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Null Strings?! What? Why?

* Massless point particles move on null geodesics. Worldlines are null.

* Null strings: extended analogues of massless point particles.
Massless point particles => Tensionless strings.

* Tensionless or null strings: studied since Schild in 1970°.

* Tension T = 2730/ > 0: point particle limit of string theory => Classical gravity.
1

2o

> 0o Ultra-high energy, ultra-quantum gravity!

* Tensionless regime: T =

Null strings are vital for:
A. Strings at very high temperatures: Hagedorn Phase.
B. Strings near spacetiwme singularities: Strings near Black holes, near the Big Bang.

C. Cownnections to higher spin theory.



Sumwmary of Results

* 2d Conforwmal Carrollian (or BMS3) and its supersymwetric cousins arise
on the worldsheet of the tensionless string replacing the two copies of
the (super) Virasoro algebra.

* (lassical fensionless strings: properties can be derived intrinsically or as
a limit of usval tensile strings.

* Quantuwm tensionless strings: many surprising new results.

* A theory of Black hole microstates based on null strings!
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Going tensionless

Start with Nambu-Goto action:

‘Isberg,Lindstrom, Sundbo,c;ri uh W
| N

S:—T/dzﬁ\/—detvag. (1)

To take the tensionless limit, first switch to Hamiltonian framework.
» Generalised momenta: P, = T\/TWVOO‘ 0o X
» Constraints: P? + T>4~4" =0, P,,0,X™ = 0.
» Hamiltonian: Hr = He + p'(constraints); = A(P* + T?°~~v") 4+ p P8, X™.

Action after integrating out momenta:

1 1 [. .
5= / d*¢ = X* — 20X 0, Xy + p° 05 X" 05 Xy — AN" Ty~ (2)

o _ —1 P
8 0 _pz 1+ 4AN2T2 )

action takes the familiar Weyl-invariant form

T 8% m n
S=—> /dzg\/—gg B 0aX" 05X N (3)

Identifying



Going Tensionless ...

!

L

Tensionless limit can now be taken systematically.

T — 0=

Metric is degenerate. det ¢ = 0.

Replace degenerate metric density T+/—g¢“” by a rank-1 matrix V*V* where V is a vector

density

L1
Ve = ﬁ/\(l,p) (4)

Actionin T — 0 limit

S — /dz.g VOVP 9, X" 05X . (5)

Starting point of tensionless strings.

Need not refer to any parent theory. Treat this as action of fundamental objects.



Cowmpleting the square?

Fundamentally Tensionless Theory

o — 0, T — €T

Usual Tensile String Theory 4 Tensionless String Theory

ey Your corresponding favourite
4 thing in Tensionless String
Theory

Your favourite thing in Tensile

String Theory




Gauge and Residval Gauge Symmetries

Tensionless action is invariant under world-sheet diffeomorphisms.

Fixing gauge: “Conformal” gauge: V= = (v, 0) (v: constant).

Tensile: Residual symmetry after fixing conformal gauge = Vir ® Vir. Central to understanding string theory.
Tensionless: Similar residual symmetry left over after gauge fixing.

For world-sheet diffeomorphism: £ — £ + £, change in vector density: 6.V = —V . 0e® + ¢ - 9V + %(6 - g)V*®

Tensionless residual symmetries: for V= = (v, 0), g™ = {f/(U)’T +g(o),f(0);

Define: L(f) = f'(c)70+ + f(0)0s, M(Q) = g(c)d,. Expand:f =3 a,e"", g=7> bue"’
L(f) = Zaneim (05 + inTO;) = ZanLn, M(g) = anein"@T — anMn.

BMS3 or 2d Conformal Carroll Algebra




Tensionless Limit from the Worldsheet

- ———— e — —

Tensile string: Residual symmetry in conformal gauge go.3 = e¢na g: J
(L, Ly] = (m—n)Lyin A 1C2m(m2 — 1)dm+n.0
Lois Cnl = 0, [Lm,Ln] = (m — 1) Lo 1C2m(m2 1) Smn o

World-sheet is a cylinder. Symmetry best expressed as 2d conformal generators on the
cylinder.

. MW . 1IN
L, =16 "0,, Ly,=1 0Oz

where w, w = 7 £ o. Vector fields generate centre-less Virasoros.

Tensionless limit = length of string becomes infinite (o — o0).

Ends of closed string identified = limit best viewed as (¢ — o, 7 — €7, — 0).

N

XO

] > L 1=

7—0 —
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Tensionless Limit from the Worldsheet

A Bagchi 2013

» Define ) )
Ln — Ln — L_n, Mn — G(Ln _I_ L:_n).

» New vector fields (L,, M, ) well-defined in limit and given by:
L, = ie" (8, + inTd;), M, =ie"°d,.

» These are exactly the generators defined previously . Close to form BMSs.

e ——— e - B R _ e _
[Lm7 Ln] — (m — n)Lm_|_n [Lm, Mn] — (m - Yl)Mm_|_n [Mm, Mn] — O. |

» Tensionless limit on the worldsheet: 0 — o, 7 — e, — 0

» Worldsheet velocities v = 2 — oo. Effectively, ¢ — oo

» Hence worldsheet speed of light — 0. Carrollian limit.

» Degenerate worldsheet metric.

P Riemannian tensile worldsheet — Carrollian tensionless worldsheet.




Tensionless EM Tensor and constraints

Spectrum of tensile string theory (in conformal gauge in flat space)

P Quantise worldsheet theory as a theory free scalar fields.
P Constraint: vanishing of EOM of metric (which is fixed to be flat).
P Op form: Physical states vanish under action of modes of E-M tensor.

C

. C o C — > Inw
EM tensor for 2d CFT on cylinder: Ty = z° Lpiane Y Z Le” 24 Loy = Z Lne” 24
n n

e —0

. _ | o
Ultra-relativistic EM tensor (1) = lim <Tcyl — Tcyl> = (Ly — inTMy)e" -
n

. — Mo CM
T(z) — lim € (Tcyl -+ Tcyl> — Z Mnem Y
n

e —0

» Classical constraint on the tensionless string: T(;y = 0, Ty = 0.

» Quantum version: physical spectrum of tensionless strings restricted by

(phys|T1y|phys’) = 0, (phys|T|phys’) = 0.



Intrinsic Analysis: EOM and Mode Expansions

. AB, Chakrabortty, Parekh 201

e e e — - = -

» Equation of motion in V* = (v, 0) gauge: X* = 0.

. <1 .
> Solution: X*(o,7) = x* + V20'Affo + V20'Bi T +iV2¢" Y | — (A} — inTB}) "7
n
n=%0

» Closed string b.c.: X" (o, 7) = X* (0 4+ 27, 7) = Af =0.

» Constraints: X* = 2¢’ > B_u - Bugn " =0, X-X =2 > (A —inTB_y) - Buys e’ = 0
m.,n

m,n

> Define: Ly = » A_u - Bugn, My = B_y - Bugn
m m

» (lassical constraints in terms of modes: Z (L, — inTMy) e =0 = T(l), Z M, e = () = T(2>,
n

n
Familiar form obtained earlier from purely algebraic considerations.

» The algebra of the modes
{AZ,ATZ} p— O, {BZ, BZ} p— O, {AZ, B;:} — —im5m+n,0 ’I’]'L“/.

» The worldsheet symmetry algebra of tensionless strings, now constructed from the quadratics of the modes:
{Lm, Ln} — _i<m - n)Lm_|_n7 {Lm, Mn} — _i(m - n)Mm+n, {Mm, Mn} - O.

Quantization: {, }pg — — £ [, ] leads to the BMS; Algebra.



Limiting Analysis: EOM and Mode Expansws

> Tensile string mode expansion: x* (45, 7) = x* + 2v2a o/ ot T+ iV2a L ahe=MTHo) | qHemin(T— 0)]
n;éO
» The limiting procedure: 7 — €7, 0 = 0, &' =¢' /e withe — 0

2c’ 2c’
X (o, 1) = x" 4+ 24/ — - Qbfﬂ'%—l\/ - j{: FL_ﬂna(l——zneT)—%cx“ema(l-—zneT)]

n;éO
1 [ a* —a* 1 .
= x" 4+ 2vV2 (Ve)ah T + iv2c! Z — | = NG — —intve(at +a* )| ",
€
n;éO _ _

» Thus we get a relation between the tensionless and tensile modes:

1 T
'ATZL:%(O{;:;— "), B = e(a : h

_— e —— — — — . -

» The equivalent of the Virasoro contraints | _ - — - |






A sumwary of quantum results

* Novel closed to open string transition as the tension goes to zero.
LAB Banerjee, Parekh (PRL) 20191

* Careful canonical quantisation leads to not one, but three different vacua which give rise to

different quantum wmechanical theories arising out of the same classical theory.
LAB Banerjee, Chakrabortty, Dutta, Parekh 20201

* Lightcone analysis: spacetime Lorentz algebra closes for two theories for P=26. No restriction

on the other theory. All acceptable limits of quantum tensile strings.
LAE Mandlik, Sharma 20211

* |nterpretation in terms of Rindler physics on the worldsheet.
LAB Banerjee, Chakrabortty (PRL) 2021]

* Carroll limit on spacetime induces tensionless limit on worldsheet. Strings become tensionless
near blackhole event horizons. LAB Banerjee, Chakrabortty, Chatterjee 20211
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BMS Induced Representations

» An important class of BMS representations: Massive modules.

» The Hilbert space of these modules contains a wavefunction |M, s) satisfying:

Mo|M,s) = M|M,s), Lo|M,s) =s|M,s), M,|M,s) =0, vn#0.| (33

P This defines a 1-d rep spanned by { Lo, M, cr, cpm }. Can be used to define an induced BMS
module with basis vectors
| W) = LpyLn, ... Ly [M,s).

» Limit from Virasoro X VirasorotoBMSs: L, = £, — L_,,, M,, = (L, + L_,).

P Virasoro primary conditions:
Lylh,h) =0= L,|h,h) (n > 0); Lo|h, h) = h|h,h), L,|h,h) = h|h,h).

» This translates to

1 — 1 _
(Ln _I_ _Mn) |h, h> — O, <_L_n _I_ _M_n> ‘h, h> — O, Yl > O.
€ €

» In the limit, this gives (33), along with the identification: M = e(h + h), s = h — h.



Induced Reps and Tensionless String

\ 4

In term of oscillator modes, the induced modules: B,,|M,s) = 0, Vn # 0.

\ 4

We are interested in the vacuum module. Hence we have B, |I) = 0 where |I) is the induced vacuum.

» Wish to return to harmonic oscillator basis for the tensionless string. Define:

1 ~ 1
Cly = E(AZL B,), C= 5(—14571 BZ,

n

> The algebra: [C*, CY] = mSyuan”?, [CH,CY] = mSupan™”.

P The tensile and tensionless raising and lowering operators are related by

Cl(e) = Bral + B_a" , where: B4+ = = <\/_ + %)

Cl(e) =p_a"” + Bira).
> |0)c: CX|0), =0 = CH|0), Vn > 0. Different from tensile vacuum: mixing of tensile raising & lowering op in C, C.
P In the C basis, the induced vacuum is given by (Cf;“ 1+ C “_n) 1) =0, Vn.

~

> This is precisely the condition of a Neumann boundary state  |[) = AN exp <— E 1C_,,lC n) 10) ¢
n
n



Worldsheet Bogolivbov Transformations

» The relation between operators is a Bogoliubov transformation

84

M =¢“Che™" =cosh0C! —sinh0C",, G=i)» 0 [C_n.é_n = Cn.én]

~

Qb = ¢“Cpe”'“ = —sinh 0 C" + cosh @ és’, tanh § = =

» Relation between the two vacua:

— | | exp[tanh 6C_,C_,]|0).

n=1

0)o = expliG]|0). = ( 1 >1+1+... o_o

» Using the regularisation: 1 + 14+ 1+ ...00 = {(0) = —%

0) o = \/COShQIIexp ‘tanh @ C_,C_,]|0).
n=1

» From the point of view of |0),, |0) ., is a squeezed state.



From Closed to Open Strings

» When e =1, tanh 8 = 0, and we have |0), = |0).. This is the closed string vacuum.

» As e changes from 1, from the point of view of the C observer, the vacuum evolves. It becomes
a squeezed state as shown before.

» In the limit where ¢ — 0, we have tanh 8 = —1. The relation is thus:
0)o = N | [ exp[— C_,C_.]|0).
n=1

This is precisely the Induced vacuum |I) that we introduced before.
> As we said, this is a Neumann boundary state.

» This is thus an open string free to move in all dimensions (or a spacefilling D-brane).

— I - _

We have thus obtained an open string by taking a tensionless limit on a closed string theory. W
| "
|

| — — — _— e = —




d P-branes

From Closed to Open Strings an

Closed tensile string

String grows long
> and floppy as

tension decreases

Decreasing String Tension

Emergent open string in the tensionless limit

Tensile closed string The string grows longer and longer and fills out spacetime as the tension decreases Space-filling D-brane

0 @ Ly &

tension =
2ra’

tension =0

Decreasing string tension




Bose-Einstein like Condensation on Worldsheet

» Consider any perturbative state in the original tensile theory |V) = £,,a" &"  ]0), where
€,,v 1s a polarisation tensor. Let us attempt to understand the evolution of the state as e — 0.

> Close to € = 0, the alpha vacuum can be approximated as follows: |0}, = |I) + €|[;) + € L) + ...

P In this limit, the conditions on the alpha vacuum translate to:
an|0)o = ay|0)q =0, 1 >0
= B,|I) =0,Vn; Au|l) +By|LL) =0, A_,|I) —B_,|I;) =0, n>0.

» One can now take this limit on the state:

A p@_p|0) o = (%B_n +- \/EA_n> (\%Bn — \/EAn> (|I) + e|lLl) +...). = K|I)

All perturbative closed string states condense on the open string induced vacuum. \

Usual tensile

string spectrum
Bose-Einstein

condensate in
the tensionless
limit

Spacing decreases with tension, but no qualitative change

>

Decreasing String Tension

(Smaller lines indicate states at different levels)






7




Tension as Acceleration

e ——

One of the most common occurrences of Bogoliubov transformations
is in the physics of accelerated observers vis-a-vis inertial observers.

Minkowski spacetime <-> Rindler spacetime.

By identifying our Bogolivbov transformations to Rindler Bogolivbov
transformations, we can recast the decrease of tension to the
increase of acceleration.

So, tensionless limit of string theory can be modelled as a series of
worldsheet observers with increasing acceleration.

The tensionless or null string emerges where the accelerated observer
hi;ris the Rindler horizon. This is where the acceleration goes to
infnity.

”i‘ AB, Banerjee, Chakrabortty [PRL 2021] k
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A quick Rindler tour

+ 2d Rindler wetrie: ds% = €% (—dn? + d&?).

: : : 1 . 1
« From Minkowski to Rindler 1 = —¢% sinh an, x = —e® cosh an

a a
% EK)“V‘: t;xqb :::() — nﬂfqb°

+ Minkowski mode expansion

P(0,7) = g + V2d gt + VZna’Z:[anun + a_,u, + a,it, + a_,i)]
n>0

u, = lie”™ ) /\/Azxn, i, = [ie”")]/\/4zn.
+ Rindler mode expansion

B(En) = o + V2 pof +V21d S (BU, + f_yUs + BTy + By U

n>0

0’ _ie—in(€+f1) 7 _ie—in(f—n)
" Varn o Vann .

+ The oscillators {5,3} act onanew vacuum |0)r .
% U’s act only in one wedge. To continue between them one defines smearing

functions. Combinations for both wedges: U® — e-(w/a xR

+ Relation between oscillators:

n2

na

na

LEFT

N2

ns

FIG. 1.

RIGHT

Equal time slices in Rindler spacetimes.




Evolution in Acceleration

+ String equivalent of Rindler observer hitting the horizon = increasingly accelerated world sheets.

String world sheets with increasing acceleration

: —_ . ) . .
Ty ‘:E?- IFT-
prg ,)' 417 pe=.

HP L T

» ' - o b

i THEBSRY TTh

<1 : 5

o-:f -
T

pea = T
7 3o < i
4P o ‘| - _r
. .- 4
o ’ . q -
,.#.,'_.- . o M| L_,_‘l— -
A J T -~
] -4 a5l e + o =
’-t - &t - ¥
Sdpm B L
| A L LS <
(

a=10 a=aj a = as a as a— o0

increasing acceleration —

+ Rindler Bogolivbov transformation at large accelerations:
L1 N 2a 1 N 2a\ _ - L[ jan  [2a 1/ [2a N\
P :§<\/%+\/E)“”+E(\/%‘\/n_n>“‘”’ & ‘zw; vnn)“-”z(vnana)“"'

nmn

+ ldentification: C, = =, C, =p>, €=

% The limit of zero tension is thus the limit of infinite acceleration: ¢ - 0 = a - .

« Evolution: a =0: {£,.5,} = {an &}, 0 <a<oo: {B,(a).B,(a)}. a—oo: {B,.B,} = {C,.C,}. Complete interpolating solution.



Hitting the Horizon: Evolution in Rindler Time

<+ We explored hitting the Rindler horizon by evolving in acceleration.
% The horizon can also be hit by evolving in Rindler time at constant acceleration.

% S0 the infinite time limit on the Rindler worldsheet would also generate the null string.

Increasing n

o) |

FIG. 3. Equal time slices of a Rindler worldsheet.




Hitting the Horizon: Evolution in Rindler Time

+ Mathewmatically, this is the limit 7 = oco. Or equivalently,

n—n, E — €, e — 0.

l‘l’l

+ Conformal generators in Rindler: £, L, = __56’”‘(5"”’)(5’,7 F 0¢).

+ Inthelimitweget: [ — g — 2 = ine=(d, — nédy),

M,=c¢e(L,+L_,)=—i"e™0;.

+ These close to form the BMS algebra as expected and the null string emerges.
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A Tale of Three

From a single classical theory, several inequivalent quantum theories may emerge. This happens when
we consider canonical quantisation of tensionless string theories.

As we saw earlier Classical constraint on the tensionless string: T(1y =0, T3y = 0.

Quantum version: physical spectrum of tensionless strings restricted by (phys|T(1)|phys’) =0, (phys|T(2)|phys’) = 0.

This amountsto  (phys|L.|phys’) =0, (phys|M,|phys") = 0.

For each type of oscillator F obeying (phys|F,|phys’) = 0, there can be three types of solutions.

phys) =0 (n>0),
phys) =0 (n#0),
phys) # 0, but (phys'|F,|phys) = 0.

w o=
SRR




A Tale of Three o

| AB Baner]ee Chakrabortty Dutta Parekh 2001 00354 ?‘

e e — = = S —

+ Here I, = (Ln, M,) .Hence seemingly nine conditions:

M, |phys) =0, (n > 0) My, |phys)
L |phys) = 0, (m > 0), < M,|phys) =0, (n#0) ;; L |phys) = 0, (m #0), < M,|phys)

My |phys) # 0, (V n) M, |phys) #

0, (n>0) M, |phys) =0, (n > 0)
0, (n#0) ¢35 Lilphys) # 0, (Y m), { My|phys) =0, (n # 0)
0, ( ) My |phys) # 0, (V n)

+ But the underlying BMS algebra also has to be satisfied. It turns out that only three of the nine choices lead to
consistent solutions.

+ These are three inequivalent vacua, leading to three inequivalent quantum theories.
e Induced vacuum: Theory obtained from the limit of usual tensile strings.
o Flipped vacuum: Leads to ambitwistor strings. (See e.qg. Casali, Tourkine, (Herfray) 2016-17)

o (scillator vacuum: Interesting new vacuum. Contains hints of huge underlying gauge symmetry.



Critical Dimensions

==
i

2 |
|

i

' AB, Mandlik, Sharma. 2105.0968

e — —

Oscillator

/  Tensile Bosonic ™\ _
/ Closed String Theory

Flipped
or
Ambitwistor

Induced

Tensionless corners of Quantum Tensile String Theory



A sumwary of quantum results

* Novel closed to open string transition as the tension goes to zero.
LAB Banerjee, Parekh (PRL) 20191

* Careful canonical quantisation leads to not one, but three different vacua which give rise to

different quantum wmechanical theories arising out of the same classical theory.
LAB Banerjee, Chakrabortty, Dutta, Parekh 20201

* Lightcone analysis: spacetime Lorentz algebra closes for two theories for P=26. No restriction

on the other theory. All acceptable limits of quantum tensile strings.
LAE Mandlik, Sharma 20211

* |nterpretation in terms of Rindler physics on the worldsheet.
LAB Banerjee, Chakrabortty (PRL) 2021]

* Carroll limit on spacetime induces tensionless limit on worldsheet. Strings become tensionless
near blackhole event horizons. LAB Banerjee, Chakrabortty, Chatterjee 20211



Other results

* Tensionless superstrings: Two varieties depending on the underlying
Superconformal Carrollian algebra.

* Homogeneous Tensionless Superstrings: Fermions scale in same way.
Previous construction: Lindstrom, Sundborg, Theodoridis 1991.
Limiting point of view: AB Chakrabortty, Parekh 2016.

* lnhowmogeneous Tensionless Superstrings: Fermions scale differently.
New tensionless string! AB Banerjee, Chakrabortty, Parekh 2017-18.



Open questions: Tensionless Strings

*+ Analogous calculation of beta-function=0. Consistent backgrounds?

* Linking up to Gross-Mende high enerqgy string scattering from worldsheet
symmetries.

* Attacking the Hagedorn transition from the Carroll perspective. Emergent
degrees of freedom? Lin progress with Banerjee, Mandlik]

* Strings near black holes, strings falling into black holes?
Lin progress with Banerjee, Hartong, Have, Kolekar, Mandlik]

* Extend “Tale of Three” to superstrings. Different superstring theories?

* |ntricate web of tensionless superstring dualities?
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Black holes from Null Strings?

@

Black hole Null String Wrapping Horizon

* Event horizon of black holes are null surfaces.
* In d=3 consider BTZ black holes. Event horizown is a null cirele.

* Proposal: A null string wrapping the event horizon contains in its spectrum the wmicro
states of a BTZ black hole.

* We can reproduce the Bekenstein-Hawking entropy as well as its logarithmic corrections!

* Possible generalisations to higher dimensions.



Horizon Strings

* Proposal motivated by symwetries. Symwmetries of event horizon same as symmetries of
the null string worldsheet.

* Pynawic horizon on which d.of. live is then equivalent to a null string.
* Quantize the null string in Oscillator Yacuum. Use Lightcone gauge for convenience.
* Black hole states: a band of states with sufficiently high level.

* Mass is proportional to the radius of the horizon. Motivated by Near Horizon first law.
[Donnay et al 2015 Afshar et al 20161].

* Complicated combinatorics leads to entropy and amazing the correct logarithmic
corrections.

* Can be thought of as a precise formulation of the membrane paradigm.

* Generalization to d=4 with null membranes in progress and showing interesting signs.



Null strings to BTZ wmicrostates

ILST action: s = g f dr do (VA89,X") (V23,X") G (X). Metric: GuydX*dX” = —2dx* dx™ + R;; d¢”

K

bavge fixed action: S, =3 [ drdo (~20:X0.X7) + @:x*7)

Allow strings fo wind: X?(o + 2x,7) = X?(0, 1) + 27 R w
Vacuum: |0, p*, w) = |0)
Null string states over oscillator vacuum: [¥) = [p¥, {ri}, {si}, @) Level 1: J_{|0), J_10)

Level 2: J_5|0), J2,10), J_1J_1]0), JZ,|0), J_2[0)

Constraints: s—r=wn.

2
Mass formula: m2 = ( + s)x + % . Notice T-duality no wmore holds.
h

Now, microstates of the BTZ blackhole: |m),.., = I}, {s:}, w, n)

n’ n’

Near horizon firstlaw: m =«R;. -> «R,=s+r+—:=N+— N =r+s.
KR; kR;

Approximation: Large black hole. R, > 1/ Vk



Entropy of BTZ black hole

* States from different sectors (complicated combinatorics):
*  Soft: string momentum vanishes n = 0
* High momentum sectorn > N.Exponentially suppressed. » =~ N also exponentially suppressed.
* Generic sector, typical microstates N > n.
*  Non-winding sector w = 0.
*  Full partition funetion: Zsz = Zeow + ZusN + ZnaN + Zgeneric + Zw=0 -

3
* Bekenstein-Hawking entropy: S =1In Zz, = 27 Ry, \/§ InR, +o(InRy) .

2

3 Area
. We cannot get the 3/16 from anything yet. Only input!

* Wefix «= This gives Ssx =

16G% 4G

* But the coefficient of the log ferm is the real surprise. Unexpected! Must be something very deep!



A theory of Black holes based on Null Mewmbranes?

* Looks like the theory of null strings has something deep to say about BTZ microstates.
* (Of course, there are questions. This is an effective theory.
* How can you make this quantum mechanically consistent? What about anomalies?

* Relatedly: Dimensions? Looks like D=3 for the mowment. Add spectator V=23 dimensions?
Wish away KK modes?

* Butcan we go further? Null 2-branes for D=4 Blackholes?

* (lassical analysis Lin progress AB D6 MMS, othersl seews to indicate that we do have an
analogous infinite dimensional symwmetry related to BMS4 at play here.

* ls it possible to quantise this? Can the infinite dimensional algebra work its magic again,
unlike the relativistic case? We hope to come back with answers.






