
- Provided an explicit such dual pair, given by the superconformal quantum mechanics of Yang-Mills instantons
- QM
- of degrees of freedom!

20/22 Rishi Mouland

# theories, and how go construct the corresponding ultra-spinning black holes

 Successfully recovered the Bekenstein-Hawking entropy of supersymmetric ultraspinning black holes by counting BPS states, using the superconformal index of the

• As far as we know, this is the first such match for a system with a finite number



# **Further topics**

- SCQM offers new playground to probe quantum gravity: corrections to entropy, finite temperature, dynamical processes,...
- How can we practically probe things like this?
  - Have a precise index! More that can be done with it
  - Excitingly, the matrix model is amenable to simulation on classical and quantum computers  $\longrightarrow$  numerically access dynamical (i.e. unprotected) observables [Rinaldi et al.] [Filev, O'Connor]

Results in 4d and 6d [Dorey, Mouland, '23] - Ask me about this!

• BPS black holes factorise: BPS ultra-spinning black holes are in a particular sense the "fundamental building blocks" that make up general BPS AdS black holes



### A question for you! **Does the bulk admit a regime of semiclassical gravity?**

- 11-dim (Einstein) supergravity
  - supergravity approximation to M-theory on this background!
- On generic DLCQ backgrounds we have, roughly:

**T-Duality DLCQ of ST** 

• Can we relate  $X_7 \times S^4$  to a stable vacuum of strongly-coupled non-relativistic IIA string theory ("non-relativistic M-theory")?



• Even for  $K \gg N^{7/3} \gg 1$ , only black hole states ( $\Delta \sim \sqrt{KN^3}$ ) admit a description in

• e.g. the QM vacuum naively corresponds to empty  $X_7 \times S^4$ , but we can't trust the Null compactification of AdS<sub>7</sub> Want: A semiclassical gravity description for (some regime of) M-theory on  $X_7 \times S^4$ 

Non-relativistic ST





# Backup slides

#### Holomorphic factorisation and ultra-spinning black holes [Dorey, Mouland '23]

A quite general story: SCFT indices and partition functions factorise into "blocks" that are "glued" together. We focussed on 4d and 6d SC indices. Schematically,

$$\mathcal{F}_{4d} \sim \int d(\text{gauge}) \,\mathcal{F}_{hol} \mathcal{F}_{hol}$$

- Geometrically understood in SCFT: gluing of disc partition functions
- Can derive DLCQ index in a certain limit of the superconformal index Index of DLCQ quantum mechanics coincides with a single holomorphic block!
- dual

$$\mathcal{F}_{6d} \sim \int d(\text{gauge}) \mathcal{Z}_{Nek} \mathcal{Z}_{Nek} \mathcal{Z}_{Nek} \mathcal{N}_{Nek}$$

Technically the lens space index

BPS ultra-spinning black holes play the role of holomorphic blocks in the gravity

Suggests they provide a concrete realisation of "gravitational blocks" [Zaffaroni et al.]



















