Longitudinal Galilean and Carrollian limits of Non-relativistic**Strings**

Jelle Hartong

University of Edinburgh, School of Mathematics

Nordita

Non-relativistic Strings and Beyond

9 May, 2023

In collaboration with:

Leo Bidussi, Troels Harmark, Niels Obers, Gerben Oling

Introduction

•Bronstein cube

- NRG = non-relativistic gravity [⊃] Newtonian gravity
	- $1/c$ expansion \supset post-
Neutonian expansion Newtonian expansion
- • NRQG ⁼ non-relativisticquantum gravity
- • NRQG is ^a bit of ^a misnomer. There is no dynamical gravityto quantise. Think of quantum matter (described by quantum mechanics) backreacting with ^a background that reacts instantaneously.

Introduction

• Is there ^a well-defined non-relativistic limit of quantumgravity/string theory?

- In string theory there exist dualities between QG and specific QFTs (holography, AdS/CFT, ...).
- Do such dualities exist in the NR domain, i.e. can NR strings be dual to some NR field theory?
- • Limits of AdS/CFT called Spin Matrix Theory give rise to NRstrings dual to quantum mechanical limits of AdS/CFT.
- Can NR techniques be used to learn more about ordinarystring theory?
- • What is the landscape of UV complete non-Lorentzianstring theories?
- Open strings and D-branes in non-Lorentzian string theory?
- Can we build explicit examples of holographiccorrespondences?
- \bullet Is there ^a well-defined corner called NRQG? Does it have ^astring theory description and if so why would it need one?

Outline

- \bullet NR strings in ^a nutshell
- Longitudinal Galilean limit
- •Relation with the spin matrix limit
- •Longitudinal Carrollian limit

Part I: Galilean worldsheets

- • There are several ways to obtain ^a NR string (in the senseof Gomis–Ooguri and Danielsson–Guijosa–Kruczenski):
	- Limit in ^a near-critical B-field
	- \circ $\circ~$ String- $1/c$ expansion for an appropriate class of target spaces
	- A 'lightlike T-duality' along ^a non-compact null isometry(null reduction)
- The result is ^a target space described by string Newton–Cartan geometry: Riemannian geometry (transverse)fibered over ^a 2-dimensional Lorentzian base (longitudinal).
- • The embedding map is such that the pullback of thelongitudinal base is ^a Lorentzian metric on the woldsheet.

• Non-rel. string Lagrangian ($\tau = \mathsf{det}\,\left(\tau_{\alpha}^0,\tau_{\beta}^1\right)$)

$$
\mathcal{L} = \frac{T_{\mathsf{NR}}}{2} \left[\tau \left(\tau_0^{\alpha} \tau_0^{\beta} - \tilde{c}^2 \tau_1^{\alpha} \tau_1^{\beta} \right) h_{\alpha \beta} - \varepsilon^{\alpha \beta} m_{\alpha \beta} \right]
$$

- Embedding is such that $(\tau_\alpha^0, \tau_\beta^1)$ is invertible. Target spacetime must admit ^a 2D Lorentzian submanifold.
- Target space fields: τ_M^A , h_{MN} $(0,0,1,\ldots,1)$ and m_{MN} .
- •Gauge symmetries:

$$
\delta\tau_M^A = \lambda \varepsilon^A{}_B \tau_M^B
$$

\n
$$
\delta h_{MN} = -\eta_{AB} \left(\tau_M^A \lambda_N^B + \tau_N^A \lambda_M^B \right), \qquad \tau_A^M \lambda_M^B = 0
$$

\n
$$
\delta m_{MN} = -\varepsilon_{AB} \left(\tau_M^A \lambda_N^B - \tau_N^A \lambda_M^B \right) + \partial_M \Lambda_N - \partial_N \Lambda_M
$$

Longitudinal Lorentz, transverse string Galilei boosts, 2-form gauge trafos

• Define $T_{\mathsf{NR}} = T_G \tilde{c}^{-2}$ and $m_{MN} = \tilde{c}^2 \tilde{m}_{MN}$. Send $\tilde{c} \to \infty$

$$
\mathcal{L}=-\frac{T_G}{2}\left(\tau\tau_1^{\alpha}\tau_1^{\beta}h_{\alpha\beta}+\varepsilon^{\alpha\beta}m_{\alpha\beta}\right)
$$

 \bullet Target space fields now have the gauge symmetries:

$$
\delta\tau_M^0 = 0, \qquad \delta\tau_M^1 = \lambda \tau_M^0
$$

\n
$$
\delta h_{MN} = \tau_M^0 \lambda_N^0 + \tau_N^0 \lambda_M^0 - \tau_M^1 \lambda_N^1 - \tau_N^1 \lambda_M^1, \qquad \tau_A^M \lambda_M^B = 0
$$

\n
$$
\delta m_{MN} = \tau_M^0 \lambda_N^1 - \tau_N^0 \lambda_M^1 + \partial_M \Lambda_N - \partial_N \Lambda_M
$$

Longitudinal Galilei, transverse string Galilei boosts, 2-formgauge trafos

 \bullet We can also write:

$$
\mathcal{L} = -\frac{T_G}{2} \frac{1}{\tau} h_{MN} \tau_P^0 \tau_Q^0 \left(\dot{X}^M X^{\prime P} - X^{\prime M} \dot{X}^P \right) \left(\dot{X}^N X^{\prime Q} - X^{\prime N} \dot{X}^Q \right) - T_G m_{MN} \dot{X}^M X^{\prime N}, \qquad \tau = \tau_R^0 \tau_S^1 \left(\dot{X}^R X^{\prime S} - \dot{X}^S X^{\prime R} \right)
$$

- When $\tau_{\sigma}^0 = \tau_M^0 X^{\prime M} \neq 0$ we get wrong sign kinetic terms.
This is a gauge artefact This is ^a gauge artefact.
- Also the relation between canonical momenta P_i and \dot{X}^i is singular when $\tau_\sigma^0=\tau_M^0 X^{\prime M}=0.$
- We partially fix the gauge by $\tau_{\sigma}^0 = \tau_M^0 X^{\prime M} = 0$. We thus have fewer constraints to generate the residual gauge have fewer constraints to generate the residual gaugesymmetries: $\tau \rightarrow \tilde{\tau}(\tau)$ and $\sigma \rightarrow \tilde{\sigma}(\tau, \sigma)$.
- In general we cannot do better than

$$
X^t = a\tau \,, \qquad X^v = wR_v\sigma + f(\tau)
$$

where $X^v \sim X^v + 2 \pi R_v$ and $w > 0$ is the winding number.

- In any coordinate system σ runs from 0 to 2π . To preserve
the exigin we cannot shift σ by a function of σ only the origin we cannot shift σ by a function of τ only.
- The EOM of f is related to the level matching condition, the only constraint that is left.

• 2D diffeo invariance tells us that off shell

$$
\left(\partial_\alpha \frac{\partial \mathcal{L}}{\partial \partial_\alpha X^M} - \frac{\partial \mathcal{L}}{\partial X^M}\right) \partial_\beta X^M = 0
$$

so EOMs are not all independent. In particular (in staticgauge) the X^t and X^v EOM are automatically satisfied when the X^i EOM are obeyed.

• We will take $\tau_M^0 dx^M = dt$ and $\tau_M^1 dx^M = dv$. Split $\mathbf{v}M = (\mathbf{v}t, \mathbf{v}v, \mathbf{v}v)$ then in our gauge $(\mathbf{v}'^t = 0)$. $X^M = (X^t, X^v, X^i)$ then in our gauge $(X'^t=0)$ we find:

$$
\mathcal{L} = T \left[m_{iv} \left(\dot{X}^v X^{'i} - \dot{X}^i X^{'v} \right) - \frac{\dot{X}^t}{2X^{'v}} h_{ij} X^{'i} X^{'j} - \frac{1}{2} (h_{tt} + 2m_{tv}) \dot{X}^t X^{'v} - (h_{vi} + m_{ti}) \dot{X}^t X^{'i} - m_{ij} \dot{X}^i X^{'j} \right]
$$

- Consider part that is quadratic in X^i . For constant m_{ij} that term is a total derivative and $\delta m_{ij}=0$ implies $\delta m_{iv}=\partial_i\sigma.$
- We want a kinetic term for every X^i so m_{iv} must be such that its field strength is invertible: symplectic structure.
- Need $i = 1, ..., 2n$. Hence $m_{iv} = -\omega_{ij}X^j$ where ω_{ij} is a $2n\times 2n$ invertible antisymmetric matrix.
- WLOG the most general quadratic action that preserves therotations leaving ω invariant is

$$
\mathcal{L} = T\omega_{ij}X^j\left(\dot{X}^i - \dot{f}(\tau)X^{\prime i}\right) - \frac{T}{2}X^{\prime i}X^{\prime i} - \frac{\alpha^2}{2}X^iX^i
$$

where we used the strongest possible gauge fixing.

• *n* decoupled Schrödinger fields $\Phi^I = X^{2I-1} + iX^{2I}$ with $I=1,\ldots,n$ and masses determined by eigenvalues of $\omega_{ij}.$ •Theories of the form

$$
\mathcal{L} = T \left[m_{iv} \left(\dot{X}^v X^{\prime i} - \dot{X}^i X^{\prime v} \right) - \frac{\dot{X}^t}{2 X^{\prime v}} h_{ij} X^{\prime i} X^{\prime j} \right]
$$

can be obtained by starting with rel. strings on AdS $_5 \times S^5$ and taking their spin matrix theory (SMT) limit.

- $AdS_5 \times S^5$ admits a null Killing vector. We can null reduce the standard string and then take a large \tilde{c} limit. This gives a particular SMT (the most general one). The others arespecial cases.
- $\tilde{c} = (4\pi g_s N)^{-1/2}$
- • What is the dual field theory description after the null reduction but before taking the SMT limit?
- Unlike in standard string theory, here the gauge fixed NGaction for the simplest backgrounds is quadratic in the fields.
- The Polyakov version of NR strings is

$$
\mathcal{L} = -\frac{T_{\text{NR}}}{2} \left[e \left(-e_0^{\alpha} e_0^{\beta} + \tilde{c}^2 e_1^{\alpha} e_1^{\beta} \right) h_{\alpha\beta} + \epsilon^{\alpha\beta} m_{\alpha\beta} \n+ \omega \epsilon^{\alpha\beta} \left(e^0_{\ \alpha} \tau^0_{\ \beta} + \frac{1}{\tilde{c}^2} e^1_{\ \alpha} \tau^1_{\ \beta} \right) + \psi \epsilon^{\alpha\beta} \left(e^0_{\ \alpha} \tau^1_{\ \beta} + e^1_{\ \alpha} \tau^0_{\ \beta} \right) \right]
$$

• Rescaling

 $T_{\mathsf{NR}} = \tilde{c}^{-2}T_G \,, \qquad T_{\mathsf{NR}}m_{MN} = T_G \tilde{m}_{MN} \,, \qquad \omega = \tilde{c}^2 \tilde{\omega} \,, \qquad \psi = \tilde{c}^2 \tilde{\psi}$

and dropping the tildes gives:

$$
\mathcal{L} = -\frac{T_G}{2} \Big[\Big(e \, e_1^{\alpha} e_1^{\beta} h_{\alpha\beta} + \epsilon^{\alpha\beta} m_{\alpha\beta} \Big) + \omega \epsilon^{\alpha\beta} e^0_{\alpha} \tau^0_{\beta} + \psi \epsilon^{\alpha\beta} (e^0_{\alpha} \tau^1_{\beta} + e^1_{\alpha} \tau^0_{\beta}) \Big]
$$

- • To avoid negative sign kinetic terms we make the gaugechoice $e_{\sigma}^{0}=0$.
- The worldsheet has ^a Galilean metric structure with Weyl symmetry.
- WIP comment: e_1^{α} must be nowhere vanishing and regular. Does this restrict the worldsheet topologies?
- In the gauge $X'^t = 0$ the algebra of first class constraints is Virasoro⊕R. This generates (under Hamiltonian flow) thegauge transformations $\tau \to \tilde{\tau}(\tau)$ and $\sigma \to \tilde{\sigma}(\tau,\sigma)$ when
acting on the X^M acting on the $X^M.$
- To do: add dilaton, critical dimension (reproduce target space symmetries in quantum theory), spectrum, betafunctions, string interactions, supersymmetry, etc.
- •Is there an open string version?

Part II: Carrollian worldsheets

• Non-rel. string Lagrangian ($\tau = \mathsf{det}\,\left(\tau_{\alpha}^0,\tau_{\beta}^1\right)$)

$$
\mathcal{L} = \frac{T_{\mathsf{NR}}}{2} \left[\tau \left(\tau_0^{\alpha} \tau_0^{\beta} - \tilde{c}^2 \tau_1^{\alpha} \tau_1^{\beta} \right) h_{\alpha \beta} - \varepsilon^{\alpha \beta} m_{\alpha \beta} \right]
$$

- Embedding is such that $(\tau_\alpha^0, \tau_\beta^1)$ is invertible. Target spacetime must admit ^a 2D Lorentzian submanifold.
- Target space fields: τ_M^A , h_{MN} $(0,0,1,\ldots,1)$ and m_{MN} .
- •Gauge symmetries:

$$
\delta\tau_M^A = \lambda \varepsilon^A{}_B \tau_M^B
$$

\n
$$
\delta h_{MN} = -\eta_{AB} \left(\tau_M^A \lambda_N^B + \tau_N^A \lambda_M^B \right), \qquad \tau_A^M \lambda_M^B = 0
$$

\n
$$
\delta m_{MN} = -\varepsilon_{AB} \left(\tau_M^A \lambda_N^B - \tau_N^A \lambda_M^B \right) + \partial_M \Lambda_N - \partial_N \Lambda_M
$$

Longitudinal Lorentz, transverse string Galilei boosts, 2-form gauge trafos

• Without rescaling anything we can send $\tilde{c} \rightarrow 0$

$$
\mathcal{L} = \frac{T_C}{2} \left(\tau \tau_0^{\alpha} \tau_0^{\beta} h_{\alpha \beta} - \varepsilon^{\alpha \beta} m_{\alpha \beta} \right)
$$

 \bullet Target space gauge symmetries:

$$
\delta\tau_M^0 = \lambda \tau_M^1, \qquad \delta\tau_M^0 = 0
$$

\n
$$
\delta h_{MN} = \tau_M^0 \lambda_N^0 + \tau_N^0 \lambda_M^0 - \tau_M^1 \lambda_N^1 - \tau_N^1 \lambda_M^1, \qquad \tau_A^M \lambda_M^B = 0
$$

\n
$$
\delta m_{MN} = -\tau_M^1 \lambda_N^0 + \tau_N^1 \lambda_M^0 + \partial_M \Lambda_N - \partial_N \Lambda_M
$$

• The Lagrangian can also be written as

$$
\mathcal{L} = \frac{T_C}{2} \frac{1}{\tau} h_{MN} \tau_P^1 \tau_Q^1 \left(\dot{X}^M X^{\prime P} - X^{\prime M} \dot{X}^P \right) \left(\dot{X}^N X^{\prime Q} - X^{\prime N} \dot{X}^Q \right) - T_C m_{MN} \dot{X}^M X^{\prime N}
$$

• The Galilean and Carrollian cases are related by $0 \leftrightarrow 1$.

• Restricting to the quadratic theory and after gauge fixing

$$
\mathcal{L} = \frac{T_C}{2} \left(\dot{X}^i - \dot{f}(\tau) X^{\prime i} \right)^2 + T_C \omega_{ij} X^j X^{\prime i}
$$

where we dropped a potential term.

- We can remove f and impose the constraint that the generator of σ translations $\oint d\sigma P_iX^{\prime i}$ is constant (and zero on states in the quantum theory: level matching) by hand.
- Before gauge fixing, local and global symmetries are $\delta X^M = \zeta^\alpha \partial_\alpha X^M - \Xi^M$ such that \mathcal{L}_Ξ acting on τ^A_{M*} , ℓ \equiv $\mathcal{L}_{\Xi} = \zeta^{\alpha} \partial_{\alpha} X^{M} - \Xi^{M}$ such that \mathcal{L}_{Ξ} acting on τ^{A}_{M} , h_{MN} , gives zero un to a gauge transformation m_{MN} gives zero up to a gauge transformation.

$$
\mathcal{L} = \frac{T_C}{2} \dot{X}^i \dot{X}^i + T_C \omega_{ij} X^j X^{\prime i}
$$

- After gauge fixing we have
	- 1. τ translation symmetry: $\delta X^i = \zeta^\tau \dot{X}^i$
	- 2. σ translation symmetry: $\delta X^i = \zeta^\tau X^{\prime i}$
	- 3. Carroll boost symmetry: $\delta X^i = b\left(\sigma \dot{X}^i \tau \omega_{ij} X^j\right)$
	- 4. Internal symmetry: $\delta X^i = \epsilon \omega_{ij} X^j + \lambda_{ij} X^j + a^i(\tau,\sigma)$, where $\lambda_{ij}\neq \omega_{ij}$ is a rotation leaving ω_{ij} invariant and where $\,a$ $\ddot{a}^i + 2\omega_{ij}a'^j = 0.$
- Longitudinal symmetries: centrally extended 2D Carroll

$$
\{Q_C\, , Q_P\} = -Q_H\, ,\qquad \{Q_C\, , Q_H\} = Q_N\, .
$$

 \bullet Infinitely many symmetries in the transverse directions withNoether charges $\oint d\sigma \left(P_i a^i - X^i \dot{a}^i\right)$ whose Poisson brackets lead to central extensions.

• *n* decoupled Carroll Schrödinger fields $X^{2I-1} + iX^{2I}$ obeying

$$
i\partial_{\sigma} \left(X^{2I-1} + iX^{2I} \right) = \frac{1}{2\lambda_I} \partial_{\tau}^2 \left(X^{2I-1} + iX^{2I} \right)
$$

where λ_I are the eigenvalues of $\omega_{ij}.$

- Ordinary Schrödinger equation disperson relation is $\omega \sim k^2$. Here we have $k\sim \omega^2$.
- Worldsheet is a cylinder so the k are discrete and real (positive and negative) so only $\omega^4\geq 0.$
- •Oops!
- The Polyakov formulation leads to ^a worldsheet with ^aCarrollian metric structure on it that is Weyl invariant.
- • In the non-gauge fixed theory the algebra of first classconstraints gives $BMS₃$.
- \bullet • What kind of limit is this if we consider strings on $\mathsf{AdS}_5\times S^5$?
- \bullet • Can we remove the modes with imaginary ω or is there interesting physics in them? Unitarity? Non-invertible ω_{ij} ?

Non-Lorentzian closed strings

• As well as others (tensionless strings, ...) and many more tocome!