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Null Strings?! What? Why? 
Massless point particles move on null geodesics. Worldlines are null.  

Null strings: extended analogues of massless point particles.  
Massless point particles => Tensionless strings.  

Tensionless or null strings: studied since Schild in 1970’s.

Tension                           : point particle limit of string theory => Classical gravity.  

Tensionless regime:                           : ultra-high energy, ultra-quantum gravity! 

Null strings are vital for: 

A. Strings at very high temperatures: Hagedorn Phase.  

B. Strings near spacetime singularities: Strings near Black holes, near the Big Bang.  

C. Connections to higher spin theory. 
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Summary of Results
2d Conformal Carrollian (or BMS3) and its supersymmetric cousins arise 
on the worldsheet of the tensionless string replacing the two copies of 
the (super) Virasoro algebra.  

Classical tensionless strings: properties can be derived intrinsically or as 
a limit of usual tensile strings.  

 Quantum tensionless strings: many surprising new results.  

A theory of Black hole microstates based on null strings! 



Classical Tensionless Strings

Isberg, Lindstrom, Sundborg, Theodoridis 1993
AB 2013; AB, Chakrabortty, Parekh 2015.



Going tensionless
INTRODUCTION CLASSICAL ASPECTS SUPERSTRINGS QUANTUM ASPECTS APPLICATIONS REMARKS

CLASSICAL CLOSED STRINGS
Isberg, Lindstrom, Sundborg,Theodoridis 1993

Start with Nambu-Goto action:

S = �T

Z
d

2⇠
p

� det �↵� . (1)

To take the tensionless limit, first switch to Hamiltonian framework.

I Generalised momenta: Pm = T
p
���0↵@↵Xm.

I Constraints: P
2 + T

2��00 = 0, Pm@�X
m = 0.

I Hamiltonian: HT = HC + ⇢i(constraints)i = �(P
2 + T

2��00) + ⇢ Pm@�X
m.

Action after integrating out momenta:

S =
1
2

Z
d

2⇠
1

2�


Ẋ
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INTRODUCTION CLASSICAL ASPECTS SUPERSTRINGS QUANTUM ASPECTS APPLICATIONS REMARKS

SYMMETRIES OF TENSIONLESS CLOSED STRINGS

Isberg, Lindstrom, Sundborg,Theodoridis 1993

I Tensionless action is invariant under world-sheet diffeomorphisms.
I Fixing gauge: “Conformal” gauge: V

↵ = (v, 0) (v: constant).

I Tensile: Residual symmetry after fixing conformal gauge = Vir ⌦ Vir.
Central to understanding string theory.

I Tensionless: Similar residual symmetry left over after gauge fixing.

I For world-sheet diffeomorphism: ⇠↵ ! ⇠↵ + "↵, change in vector density:
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↵ = �V · @"↵ + " · @V

↵ +
1
2
(@ · ")V

↵
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I Tensionless limit can now be taken systematically.
I T ! 0 )

g
↵� =

✓
�1 ⇢
⇢ �⇢2

◆
.

I Metric is degenerate. det g = 0.

I Replace degenerate metric density T
p

�gg
↵� by a rank-1 matrix V

↵
V

� where V
↵ is a vector

density

V
↵

⌘
1

p
2�

(1, ⇢) (4)

I Action in T ! 0 limit

S =

Z
d

2⇠ V
↵

V
�@↵X

m@�X
n⌘mn. (5)

I Starting point of tensionless strings.
I Need not refer to any parent theory. Treat this as action of fundamental objects.
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INTRODUCTION CLASSICAL ASPECTS SUPERSTRINGS QUANTUM ASPECTS APPLICATIONS REMARKS

CLOSURE?

Usual Tensile String Theory Tensionless String Theory

Your favourite thing in Tensile 
String Theory

Your corresponding favourite 
thing in Tensionless String 

Theory

Fundamentally Tensionless Theory

� � �, � � ��

� � �, � � ��

Completing the square?



Gauge and Residual Gauge Symmetries 
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SYMMETRIES OF TENSIONLESS CLOSED STRINGS

Isberg, Lindstrom, Sundborg,Theodoridis 1993
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Isberg et al find cL = cM = 0.
I 3d Bondi-Metzner-Sachs algebra or 2d Galilean Conformal Algebra.
I Various other applications: Holography of 3d flat space, Galilean field theories,

non-relativistic limit of AdS/CFT.
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I Tensionless action is invariant under world-sheet diffeomorphisms.
I Fixing gauge: “Conformal” gauge: V

↵ = (v, 0) (v: constant).

I Tensile: Residual symmetry after fixing conformal gauge = Vir ⌦ Vir.
Central to understanding string theory.

I Tensionless: Similar residual symmetry left over after gauge fixing.

I For world-sheet diffeomorphism: ⇠↵ ! ⇠↵ + "↵, change in vector density:

�"V
↵ = �V · @"↵ + " · @V

↵ +
1
2
(@ · ")V

↵

I Tensionless residual symmetries: for V
↵ = (v, 0),

"↵ =
�

f
0(�)⌧ + g(�), f (�)
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BMS3 or 2d Conformal Carroll Algebra



Tensionless Limit from the Worldsheet

INTRODUCTION CLASSICAL ASPECTS SUPERSTRINGS QUANTUM ASPECTS APPLICATIONS REMARKS

TENSIONLESS STRINGS: SYMMETRIES AS A LIMIT
A Bagchi 2013

I Tensile string: Residual symmetry in conformal gauge g↵� = e
�⌘↵� :

[Lm,Ln] = (m � n)Lm+n +
c

12
m(m

2
� 1)�m+n,0

[Lm, L̄n] = 0, [L̄m, L̄n] = (m � n)L̄m+n +
c̄

12
m(m

2
� 1)�m+n,0 (10)

I World-sheet is a cylinder. Symmetry best expressed as 2d conformal generators on the
cylinder.

Ln = ie
in!@!, L̄n = ie

in!̄@!̄ (11)
where !, !̄ = ⌧ ± �. Vector fields generate centre-less Virasoros.

I Tensionless limit ) length of string becomes infinite (� ! 1).
I Ends of closed string identified ) limit best viewed as (� ! �, ⌧ ! ✏⌧, ✏ ! 0).
I Define

Ln = Ln � L̄�n, Mn = ✏(Ln + L̄�n). (12)

I New vector fields (Ln, Mn) well-defined in limit and given by:

Ln = ie
in�(@� + in⌧@⌧ ), Mn = ie

in�@⌧ . (13)

I These are exactly the generators defined previously . Close to form BMS3.
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nition in (4.49) and put in them back into (4.33):

Ln = 1
2

X

m

£
C°m ·Cm+n ° C̃°m · C̃m°n

§
; (4.40a)

Mn = 1
2

X

m

£
C°m ·Cm+n + C̃°m · C̃m°n +2C°m · C̃°m°n

§
. (4.40b)

It may be pointed out here that Mn has a cross term consisting of both C and C̃ modes.

The above forms will prove useful when we impose the constraints on the Hilbert space

of the quantum theory.

4.2 Limit from tensile closed bosonic string

We mentioned in the introduction that the string becomes extremely long and floppy

in the tensionless limit. This means that the square of the string length Æ0 !1. From

a worldsheet point of view, this is illustrated in Figure 4.1. In terms of worldsheet coor-

Figure 4.1: Closed string worldsheet in the tensionless limit.

dinates the limit can be expressed as æ!1 and ø! ø. For a closed string, we would

like to identify the ends of the string: æ=æ+2º, hence the limit is better viewed as

ø! "ø; æ!æ (4.41)
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INTRODUCTION CLASSICAL ASPECTS SUPERSTRINGS QUANTUM ASPECTS APPLICATIONS REMARKS

TENSIONLESS STRINGS AND CARROLLIAN STRUCTURES

I Tensionless limit on the worldsheet: � ! �, ⌧ ! ✏⌧, ✏ ! 0
I Worldsheet velocities v = �

⌧ ! 1. Effectively, v

c
! 1

I Hence worldsheet speed of light ! 0. Carrollian limit.

I Degenerate worldsheet metric.
I Riemannian tensile worldsheet ! Carrollian tensionless worldsheet.

I Action for tensionless string ) a massless spin-0 particle coupled to a Carrollian background.
Compare, e.g. with [Bergshoeff, Gomis, Rollier, Rosseel, Veldhuis 2017]

I BMS symmetries are conformal Carroll symmetries.
I This is why the BMS3 algebra appears here.

I Similar discussions: [Duval, Gibbons, Horvathy 2014]
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I Define: L(f ) = f
0(�)⌧@⌧ + f (�)@�, M(g) = g(�)@⌧ .

I Expand: f =
P

ane
in�, g =

P
bne

in�

I Therefore we have:

L(f ) =
X

n

ane
in�(@� + in⌧@⌧ ) =

X

n

anLn, (7)

M(g) =
X

n

bne
in�@⌧ =

X

n

bnMn. (8)

I Symmetry algebra in terms of Fourier modes:

[Lm, Ln] = (m � n)Lm+n +
cL

12
(m

3
� m)�m+n,0, [Mm, Mn] = 0.

[Lm, Mn] = (m � n)Mm+n +
cM

12
(m

3
� m)�m+n,0. (9)

Isberg et al find cL = cM = 0.
I 3d Bondi-Metzner-Sachs algebra or 2d Galilean Conformal Algebra.
I Various other applications: Holography of 3d flat space, Galilean field theories,

non-relativistic limit of AdS/CFT.
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Tensionless EM Tensor and constraints
INTRODUCTION CLASSICAL ASPECTS SUPERSTRINGS QUANTUM ASPECTS APPLICATIONS REMARKS

TENSIONLESS EM-TENSOR A Bagchi 2013

I Spectrum of tensile string theory (in conformal gauge in flat space)
I Quantise worldsheet theory as a theory free scalar fields.
I Constraint: vanishing of EOM of metric (which is fixed to be flat).
I Op form: Physical states vanish under action of modes of E-M tensor.

I EM tensor for 2d CFT on cylinder:

Tcyl = z
2
Tplane �

c

24
=

X

n

Lne
in!

�
c

24
; T̄cyl =

X

n

L̄ne
in!̄

�
c̄

24
(14)

I The Ultra-relativistic EM tensor

T(1) = lim
✏!0

✓
Tcyl � T̄cyl

◆
=

X

n

(Ln � in⌧Mn)e
in�

�
cL

24
(15)

T(2) = lim
✏!0

✏

✓
Tcyl + T̄cyl

◆
=

X

n

Mne
in�

�
cM

24
(16)

I Classical constraint on the tensionless string: T(1) = 0, T(2) = 0.
I Quantum version: physical spectrum of tensionless strings restricted by

hphys|T(1)|phys0i = 0, hphys|T(2)|phys0i = 0. (17)
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(16)

I Classical constraint on the tensionless string: T(1) = 0, T(2) = 0.
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hphys|T(1)|phys0i = 0, hphys|T(2)|phys0i = 0. (17)
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TENSIONLESS STRINGS: SYMMETRIES AS A LIMIT
A Bagchi 2013

I Tensile string: Residual symmetry in conformal gauge g↵� = e
�⌘↵� :

[Lm,Ln] = (m � n)Lm+n +
c

12
m(m

2
� 1)�m+n,0

[Lm, L̄n] = 0, [L̄m, L̄n] = (m � n)L̄m+n +
c̄

12
m(m

2
� 1)�m+n,0 (10)

I World-sheet is a cylinder. Symmetry best expressed as 2d conformal generators on the
cylinder.

Ln = ie
in!@!, L̄n = ie

in!̄@!̄ (11)
where !, !̄ = ⌧ ± �. Vector fields generate centre-less Virasoros.

I Tensionless limit ) length of string becomes infinite (� ! 1).
I Ends of closed string identified ) limit best viewed as (� ! �, ⌧ ! ✏⌧, ✏ ! 0).
I Define

Ln = Ln � L̄�n, Mn = ✏(Ln + L̄�n). (12)

I New vector fields (Ln, Mn) well-defined in limit and given by:

Ln = ie
in�(@� + in⌧@⌧ ), Mn = ie

in�@⌧ . (13)

I These are exactly the generators defined previously . Close to form BMS3.
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INTRINSIC ANALYSIS: EOM AND SOLUTIONS
AB, Chakrabortty, Parekh 2015

I Equation of motion in V
a = (v, 0) gauge: Ẍ

µ = 0.
I Solution:

X
µ(�, ⌧) = x

µ +
p

2c0A
µ
0 � +

p

2c0B
µ
0 ⌧ + i

p

2c0
X

n 6=0

1
n

�
A

µ
n
� in⌧B

µ
n

�
e

in� (18)

I Closed string b.c.: X
µ(�, ⌧) = X

µ(� + 2⇡, ⌧) ) A
µ
0 = 0.

I Constraints:

Ẋ
2 = 2c

0 X

m,n

B�m · Bm+n e
in� = 0, Ẋ · X

0 = 2c
0 X

m,n

(A�m � in⌧B�m) · Bm+n e
in� = 0

I Define:
Ln =

X

m

A�m · Bm+n, Mn =
X

m

B�m · Bm+n

I Classical constraints in terms of modes:
X

n

(Ln � in⌧Mn) e
in� = 0 = T(1),

X

n

Mn e
in� = 0 = T(2). (19)

I Familiar form obtained earlier from purely algebraic considerations.
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µ = 0.
I Solution:

X
µ(�, ⌧) = x

µ +
p

2c0A
µ
0 � +

p

2c0B
µ
0 ⌧ + i

p

2c0
X

n 6=0

1
n

�
A

µ
n
� in⌧B

µ
n

�
e

in� (18)

I Closed string b.c.: X
µ(�, ⌧) = X

µ(� + 2⇡, ⌧) ) A
µ
0 = 0.

I Constraints:

Ẋ
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INTRINSIC ANALYSIS: EOM AND SOLUTIONS

AB, Chakrabortty, Parekh 2015

I The algebra of the modes are:

{A
µ
m
, A

⌫
n
} = 0, {B

µ
m
, B

⌫
n
} = 0, {A

µ
m
, B

⌫
n
} = �im�m+n,0 ⌘µ⌫ . (20)

Note: this is not the algebra of harmonic oscillator modes. (More later.)

I The worldsheet symmetry algebra of tensionless strings, now constructed from the quadratics
of the modes:

{Lm, Ln} = �i(m � n)Lm+n, {Lm, Mn} = �i(m � n)Mm+n, {Mm, Mn} = 0. (21)

I Quantization: {, }PB ! �
i

~ [, ] leads to the BMS3 Algebra.
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Note: this is not the algebra of harmonic oscillator modes. (More later.)

I The worldsheet symmetry algebra of tensionless strings, now constructed from the quadratics
of the modes:

{Lm, Ln} = �i(m � n)Lm+n, {Lm, Mn} = �i(m � n)Mm+n, {Mm, Mn} = 0. (21)

I Quantization: {, }PB ! �
i

~ [, ] leads to the BMS3 Algebra.
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Limiting Analysis: EOM and Mode Expansions
INTRODUCTION CLASSICAL ASPECTS SUPERSTRINGS QUANTUM ASPECTS APPLICATIONS REMARKS

LIMITING ANALYSIS: MODES
AB, Chakrabortty, Parekh 2015

I Tensile string mode expansion:

X
µ(�, ⌧) = x

µ + 2
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2↵0↵µ
0 ⌧ + i
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2↵0
X

n6=0

1
n
[↵̃µ
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�in(⌧��)].

I The limiting procedure: ⌧ ! ✏⌧, � ! �, ↵0 = c
0/✏ with ✏ ! 0
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I Thus we get a relation between the tensionless and tensile modes:

A
µ
n

=
1
p
✏
(↵µ

n
� ↵̃µ

�n
), B

µ
n

=
p
✏(↵µ

n
+ ↵̃µ

�n
). (22)

I The equivalent of the Virasoro contraints are now related as:

Ln = Ln � L̄�n, Mn = ✏
⇥
Ln + L̄�n

⇤
(23)
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INTRINSIC ANALYSIS: EOM AND SOLUTIONS
AB, Chakrabortty, Parekh 2015

I Equation of motion in V
a = (v, 0) gauge: Ẍ

µ = 0.
I Solution:
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I Closed string b.c.: X
µ(�, ⌧) = X

µ(� + 2⇡, ⌧) ) A
µ
0 = 0.

I Constraints:

Ẋ
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0 X
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in� = 0, Ẋ · X

0 = 2c
0 X
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I Define:
Ln =

X

m

A�m · Bm+n, Mn =
X

m

B�m · Bm+n

I Classical constraints in terms of modes:
X

n

(Ln � in⌧Mn) e
in� = 0 = T(1),

X

n

Mn e
in� = 0 = T(2). (19)

I Familiar form obtained earlier from purely algebraic considerations.
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Quantum Tensionless Strings



A summary of quantum results
Novel closed to open string transition as the tension goes to zero.  
[AB, Banerjee, Parekh (PRL) 2019]  

Careful canonical quantisation leads to not one, but three different vacua which give rise to 
different quantum mechanical theories arising out of the same classical theory. 
[AB, Banerjee, Chakrabortty, Dutta, Parekh 2020]  

Lightcone analysis: spacetime Lorentz algebra closes for two theories for D=26. No restriction 
on the other theory. All acceptable limits of quantum tensile strings.   
[AB, Mandlik, Sharma 2021]  

Interpretation in terms of Rindler physics on the worldsheet.  
[AB, Banerjee, Chakrabortty (PRL) 2021]  

Carroll limit on spacetime induces tensionless limit on worldsheet. Strings become tensionless 
near blackhole event horizons. [AB, Banerjee, Chakrabortty, Chatterjee 2021] 



Tensionless Path From Closed to Open Strings

AB, Banerjee, Parekh, Physical Review Letters 123 (2019) 111601.



BMS Induced Representations

INTRODUCTION CLASSICAL ASPECTS SUPERSTRINGS QUANTUM ASPECTS APPLICATIONS REMARKS

BMS INDUCED REPRESENTATIONS
Campoleoni, Gonzalez, Oblak, Riegler 2016

I An important class of BMS representations: Massive modules.
I The Hilbert space of these modules contains a wavefunction |M, si satisfying:

M0|M, si = M|M, si, L0|M, si = s|M, si, Mn|M, si = 0, 8n 6= 0. (33)

I This defines a 1-d rep spanned by {L0, Mn, cL, cM}. Can be used to define an induced BMS

module with basis vectors
| i = Ln1 Ln2 . . . Ln

k
|M, si. (34)

I Limit from Virasoro ⇥ Virasoro to BMS3: Ln = Ln � L̄�n, Mn = ✏(Ln + L̄�n).

I Virasoro primary conditions:

Ln|h, h̄i = 0 = L̄n|h, h̄i (n > 0); L0|h, h̄i = h|h, h̄i, L̄n|h, h̄i = h̄|h, h̄i. (35)

I This translates to
✓

Ln +
1
✏

Mn

◆
|h, h̄i = 0,

✓
�L�n +

1
✏

M�n

◆
|h, h̄i = 0, n > 0. (36)

I In the limit, this gives (33), along with the identification: M = ✏(h + h̄), s = h � h̄.
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Induced Reps and Tensionless String
INTRODUCTION CLASSICAL ASPECTS SUPERSTRINGS QUANTUM ASPECTS APPLICATIONS REMARKS

INDUCED REPS IN THE TENSIONLESS STRING
AB et al 2019 [to appear].

I In term of oscillator modes, the induced modules: Bn|M, si = 0, 8n 6= 0.
I We are interested in the vacuum module. Hence we have

Bn|Ii = 0 (37)

where |Ii is the induced vacuum.

I Wish to return to harmonic oscillator basis for the tensionless string. Define:

C
µ
n
=

1
2
(A

µ
n
+ B

µ
n
), C̃

µ
n
=

1
2
(�A

µ
�n

+ B
µ
�n

) (38)

I The algebra: [Cµ
m
, C

⌫
n
] = m�m+n⌘

µ⌫ , [C̃µ
m
, C̃

⌫
n
] = m�m+n⌘

µ⌫ .
I The tensile and tensionless raising and lowering operators are related by

C
µ
n
(✏) = �+↵µ

n
+ ��↵̃µ

�n
, where: �± =

1
2

✓
p
✏ ±

1
p
✏

◆

C̃
µ
n
(✏) = ��↵µ

�n
+ �+↵̃µ

n
. (39)
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I In the C basis, the induced vacuum is given by

(C
µ
n
+ C̃

µ
�n

)|Ii = 0, 8n. (40)

I This is precisely the condition of a Neumann boundary state and the solution is given by

|Ii = N exp

 
�

X

n

1
n

C�nC̃�n

!
|0ic (41)

where N is a (infinite) normalisation constant.
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I The relation between operators is a Bogoliubov transformation

↵µ
n

= e
iG

Cne
�iG = cosh ✓ C

µ
n
� sinh ✓ C̃

µ
�n

, G = i

1X

n=1

✓
h

C�n.C̃�n � Cn.C̃n

i

↵̃µ
n

= e
iG

C̃ne
�iG = � sinh ✓ C

µ
�n

+ cosh ✓ C̃
µ
n
, tanh ✓ =

✏ � 1
✏ + 1

(42)

I Relation between the two vacua:

|0i↵ = exp[iG]|0ic =

✓
1

cosh ✓

◆1+1+... 1Y

n=1

exp[tanh ✓C�nC̃�n]|0ic (43)

I Using the regularisation: 1 + 1 + 1 + . . .1 = ⇣(0) = �
1
2

|0i↵ =
p

cosh ✓
1Y

n=1

exp[tanh ✓ C�nC̃�n]|0ic (44)

I From the point of view of |0ic, |0i↵ is a squeezed state.
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I When ✏ = 1, tanh ✓ = 0, and we have |0i↵ = |0ic. This is the closed string vacuum.
I As ✏ changes from 1, from the point of view of the C observer, the vacuum evolves. It becomes

a squeezed state as shown before.

I In the limit where ✏ ! 0, we have tanh ✓ = �1. The relation is thus:

|0i↵ = N

1Y

n=1

exp[� C�nC̃�n]|0ic (45)

This is precisely the Induced vacuum |Ii that we introduced before.
I As we said, this is a Neumann boundary state.
I This is thus an open string free to move in all dimensions (or a spacefilling D-brane).

We have thus obtained an open string by taking a tensionless limit on a closed string theory.
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I Norm of the boundary state: N = cosh ✓ = 1
2

⇣
p
✏+ 1p

✏

⌘
! 1 as ✏ ! 0.

I Consider any perturbative state in the original tensile theory | i = ⇠µ⌫↵
µ
�n
↵̃⌫

�n
|0i↵ where

⇠µ⌫ is a polarisation tensor. Let us attempt to understand the evolution of the state as ✏ ! 0.
I Close to ✏ = 0, the alpha vacuum can be approximated as follows:

|0i↵ = |Ii + ✏|I1i + ✏2
|I2i + . . . .

I In this limit, the conditions on the alpha vacuum translate to:

↵n|0i↵ = ↵̃n|0i↵ = 0, n > 0
) Bn|Ii = 0, 8n; An|Ii + Bn|I1i = 0, A�n|Ii � B�n|I1i = 0, n > 0.

I One can now take this limit on the state:

↵�n↵̃�n|0i↵ =

✓
1
p
✏

B�n +
p
✏A�n

◆✓
1
p
✏

Bn �
p
✏An

◆
(|Ii + ✏|I1i + . . .). ! K|Ii

I All perturbative closed string states condense on the open string induced vacuum.
I The mass of the open string state is zero.

I New non-perturbative degrees of freedom?

| i = exp (
X

n2Z

!nLn)|Ii, M0| i = 0, Mn| i = �n| i (46)
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Tension as Acceleration
AB, Banerjee, Chakrabortty [PRL 2021]

✤ One of the most common occurrences of Bogoliubov transformations 
is in the physics of accelerated observers vis-a-vis inertial observers.  

✤ Minkowski spacetime <-> Rindler spacetime.   

✤ By identifying our Bogoliubov transformations to Rindler Bogoliubov 
transformations, we can recast the decrease of tension to the 
increase of acceleration.  

✤ So, tensionless limit of string theory can be modelled as a series of 
worldsheet observers with increasing acceleration.  

✤ The tensionless or null string emerges where the accelerated observer 
hits the Rindler horizon. This is where the acceleration goes to 
infinity.  

+

a rindIa!!?
"

"

÷÷÷I :



✤ 2d Rindler metric:  

✤ From Minkowski to Rindler 

✤ EOM:  

✤ Minkowski mode expansion 

✤ Rindler mode expansion 
 
 
 

✤ The oscillators              act on a new vacuum           .   

✤ U’s act only in one wedge. To continue between them one defines smearing  
 
functions. Combinations for both wedges:  

✤ Relation between oscillators:  
 

A quick Rindler tour

observer looking at the usual string sees a space-filling
D-25 brane [15]. This is a closed to open string transition.
The complementary picture of the formation of the D
instanton fits in rather wonderfully with Rindler world-
sheets. This is a “dual” picture of the formation of an open
string from a closed string in the tensionless limit, as seen
by an observer sitting in the α vacuum.
We pictorially depict the above process in Fig. 2. The

“inertial” closed string worldsheet is the cylinder on the
extreme left with acceleration a ¼ 0. For increasing accel-
erations ai ða1 < a2 < a3Þ, the worldsheet can be given by
increasingly distorted hyperboloids. Ultimately, at a → ∞,
the worldsheet becomes the light cone. The boundary states
in Eq. (31) are defined at τ ¼ 0; hence, to understand their
formation, we consider the τ ¼ 0 cross sections depicted at
the bottom of Fig. 2. Increasingly accelerated worldsheets
result in circles of lower and lower radius, until at a → ∞,
we get a point. This spacetime point is what is the D
instanton described above mathematically. The comple-
mentary picture is that when viewed from the j0ic, j0iα
becomes a longer and longer string, gradually filling up all
of spacetime to form a D-25 brane when the tension goes to
zero [15].
Reaching the Rindler horizon II.—Finally, we discuss

reaching the Rindler horizon at constant acceleration by
evolving in time. We are interested in Rindler time. So this
is a limit η → ∞. We will equivalently view this as

η → η; ξ → ϵξ; ϵ → 0: ð35Þ

To understand this limit, we rewrite the 2D conformal
generators in Rindler spacetime (we put a ¼ 1):

Ln; L̄n ¼ $ in

2
enðξ−ηÞð∂η ∓ ∂ξÞ: ð36Þ

In the limit ϵ → 0, we get

Ln ¼ Ln − L̄−n ¼ ine−nηð∂η − nξ∂ξÞ;
Mn ¼ ϵðLn þ L̄−nÞ ¼ −ine−nη∂ξ: ð37Þ

This closes to form the classical part of the BMS algebra
(11) (i.e., cL ¼ cM ¼ 0), as expected. This is again thus the
null string, which we had expected. A detailed analysis of
the aspects of Rindler physics on constant accelerated
worldsheets will be presented elsewhere [16].
We now present a particularly intriguing picture that

arises naturally on constant acceleration worldsheets.
Notice that in Rindler spacetime, as depicted in Fig. 1,
constant Rindler time (η) slices are straight lines through
the origin with increasing slope on the Rindler R wedge
depicted by ηi (η1 < η2 < η3). At η → ∞, this hits the light
cone. On the L wedge, however, time runs backward, and
the same slices are obtained by continuing R-wedge lines
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FIG. 1. Equal time slices in Rindler spacetimes.

FIG. 2. Increasing accelerated worldsheets.

FIG. 3. Equal time slices of a Rindler worldsheet.
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Introduction.—The study of physics in accelerated
frames of reference is an intriguing and fruitful venture.
Accelerated observers in Minkowski spacetimes view the
Rindler metric and experience a horizon. The entire
Minkowski diamond is not accessible to them anymore,
and in this frame of reference, physics is thermal. Because
of the unavailability of information from beyond the
Rindler horizon, the density matrix of this accelerated
observer is related to that of an inertial Minkowski observer
by partially tracing over the inaccessible degrees of free-
dom. All of this is, of course, well understood and is very
useful for black hole physics since the near-horizon limit of
a black hole typically yields a Rindler spacetime. Our
discussions in this Letter are rather unique. We want to
understand the aspects of Rindler physics on the worldsheet
of a closed string. Our motivation for doing so is also rather
novel, as we elaborate below.
String theory is currently the most promising of avenues

for formulating a theory of quantum gravity. One of its
primary endearing features is the paucity of tuneable
parameters. The free theory has only one, the length of
the fundamental string (ls). ls → 0 reduces the string to a
point particle and the theory to the well-understood
Einstein theory of general relativity. In this work, we are
interested by the other extreme limit, where ls → ∞ [1].
This bizarre limit corresponds to the ultrastringy regime of
string theory that is very different from Einstein’s theory.

The quantum version of this theory would be “very stringy”
quantum gravity. This limit also takes the tension of the
fundamental string to zero. Our objective in this Letter is to
formulate the decreasing string tension in terms of accel-
erated string worldsheets.
The tensionless string is a null string with a degenerate

worldsheet metric. We will show in this Letter that the
worldsheet analog of hitting the Rindler horizon leads to
the formation of the null string. Rindler observers can
approach the horizon in two distinct ways: time evolution at
a fixed acceleration or evolution in acceleration at a
constant time. The limit from the tensile to the tensionless
string can also be formulated in terms of increasingly
accelerated worldsheets or time evolution on a constant
acceleration worldsheet. We shall follow both routes with
interesting consequences, the most intriguing among which
is what we call null string complementarity. Depending on
whether the observer sits on an inertial worldsheet and
observes an accelerated one, or vice versa, they see the
emergence of different complementary boundary states as
the closed string becomes tensionless. The inertial world-
sheet sees the accelerated closed string vacuum evolve into
a spacetime point, a D instanton, while the infinitely
accelerated observer sees the inertial vacuum grow into
a space-filling D-25 brane. No one observer has access to
both pictures.
Rindler physics.—Accelerated observers in Minkowski

spacetimes moving on trajectories x2 − t2 ¼ κ−2 (κ is
proper acceleration) describe Rindler space with the metric

ds2R ¼ e2aξð−dη2 þ dξ2Þ: ð1Þ

Minkowski and Rindler spacetimes are linked by
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t ¼ 1

a
eaξ sinh aη; x ¼ 1

a
eaξ cosh aη; ð2Þ

where κ ¼ ae−aξ, and a is the redefined acceleration.
Equation (2) is for the right Rindler wedge only
(R∶jtj < x; x > 0). There is an equivalent left wedge
(L∶jtj < x; x < 0), for which Eq. (2) picks up negative
signs.
We now consider a massless scalar field theory in

Rindler spacetime [2]. Since flat and Rindler backgrounds
are conformally related, the equations of motion (EOMs)
for the field are the same:

□t;xϕ ¼ 0 ¼ □η;ξϕ: ð3Þ

For the Minkowski solution, now defined on a cylinder
ðσ; τÞ, the wave equation is solved by

ϕðσ; τÞ ¼ ϕ0 þ
ffiffiffiffiffiffiffi
2α0

p
α0τ

þ i

ffiffiffiffi
α0

2

r X

n

"
αn
n
e−inðτþσÞ þ α̃n

n
e−inðτ−σÞ

#
; ð4Þ

where oscillators satisfy ½αn; αm& ¼ nδnþm and annihilate
the Minkowski vacuum j0iM. To match with usual scalar
field modes, we write (4)

ϕðσ; τÞ ¼ ϕ0 þ
ffiffiffiffiffiffiffi
2α0

p
α0τ

þ
ffiffiffiffiffiffiffiffiffi
2πα0

p X

n>0

½αnun þ α−nu'n þ α̃nũn þ α̃−nũ'n&;

ð5Þ

where un ¼ ½ie−inðτþσÞ&=
ffiffiffiffiffiffi
4π

p
n, ũn ¼ ½ie−inðτ−σÞ&=

ffiffiffiffiffiffi
4π

p
n.

Similarly, we write the Rindler mode expansion as

ϕðξ; ηÞ ¼ ϕ0 þ
ffiffiffiffiffiffiffi
2α0

p
β0ξ

þ
ffiffiffiffiffiffiffiffiffi
2πα0

p X

n>0

½βnUn þ β−nU'
n þ β̃nŨn þ β̃−nŨ'

n&;

ð6Þ

where the mode functions are now defined as

Un ¼
ie−inðξþηÞ

ffiffiffiffiffiffi
4π

p
n

; Ũn ¼
ie−inðξ−ηÞffiffiffiffiffiffi

4π
p

n
: ð7Þ

The oscillators ðβ; β̃Þ now act on a new vacuum j0iR.
Importantly, Un is only defined in the L wedge (hence
called UðLÞ

n ) and Ũn only in the R wedge (UðRÞ
n ), unlike flat

space. To continue between wedges, one needs to define the
smearing functions. The combinations analytically contin-
ued in both wedges take the form [3]

UðRÞ
n − e−ðπn=aÞUðLÞ'

−n ; UðRÞ'
−n − eðπn=aÞUðLÞ

n : ð8Þ

Using these combinations of modes lead us to Bogoliubov
transformations between the two sets of oscillators in
Rindler and Minkowski space with a form [3]

βn ¼
eπn=2affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 sinh πn

a

p αn −
e−πn=2affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 sinh πn

a

p α̃−n; ð9aÞ

β̃n ¼ −
e−πn=2affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 sinh πn

a

p α−n þ
eπn=2affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 sinh πn

a

p α̃n: ð9bÞ

Equation (9) forms the backbone of our analysis in this
Letter.
Intrinsic look at tensionless strings.—The starting point

of our recapitulation is the action [4]

SILST ¼
Z

d2ξVαVβ∂αXμ∂βXνημν: ð10Þ

Equation (10) can be obtained from the Polyakov action for
the bosonic string as tension T → 0 [4], where vector
densities Vα replace the degenerate worldsheet metric. Like
in tensile string theory, Eq. (10) enjoys worldsheet diffeo-
morphism symmetry and needs to be gauge fixed. In the
Vα ¼ ð1; 0Þ gauge, the residual symmetry is

½Ln; Lm& ¼ ðn −mÞLnþm þ cLδnþm;0ðn3 − nÞ;
½Ln;Mm& ¼ ðn −mÞMnþm þ cMδnþm;0ðn3 − nÞ;
½Mn;Mm& ¼ 0: ð11Þ

This is the 3d Bondi-Metzner-Sachs (BMS3) algebra (here
with cL ¼ cM ¼ 0), which also arises as the asymptotic
symmetries of 3D flat spacetimes at its null boundary [5],
and has been used to construct a notion of Minkowskian
holography following Ref. [6]. For tensionless strings,
BMS3 replaces the two copies of the Virasoro algebra that
dictate the construction of tensile strings [7].
In the Vα ¼ ð1; 0Þ gauge, the EOMs of Vα give con-

straints while the EOM for X takes a simple form

Ẍμ ¼ 0; constraints∶ _X · X0 ¼ 0; _X2 ¼ 0: ð12Þ

With closed string boundary conditions Xμðτ; σÞ ¼
Xμðτ; σ þ 2πÞ, the EOM can solved by [8]

Xμðσ; τÞ ¼ xμ þ
ffiffiffiffi
c0

2

r
Bμ
0τ þ i

ffiffiffiffi
c0

2

r X

n≠0

1

n
ðAμ

n − inτBμ
nÞe−inσ:

ð13Þ

In the above, c0 is a length scale introduced for dimensional
consistency. This expansion also leads to the constraints in
the form
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n, ũn ¼ ½ie−inðτ−σÞ&=

ffiffiffiffiffiffi
4π

p
n.

Similarly, we write the Rindler mode expansion as

ϕðξ; ηÞ ¼ ϕ0 þ
ffiffiffiffiffiffiffi
2α0

p
β0ξ

þ
ffiffiffiffiffiffiffiffiffi
2πα0

p X

n>0

½βnUn þ β−nU'
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with cL ¼ cM ¼ 0), which also arises as the asymptotic
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and has been used to construct a notion of Minkowskian
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BMS3 replaces the two copies of the Virasoro algebra that
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In the Vα ¼ ð1; 0Þ gauge, the EOMs of Vα give con-
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; Ũn ¼
ie−inðξ−ηÞffiffiffiffiffiffi

4π
p

n
: ð7Þ
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Importantly, Un is only defined in the L wedge (hence
called UðLÞ
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ued in both wedges take the form [3]

UðRÞ
n − e−ðπn=aÞUðLÞ'

−n ; UðRÞ'
−n − eðπn=aÞUðLÞ

n : ð8Þ

Using these combinations of modes lead us to Bogoliubov
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Intrinsic look at tensionless strings.—The starting point

of our recapitulation is the action [4]

SILST ¼
Z

d2ξVαVβ∂αXμ∂βXνημν: ð10Þ

Equation (10) can be obtained from the Polyakov action for
the bosonic string as tension T → 0 [4], where vector
densities Vα replace the degenerate worldsheet metric. Like
in tensile string theory, Eq. (10) enjoys worldsheet diffeo-
morphism symmetry and needs to be gauge fixed. In the
Vα ¼ ð1; 0Þ gauge, the residual symmetry is
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½Ln;Mm& ¼ ðn −mÞMnþm þ cMδnþm;0ðn3 − nÞ;
½Mn;Mm& ¼ 0: ð11Þ

This is the 3d Bondi-Metzner-Sachs (BMS3) algebra (here
with cL ¼ cM ¼ 0), which also arises as the asymptotic
symmetries of 3D flat spacetimes at its null boundary [5],
and has been used to construct a notion of Minkowskian
holography following Ref. [6]. For tensionless strings,
BMS3 replaces the two copies of the Virasoro algebra that
dictate the construction of tensile strings [7].
In the Vα ¼ ð1; 0Þ gauge, the EOMs of Vα give con-

straints while the EOM for X takes a simple form
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In the above, c0 is a length scale introduced for dimensional
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n&;

ð6Þ

where the mode functions are now defined as

Un ¼
ie−inðξþηÞ

ffiffiffiffiffiffi
4π

p
n

; Ũn ¼
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the bosonic string as tension T → 0 [4], where vector
densities Vα replace the degenerate worldsheet metric. Like
in tensile string theory, Eq. (10) enjoys worldsheet diffeo-
morphism symmetry and needs to be gauge fixed. In the
Vα ¼ ð1; 0Þ gauge, the residual symmetry is

½Ln; Lm& ¼ ðn −mÞLnþm þ cLδnþm;0ðn3 − nÞ;
½Ln;Mm& ¼ ðn −mÞMnþm þ cMδnþm;0ðn3 − nÞ;
½Mn;Mm& ¼ 0: ð11Þ

This is the 3d Bondi-Metzner-Sachs (BMS3) algebra (here
with cL ¼ cM ¼ 0), which also arises as the asymptotic
symmetries of 3D flat spacetimes at its null boundary [5],
and has been used to construct a notion of Minkowskian
holography following Ref. [6]. For tensionless strings,
BMS3 replaces the two copies of the Virasoro algebra that
dictate the construction of tensile strings [7].
In the Vα ¼ ð1; 0Þ gauge, the EOMs of Vα give con-

straints while the EOM for X takes a simple form
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With closed string boundary conditions Xμðτ; σÞ ¼
Xμðτ; σ þ 2πÞ, the EOM can solved by [8]
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r X
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n − inτBμ
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ð13Þ

In the above, c0 is a length scale introduced for dimensional
consistency. This expansion also leads to the constraints in
the form
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✤ The limit of zero tension is thus the limit of infinite acceleration:  
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Evolution in Acceleration

observer looking at the usual string sees a space-filling
D-25 brane [15]. This is a closed to open string transition.
The complementary picture of the formation of the D
instanton fits in rather wonderfully with Rindler world-
sheets. This is a “dual” picture of the formation of an open
string from a closed string in the tensionless limit, as seen
by an observer sitting in the α vacuum.
We pictorially depict the above process in Fig. 2. The

“inertial” closed string worldsheet is the cylinder on the
extreme left with acceleration a ¼ 0. For increasing accel-
erations ai ða1 < a2 < a3Þ, the worldsheet can be given by
increasingly distorted hyperboloids. Ultimately, at a → ∞,
the worldsheet becomes the light cone. The boundary states
in Eq. (31) are defined at τ ¼ 0; hence, to understand their
formation, we consider the τ ¼ 0 cross sections depicted at
the bottom of Fig. 2. Increasingly accelerated worldsheets
result in circles of lower and lower radius, until at a → ∞,
we get a point. This spacetime point is what is the D
instanton described above mathematically. The comple-
mentary picture is that when viewed from the j0ic, j0iα
becomes a longer and longer string, gradually filling up all
of spacetime to form a D-25 brane when the tension goes to
zero [15].
Reaching the Rindler horizon II.—Finally, we discuss

reaching the Rindler horizon at constant acceleration by
evolving in time. We are interested in Rindler time. So this
is a limit η → ∞. We will equivalently view this as

η → η; ξ → ϵξ; ϵ → 0: ð35Þ

To understand this limit, we rewrite the 2D conformal
generators in Rindler spacetime (we put a ¼ 1):

Ln; L̄n ¼ $ in

2
enðξ−ηÞð∂η ∓ ∂ξÞ: ð36Þ

In the limit ϵ → 0, we get

Ln ¼ Ln − L̄−n ¼ ine−nηð∂η − nξ∂ξÞ;
Mn ¼ ϵðLn þ L̄−nÞ ¼ −ine−nη∂ξ: ð37Þ

This closes to form the classical part of the BMS algebra
(11) (i.e., cL ¼ cM ¼ 0), as expected. This is again thus the
null string, which we had expected. A detailed analysis of
the aspects of Rindler physics on constant accelerated
worldsheets will be presented elsewhere [16].
We now present a particularly intriguing picture that

arises naturally on constant acceleration worldsheets.
Notice that in Rindler spacetime, as depicted in Fig. 1,
constant Rindler time (η) slices are straight lines through
the origin with increasing slope on the Rindler R wedge
depicted by ηi (η1 < η2 < η3). At η → ∞, this hits the light
cone. On the L wedge, however, time runs backward, and
the same slices are obtained by continuing R-wedge lines
backward into the third quadrant. For the string worldsheet
at constant acceleration, the analogous picture is Fig. 3.
Increasing η planes intersect the constant hyperboloid at
increasing angles. The η evolution of the closed string is
shown in the boxes below. The circular closed string at the
initial η ¼ 0 slice gets deformed as η evolves. The tension
decreases, and the string gets longer and longer as given by
the ellipses of increasing eccentricity. Ultimately, when
η → ∞, the light cone is hit, and the cross section becomes
a straight line (an ellipse with eccentricity ¼ 1). The BMS

FIG. 1. Equal time slices in Rindler spacetimes.

FIG. 2. Increasing accelerated worldsheets.

FIG. 3. Equal time slices of a Rindler worldsheet.
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A−m · Bmþn; Mn ¼
1

2

X

m

B−m · Bmþn: ð14Þ

A, B are not the usual harmonic oscillator modes:

½Am; An& ¼ ½Bm; Bn& ¼ 0; ½Am; Bn& ¼ 2mδmþn: ð15Þ

The algebra of constraints leads to the BMS3 algebra as
before. We transform ðA;BÞ into a harmonic oscillator
basis:

2Cμ
n ¼ ðAμ

n þ Bμ
nÞ; 2C̃μ

n ¼ ð−Aμ
−n þ Bμ

−nÞ: ð16Þ

C, C̃ now have canonical commutation relations analogous
to tensile α oscillators. Mode expansion in terms of these C
modes reads [9]

Xμðσ; τÞ ¼ xμ þ 2

ffiffiffiffi
c0

2

r
Cμ
0τþ i

ffiffiffiffi
c0

2

r

×
X

n≠0

1

n
½ðCμ

n − C̃μ
−nÞ− inτðCμ

n þ C̃μ
−nÞ&e−inσ ð17Þ

with zero modes Cμ
0 ¼ C̃μ

0 ¼
ffiffiffiffiffiffiffiffiffi
c0=2

p
kμ.

Tensionless strings as a Carrollian limit.—In the dis-
cussion above, the string tension was put exactly to zero.
Now we describe a limiting procedure on the worldsheet
coordinates that takes the tension to zero [7,8]:

σ → σ; τ → ϵτ; α0 → c0=ϵ; ϵ → 0: ð18Þ

This sends the worldsheet speed of light to zero and is
called an ultrarelativistic (UR) or a Carrollian limit. In this
limit, the worldsheet becomes a 2D Carrollian manifold
[10,11] with a degenerate metric which is the defining
feature of a tensionless or a null string. The worldsheet
symmetry generators contract

Ln ¼ Ln − L̄−n; Mn ¼ ϵðLn þ L̄−nÞ ð19Þ

(here, Ln, L̄n generate the tensile Virasoro algebra) and
close to form BMS3. Comparing tensile modes [analog of
Eq. (4)] and the tensionless expansions (13), we get

Aμ
n ¼

1ffiffiffi
ϵ

p ðαμn − α̃μ−nÞ; Bμ
n ¼

ffiffiffi
ϵ

p
ðαμn þ α̃μ−nÞ: ð20Þ

All classical physics of the tensionless string can be
reproduced by following this UR limit. The Carrollian
limit is usually perceived as a limit on velocities and hence
an infinite boost. The tensionless limit is thus an infinite
boost on the Riemannian worldsheet of a tensile string that
turns it into a degenerate Carrollian worldsheet.
Interestingly, switching to the language of C oscillators,

we find the emergence of a worldsheet Bogoliubov trans-
formation:

Cμ
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1

2

" ffiffiffi
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p
þ 1ffiffiffi

ϵ
p

#
αμn þ

1

2

" ffiffiffi
ϵ

p
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1ffiffiffi
ϵ

p
#
α̃μ−n;

C̃μ
n ¼

1

2

" ffiffiffi
ϵ

p
−

1ffiffiffi
ϵ

p
#
αμ−n þ

1

2

" ffiffiffi
ϵ

p
þ 1ffiffiffi

ϵ
p

#
α̃μn: ð21Þ

Although the C oscillators have been defined near ϵ → 0,
curiously at ϵ ¼ 1 they reduce to the α oscillators. This
encourages us to define a flow valid throughout the
parameter space ϵ ∈ ½0; 1&. For any evolving oscillator
CðϵÞ interpolating between α for ϵ ¼ 1 and Eq. (21) near
ϵ → 0, the vacua defined by the flow j0ðϵÞi change
continuously with ϵ:

j0ðϵÞi∶ CnðϵÞj0ðϵÞi ¼ C̃nðϵÞj0ðϵÞi ¼ 0; ∀ n > 0: ð22Þ

An evolution in boost can only lead to changes in physics
(e.g., change in vacuum structure, changes in spectrum) in
the limit of infinite boosts. This ϵ evolution changes the
vacuum continuously and hence cannot be thought of as an
evolution in boosts. As we will now see, this evolution in
parameter space is very naturally explained by accelerating
string worldsheets. The identification (21) stays valid near
ϵ → 0, while a map for the whole parameter space emerges
through acceleration.
Reaching the horizon I: Evolving in acceleration.—We

now build the string equivalent of a Rindler observer
approaching the Rindler horizon by considering a family
of worldsheets with increasing values of acceleration. In the
limit of large acceleration, the Bogoliubov coefficients (9)
become

β∞n ¼ 1

2

" ffiffiffiffiffiffi
πn
2a

r
þ

ffiffiffiffiffiffi
2a
πn

r #
αn þ

1

2

" ffiffiffiffiffiffi
πn
2a

r
−

ffiffiffiffiffiffi
2a
πn

r #
α̃−n;

β̃∞n ¼ 1

2

" ffiffiffiffiffiffi
πn
2a

r
−

ffiffiffiffiffiffi
2a
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r #
α−n þ

1

2

" ffiffiffiffiffiffi
2a
πn

r
þ

ffiffiffiffiffiffi
πn
2a

r #
α̃n: ð23Þ

This limit takes us very near the light cone. Comparing
Eq. (23) with Eq. (21), we see that we can make the
identification

Cn ¼ β∞n ; C̃n ¼ β̃∞n ; ϵ ¼ πn
2a

: ð24Þ

The limit of zero tension is thus the limit of infinite
acceleration

ϵ → 0 ⇒ a → ∞: ð25Þ

This is because the equivalence has to hold for all n [12].
The evolution in parameter space alluded to earlier is

thus clearly an evolution in terms of accelerated world-
sheets defined for all values of acceleration. This picture of
a family of accelerated worldsheets ties in nicely with our
earlier description of the UR limit, as the limit of infinite
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encourages us to define a flow valid throughout the
parameter space ϵ ∈ ½0; 1&. For any evolving oscillator
CðϵÞ interpolating between α for ϵ ¼ 1 and Eq. (21) near
ϵ → 0, the vacua defined by the flow j0ðϵÞi change
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An evolution in boost can only lead to changes in physics
(e.g., change in vacuum structure, changes in spectrum) in
the limit of infinite boosts. This ϵ evolution changes the
vacuum continuously and hence cannot be thought of as an
evolution in boosts. As we will now see, this evolution in
parameter space is very naturally explained by accelerating
string worldsheets. The identification (21) stays valid near
ϵ → 0, while a map for the whole parameter space emerges
through acceleration.
Reaching the horizon I: Evolving in acceleration.—We

now build the string equivalent of a Rindler observer
approaching the Rindler horizon by considering a family
of worldsheets with increasing values of acceleration. In the
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This limit takes us very near the light cone. Comparing
Eq. (23) with Eq. (21), we see that we can make the
identification

Cn ¼ β∞n ; C̃n ¼ β̃∞n ; ϵ ¼ πn
2a

: ð24Þ

The limit of zero tension is thus the limit of infinite
acceleration

ϵ → 0 ⇒ a → ∞: ð25Þ

This is because the equivalence has to hold for all n [12].
The evolution in parameter space alluded to earlier is

thus clearly an evolution in terms of accelerated world-
sheets defined for all values of acceleration. This picture of
a family of accelerated worldsheets ties in nicely with our
earlier description of the UR limit, as the limit of infinite
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we find the emergence of a worldsheet Bogoliubov trans-
formation:
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Although the C oscillators have been defined near ϵ → 0,
curiously at ϵ ¼ 1 they reduce to the α oscillators. This
encourages us to define a flow valid throughout the
parameter space ϵ ∈ ½0; 1&. For any evolving oscillator
CðϵÞ interpolating between α for ϵ ¼ 1 and Eq. (21) near
ϵ → 0, the vacua defined by the flow j0ðϵÞi change
continuously with ϵ:

j0ðϵÞi∶ CnðϵÞj0ðϵÞi ¼ C̃nðϵÞj0ðϵÞi ¼ 0; ∀ n > 0: ð22Þ

An evolution in boost can only lead to changes in physics
(e.g., change in vacuum structure, changes in spectrum) in
the limit of infinite boosts. This ϵ evolution changes the
vacuum continuously and hence cannot be thought of as an
evolution in boosts. As we will now see, this evolution in
parameter space is very naturally explained by accelerating
string worldsheets. The identification (21) stays valid near
ϵ → 0, while a map for the whole parameter space emerges
through acceleration.
Reaching the horizon I: Evolving in acceleration.—We

now build the string equivalent of a Rindler observer
approaching the Rindler horizon by considering a family
of worldsheets with increasing values of acceleration. In the
limit of large acceleration, the Bogoliubov coefficients (9)
become
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This limit takes us very near the light cone. Comparing
Eq. (23) with Eq. (21), we see that we can make the
identification

Cn ¼ β∞n ; C̃n ¼ β̃∞n ; ϵ ¼ πn
2a

: ð24Þ

The limit of zero tension is thus the limit of infinite
acceleration

ϵ → 0 ⇒ a → ∞: ð25Þ

This is because the equivalence has to hold for all n [12].
The evolution in parameter space alluded to earlier is

thus clearly an evolution in terms of accelerated world-
sheets defined for all values of acceleration. This picture of
a family of accelerated worldsheets ties in nicely with our
earlier description of the UR limit, as the limit of infinite
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boost and the limit of infinite acceleration both land up on
the horizon of Rindler spacetime, which in the string analog
is equivalent to the null string.
The flow in acceleration is a flow from the tensile to the

tensionless string. Hence, increasing acceleration amounts
to decreasing string tension, with a ¼ 0 being the tensile
theory and a → ∞ the tensionless null string. This flow is
now described for all values of acceleration giving us a
complete interpolating solution. The string oscillator con-
struction through the flow is described in terms of the
interpolating β oscillators defined in Eq. (9). At a ¼ 0,
from Eq. (9), we see that β reduces to tensile string α
oscillators. For intermediate values of a, i.e., 0 < a < ∞,
we have the β oscillators. Very near the light cone, as
a → ∞, the β oscillators take the form of the tensionless C
oscillators,

a ¼ 0∶ fβn; β̃ng → fαn; α̃ng; ð26aÞ

0 < a < ∞∶ fβnðaÞ; β̃nðaÞg; ð26bÞ

a → ∞∶ fβn; β̃ng → fCn; C̃ng: ð26cÞ

We will now use these oscillators to understand the
evolution of the vacuum structure of the string.
Structure of accelerated vacua.—The vacuum conditions

on these accelerated worldsheets are

βμkj0ðaÞi ¼ ðαμk þ tanh θkα̃
μ
−kÞj0ðaÞi ¼ 0; k > 0;

β̃μkj0ðaÞi ¼ ðα̃μk þ tanh θkα
μ
−kÞj0ðaÞi ¼ 0; ð27Þ

where tanh θk ¼ − exp ð−πk=aÞ. Written in terms of the
tensile closed string vacuum j0iα, the accelerated vacuum is
a squeezed state:
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As a → ∞, the map to ϵ Eq. (24) emerges. We find
tanh θ ¼ ½ðϵ − 1Þ=ðϵþ 1Þ&, so tanh θ → −1 as ϵ → 0, and
the resulting limiting vacuum state j0ic is
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Here, N is a normalization constant. Relations between C
and α are invertible, and j0iα can be expressed in terms of
j0ðaÞi. This would be the string equivalent of a Rindler
observer looking at their Minkowski counterpart. As
a → ∞, we find

j0iα ¼
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Boundary states and null string complementarity.—A
tensile closed string field Xðσ; τÞ, which maps the world-
sheet to spacetime, is given by a mode expansion analogous
to Eq. (4). D-branes arise as boundary states on the closed
string worldsheet conformal field theory. For a boundary
located at τ ¼ 0 on the worldsheet, the possibilities are [13]

N∶ ∂σXðσ; τÞjB1i ¼ 0≡ ðαn þ α̃−nÞjB1i ¼ 0; ð31aÞ

D∶ ∂τXðσ; τÞjB2i ¼ 0≡ ðαn − α̃−nÞjB2i ¼ 0; ð31bÞ

where N and D stand for the Neumann and Dirichlet
conditions, respectively. This can be solved explicitly to
obtain
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j0iα; ð32aÞ
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We see that in terms of α oscillators and the α vacuum (29),
j0ic is a Dirichlet boundary state in all directions, while in
terms of the C oscillators and the C vacuum (30), j0iα is a
Neumann boundary state (again in all directions). Thus, an
open string description emerges from the closed string
vacuum as the tension goes to zero. This can be further
clarified by looking at the oscillators. Using Eq. (21), the
conditions for the C vacuum (22) translate into
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j0ic ¼ 0:

In the strict limit ϵ → 0, we end up with

ðαμn − α̃μ−nÞj0ic ¼ 0: ð33Þ

In terms of the usual string vacuum j0iα, this zero tension
ground state j0ic is thus a D instanton, which is a Dirichlet
boundary state in all spacetime directions [14]. An analo-
gous calculation yields

ðCμ
n þ C̃μ

−nÞj0iα ¼ 0: ð34Þ

Thus, from the point of view of the C observer, the tensile
string vacuum develops into a D-25 brane.
We now physically describe this process, the one we will

call the null string complementarity. For an observer in
tensile string theory with vacuum j0iα looking at strings
with decreasing tension, the completely tensionless string
appears as a spacetime point, a D instanton. There is a
complementary point of view of accelerated vacua looking
at j0iα vacuum. To the observers in this continuous one-
parameter family of vacua, the usual closed string looks
more and more distorted, and ultimately the tensionless
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the horizon of Rindler spacetime, which in the string analog
is equivalent to the null string.
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Here, N is a normalization constant. Relations between C
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Boundary states and null string complementarity.—A
tensile closed string field Xðσ; τÞ, which maps the world-
sheet to spacetime, is given by a mode expansion analogous
to Eq. (4). D-branes arise as boundary states on the closed
string worldsheet conformal field theory. For a boundary
located at τ ¼ 0 on the worldsheet, the possibilities are [13]

N∶ ∂σXðσ; τÞjB1i ¼ 0≡ ðαn þ α̃−nÞjB1i ¼ 0; ð31aÞ

D∶ ∂τXðσ; τÞjB2i ¼ 0≡ ðαn − α̃−nÞjB2i ¼ 0; ð31bÞ

where N and D stand for the Neumann and Dirichlet
conditions, respectively. This can be solved explicitly to
obtain
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We see that in terms of α oscillators and the α vacuum (29),
j0ic is a Dirichlet boundary state in all directions, while in
terms of the C oscillators and the C vacuum (30), j0iα is a
Neumann boundary state (again in all directions). Thus, an
open string description emerges from the closed string
vacuum as the tension goes to zero. This can be further
clarified by looking at the oscillators. Using Eq. (21), the
conditions for the C vacuum (22) translate into
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In the strict limit ϵ → 0, we end up with

ðαμn − α̃μ−nÞj0ic ¼ 0: ð33Þ

In terms of the usual string vacuum j0iα, this zero tension
ground state j0ic is thus a D instanton, which is a Dirichlet
boundary state in all spacetime directions [14]. An analo-
gous calculation yields

ðCμ
n þ C̃μ

−nÞj0iα ¼ 0: ð34Þ

Thus, from the point of view of the C observer, the tensile
string vacuum develops into a D-25 brane.
We now physically describe this process, the one we will

call the null string complementarity. For an observer in
tensile string theory with vacuum j0iα looking at strings
with decreasing tension, the completely tensionless string
appears as a spacetime point, a D instanton. There is a
complementary point of view of accelerated vacua looking
at j0iα vacuum. To the observers in this continuous one-
parameter family of vacua, the usual closed string looks
more and more distorted, and ultimately the tensionless
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Here, N is a normalization constant. Relations between C
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j0ðaÞi. This would be the string equivalent of a Rindler
observer looking at their Minkowski counterpart. As
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Boundary states and null string complementarity.—A
tensile closed string field Xðσ; τÞ, which maps the world-
sheet to spacetime, is given by a mode expansion analogous
to Eq. (4). D-branes arise as boundary states on the closed
string worldsheet conformal field theory. For a boundary
located at τ ¼ 0 on the worldsheet, the possibilities are [13]

N∶ ∂σXðσ; τÞjB1i ¼ 0≡ ðαn þ α̃−nÞjB1i ¼ 0; ð31aÞ

D∶ ∂τXðσ; τÞjB2i ¼ 0≡ ðαn − α̃−nÞjB2i ¼ 0; ð31bÞ

where N and D stand for the Neumann and Dirichlet
conditions, respectively. This can be solved explicitly to
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We see that in terms of α oscillators and the α vacuum (29),
j0ic is a Dirichlet boundary state in all directions, while in
terms of the C oscillators and the C vacuum (30), j0iα is a
Neumann boundary state (again in all directions). Thus, an
open string description emerges from the closed string
vacuum as the tension goes to zero. This can be further
clarified by looking at the oscillators. Using Eq. (21), the
conditions for the C vacuum (22) translate into

!# ffiffiffi
ϵ

p
þ 1ffiffiffi

ϵ
p

%
αμn
2
þ
# ffiffiffi

ϵ
p

−
1ffiffiffi
ϵ

p
%
α̃μ−n
2

"
j0ic ¼ 0:

In the strict limit ϵ → 0, we end up with

ðαμn − α̃μ−nÞj0ic ¼ 0: ð33Þ

In terms of the usual string vacuum j0iα, this zero tension
ground state j0ic is thus a D instanton, which is a Dirichlet
boundary state in all spacetime directions [14]. An analo-
gous calculation yields

ðCμ
n þ C̃μ

−nÞj0iα ¼ 0: ð34Þ

Thus, from the point of view of the C observer, the tensile
string vacuum develops into a D-25 brane.
We now physically describe this process, the one we will

call the null string complementarity. For an observer in
tensile string theory with vacuum j0iα looking at strings
with decreasing tension, the completely tensionless string
appears as a spacetime point, a D instanton. There is a
complementary point of view of accelerated vacua looking
at j0iα vacuum. To the observers in this continuous one-
parameter family of vacua, the usual closed string looks
more and more distorted, and ultimately the tensionless
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✤ We explored hitting the Rindler horizon by evolving in acceleration.  

✤ The horizon can also be hit by evolving in Rindler time at constant acceleration.  

✤ So the infinite time limit on the Rindler worldsheet would also generate the null string.

Hitting the Horizon: Evolution in Rindler Time

observer looking at the usual string sees a space-filling
D-25 brane [15]. This is a closed to open string transition.
The complementary picture of the formation of the D
instanton fits in rather wonderfully with Rindler world-
sheets. This is a “dual” picture of the formation of an open
string from a closed string in the tensionless limit, as seen
by an observer sitting in the α vacuum.
We pictorially depict the above process in Fig. 2. The

“inertial” closed string worldsheet is the cylinder on the
extreme left with acceleration a ¼ 0. For increasing accel-
erations ai ða1 < a2 < a3Þ, the worldsheet can be given by
increasingly distorted hyperboloids. Ultimately, at a → ∞,
the worldsheet becomes the light cone. The boundary states
in Eq. (31) are defined at τ ¼ 0; hence, to understand their
formation, we consider the τ ¼ 0 cross sections depicted at
the bottom of Fig. 2. Increasingly accelerated worldsheets
result in circles of lower and lower radius, until at a → ∞,
we get a point. This spacetime point is what is the D
instanton described above mathematically. The comple-
mentary picture is that when viewed from the j0ic, j0iα
becomes a longer and longer string, gradually filling up all
of spacetime to form a D-25 brane when the tension goes to
zero [15].
Reaching the Rindler horizon II.—Finally, we discuss

reaching the Rindler horizon at constant acceleration by
evolving in time. We are interested in Rindler time. So this
is a limit η → ∞. We will equivalently view this as

η → η; ξ → ϵξ; ϵ → 0: ð35Þ

To understand this limit, we rewrite the 2D conformal
generators in Rindler spacetime (we put a ¼ 1):

Ln; L̄n ¼ $ in

2
enðξ−ηÞð∂η ∓ ∂ξÞ: ð36Þ

In the limit ϵ → 0, we get

Ln ¼ Ln − L̄−n ¼ ine−nηð∂η − nξ∂ξÞ;
Mn ¼ ϵðLn þ L̄−nÞ ¼ −ine−nη∂ξ: ð37Þ

This closes to form the classical part of the BMS algebra
(11) (i.e., cL ¼ cM ¼ 0), as expected. This is again thus the
null string, which we had expected. A detailed analysis of
the aspects of Rindler physics on constant accelerated
worldsheets will be presented elsewhere [16].
We now present a particularly intriguing picture that

arises naturally on constant acceleration worldsheets.
Notice that in Rindler spacetime, as depicted in Fig. 1,
constant Rindler time (η) slices are straight lines through
the origin with increasing slope on the Rindler R wedge
depicted by ηi (η1 < η2 < η3). At η → ∞, this hits the light
cone. On the L wedge, however, time runs backward, and
the same slices are obtained by continuing R-wedge lines
backward into the third quadrant. For the string worldsheet
at constant acceleration, the analogous picture is Fig. 3.
Increasing η planes intersect the constant hyperboloid at
increasing angles. The η evolution of the closed string is
shown in the boxes below. The circular closed string at the
initial η ¼ 0 slice gets deformed as η evolves. The tension
decreases, and the string gets longer and longer as given by
the ellipses of increasing eccentricity. Ultimately, when
η → ∞, the light cone is hit, and the cross section becomes
a straight line (an ellipse with eccentricity ¼ 1). The BMS

FIG. 1. Equal time slices in Rindler spacetimes.

FIG. 2. Increasing accelerated worldsheets.

FIG. 3. Equal time slices of a Rindler worldsheet.
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observer looking at the usual string sees a space-filling
D-25 brane [15]. This is a closed to open string transition.
The complementary picture of the formation of the D
instanton fits in rather wonderfully with Rindler world-
sheets. This is a “dual” picture of the formation of an open
string from a closed string in the tensionless limit, as seen
by an observer sitting in the α vacuum.
We pictorially depict the above process in Fig. 2. The

“inertial” closed string worldsheet is the cylinder on the
extreme left with acceleration a ¼ 0. For increasing accel-
erations ai ða1 < a2 < a3Þ, the worldsheet can be given by
increasingly distorted hyperboloids. Ultimately, at a → ∞,
the worldsheet becomes the light cone. The boundary states
in Eq. (31) are defined at τ ¼ 0; hence, to understand their
formation, we consider the τ ¼ 0 cross sections depicted at
the bottom of Fig. 2. Increasingly accelerated worldsheets
result in circles of lower and lower radius, until at a → ∞,
we get a point. This spacetime point is what is the D
instanton described above mathematically. The comple-
mentary picture is that when viewed from the j0ic, j0iα
becomes a longer and longer string, gradually filling up all
of spacetime to form a D-25 brane when the tension goes to
zero [15].
Reaching the Rindler horizon II.—Finally, we discuss

reaching the Rindler horizon at constant acceleration by
evolving in time. We are interested in Rindler time. So this
is a limit η → ∞. We will equivalently view this as

η → η; ξ → ϵξ; ϵ → 0: ð35Þ

To understand this limit, we rewrite the 2D conformal
generators in Rindler spacetime (we put a ¼ 1):

Ln; L̄n ¼ $ in
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In the limit ϵ → 0, we get

Ln ¼ Ln − L̄−n ¼ ine−nηð∂η − nξ∂ξÞ;
Mn ¼ ϵðLn þ L̄−nÞ ¼ −ine−nη∂ξ: ð37Þ

This closes to form the classical part of the BMS algebra
(11) (i.e., cL ¼ cM ¼ 0), as expected. This is again thus the
null string, which we had expected. A detailed analysis of
the aspects of Rindler physics on constant accelerated
worldsheets will be presented elsewhere [16].
We now present a particularly intriguing picture that

arises naturally on constant acceleration worldsheets.
Notice that in Rindler spacetime, as depicted in Fig. 1,
constant Rindler time (η) slices are straight lines through
the origin with increasing slope on the Rindler R wedge
depicted by ηi (η1 < η2 < η3). At η → ∞, this hits the light
cone. On the L wedge, however, time runs backward, and
the same slices are obtained by continuing R-wedge lines
backward into the third quadrant. For the string worldsheet
at constant acceleration, the analogous picture is Fig. 3.
Increasing η planes intersect the constant hyperboloid at
increasing angles. The η evolution of the closed string is
shown in the boxes below. The circular closed string at the
initial η ¼ 0 slice gets deformed as η evolves. The tension
decreases, and the string gets longer and longer as given by
the ellipses of increasing eccentricity. Ultimately, when
η → ∞, the light cone is hit, and the cross section becomes
a straight line (an ellipse with eccentricity ¼ 1). The BMS
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✤ From a single classical theory, several inequivalent quantum theories may emerge. This happens when 
we consider canonical quantisation of tensionless string theories.  

✤ As we saw earlier 

✤ This amounts to 

✤ For each type of oscillator F obeying                                       , there can be three types of solutions.  
 
 
 

INTRODUCTION CLASSICAL ASPECTS SUPERSTRINGS QUANTUM ASPECTS APPLICATIONS REMARKS

TENSIONLESS EM-TENSOR A Bagchi 2013

I Spectrum of tensile string theory (in conformal gauge in flat space)
I Quantise worldsheet theory as a theory free scalar fields.
I Constraint: vanishing of EOM of metric (which is fixed to be flat).
I Op form: Physical states vanish under action of modes of E-M tensor.

I EM tensor for 2d CFT on cylinder:
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I Classical constraint on the tensionless string: T(1) = 0, T(2) = 0.
I Quantum version: physical spectrum of tensionless strings restricted by

hphys|T(1)|phys0i = 0, hphys|T(2)|phys0i = 0. (17)
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Remember that in section (3.2) we have studied two consistent ways to impose the con-

straint condition consistently on a worldsheet, the first one being the conventional method

of Virasoro highest weight representations:

Ln|physi = L̄n|physi = 0 (n > 0). (5.2)

It should be noted that the sandwich conditions here work via the right handed action of

the constraints. The other method is the case of the “flipped” vacuum where half of the

conditions are that of the lowest weight,

Ln|physi = L̄�n|physi = 0 (n > 0). (5.3)

Notice in the case above, the anti-holomorphic constraints actually impose a left handed

action to satisfy the sandwich condition.

For the tensionless case, the emergence of BMS3 algebra makes the matters more

conceptually di�cult as there could be more possibilities to consistently define the string

vacuum and physical states. We will see that this general sandwich condition, together

with the property of hermiticity can be broken down into three distinct cases:

1. Fn|physi = 0 (n > 0), (5.4a)

2. Fn|physi = 0 (n 6= 0), (5.4b)

3. Fn|physi 6= 0, but hphys0|Fn|physi = 0. (5.4c)

Zero modes are not included here since one can always have an ordering ambiguity in those

modes for which we need to consider F0 =: F0 : �aF in the above classification. The most

comfortable and nice way is the first case because the physical states fall into the highest

weight representation of the algebra (case 1), which is often the usual norm to study a

quantum string theory with.

In the case of the BMS3 algebra things are not that simple, and one needs to consider

all the cases to understand the associated string spectrum. Here we have Fn = (Ln,Mn)

for which the above classification of conditions are possible. It seems that we could have

nine possible combinations in total through which we can impose the constraint on the

states. These are depicted below:

Lm|physi = 0, (m > 0),

8
><

>:

Mn|physi = 0, (n > 0)

Mn|physi = 0, (n 6= 0)

Mn|physi 6= 0, (8 n)

9
>=

>;
; (5.5a)

Lm|physi = 0, (m 6= 0),

8
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Mn|physi = 0, (n > 0)
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>;
; (5.5b)

Lm|physi 6= 0, (8 m),

8
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Mn|physi = 0, (n > 0)

Mn|physi = 0, (n 6= 0)

Mn|physi 6= 0, (8 n)

9
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>;
. (5.5c)
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✤ Here                              . Hence seemingly nine conditions:  

 

✤ But the underlying BMS algebra also has to be satisfied. It turns out that only three of the nine choices lead to 
consistent solutions.  

✤ These are three inequivalent vacua, leading to three inequivalent quantum theories.  

Induced vacuum: Theory obtained from the limit of usual tensile strings.   

Flipped vacuum: Leads to ambitwistor strings. (See e.g. Casali, Tourkine, (Herfray) 2016-17) 

Oscillator vacuum: Interesting new vacuum. Contains hints of huge underlying gauge symmetry.
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Remember that in section (3.2) we have studied two consistent ways to impose the con-

straint condition consistently on a worldsheet, the first one being the conventional method

of Virasoro highest weight representations:

Ln|physi = L̄n|physi = 0 (n > 0). (5.2)

It should be noted that the sandwich conditions here work via the right handed action of

the constraints. The other method is the case of the “flipped” vacuum where half of the

conditions are that of the lowest weight,

Ln|physi = L̄�n|physi = 0 (n > 0). (5.3)

Notice in the case above, the anti-holomorphic constraints actually impose a left handed

action to satisfy the sandwich condition.

For the tensionless case, the emergence of BMS3 algebra makes the matters more

conceptually di�cult as there could be more possibilities to consistently define the string

vacuum and physical states. We will see that this general sandwich condition, together

with the property of hermiticity can be broken down into three distinct cases:

1. Fn|physi = 0 (n > 0), (5.4a)

2. Fn|physi = 0 (n 6= 0), (5.4b)

3. Fn|physi 6= 0, but hphys0|Fn|physi = 0. (5.4c)

Zero modes are not included here since one can always have an ordering ambiguity in those

modes for which we need to consider F0 =: F0 : �aF in the above classification. The most

comfortable and nice way is the first case because the physical states fall into the highest

weight representation of the algebra (case 1), which is often the usual norm to study a

quantum string theory with.

In the case of the BMS3 algebra things are not that simple, and one needs to consider

all the cases to understand the associated string spectrum. Here we have Fn = (Ln,Mn)

for which the above classification of conditions are possible. It seems that we could have

nine possible combinations in total through which we can impose the constraint on the

states. These are depicted below:

Lm|physi = 0, (m > 0),

8
><

>:

Mn|physi = 0, (n > 0)

Mn|physi = 0, (n 6= 0)

Mn|physi 6= 0, (8 n)

9
>=

>;
; (5.5a)

Lm|physi = 0, (m 6= 0),

8
><

>:

Mn|physi = 0, (n > 0)

Mn|physi = 0, (n 6= 0)

Mn|physi 6= 0, (8 n)

9
>=

>;
; (5.5b)

Lm|physi 6= 0, (8 m),

8
><

>:

Mn|physi = 0, (n > 0)

Mn|physi = 0, (n 6= 0)

Mn|physi 6= 0, (8 n)

9
>=

>;
. (5.5c)

– 21 –



Critical Dimensions
AB, Mandlik, Sharma. 2105.09682

Flipped

or


Ambitwistor

Oscillator

Induced

Tensile Bosonic 

Closed String Theory

Figure 1. Tensionless corners of Bosonic String Theory.

In order to implement this, we shall make the assumption that the vacuum is a physical state:

h0|Ln|0i = 0, h0|Mn|0i = 0, 8n 6= 0 (2.31)

where the zero mode will come with normal ordering ambiguities and is hence excluded. Following
the analysis of [19], one can then find that there are three distinct choices of vacuum (and hence
three distinct quantum mechanical theories) compatible with the conditions above:

(A) Flipped: Ln|phyi = 0, Mn|phyi = 0 8n > 0, (2.32a)

(B) Induced: Ln|phyi 6= 0, Mn|phyi = 0 8n 6= 0, (2.32b)

(C) Oscillator: Ln|phyi 6= 0, Mn|phyi 6= 0, 8n but (2.30) satisfied. (2.32c)

The flipped vacuum imposes the conditions in the familiar highest weight manner. The resulting
theory is actually the bosonic version of the Ambitwistor string [30], which has been put forward
to explain the Cachazo-He-Yuan formulae for tree-level scattering amplitudes.

The induced vacuum is named from the induced representations of the BMS algebra under which
it transforms. This can be thought of as the limit of the tensile vacuum. A lot of interesting
phenomena occur here like the emergence of an open string from the condensation of all the closed
string modes [18].

The oscillator vacuum seems to be the most intimately intrinsic tensionless vacuum and hence has
the maximal chance of not satisfying a spacetime Lorentz algebra in any dimensions. However the
oscillator and the induced vacua are closely related by worldsheet Rindler transformations [20] and
our present analysis would show that this too is consistent in d = 26.

Figure 1 above depicts these three tensionless corners of the closed bosonic string.
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Tensionless corners of Quantum Tensile String Theory



A summary of quantum results
Novel closed to open string transition as the tension goes to zero.  
[AB, Banerjee, Parekh (PRL) 2019]  

Careful canonical quantisation leads to not one, but three different vacua which give rise to 
different quantum mechanical theories arising out of the same classical theory. 
[AB, Banerjee, Chakrabortty, Dutta, Parekh 2020]  

Lightcone analysis: spacetime Lorentz algebra closes for two theories for D=26. No restriction 
on the other theory. All acceptable limits of quantum tensile strings.   
[AB, Mandlik, Sharma 2021]  

Interpretation in terms of Rindler physics on the worldsheet.  
[AB, Banerjee, Chakrabortty (PRL) 2021]  

Carroll limit on spacetime induces tensionless limit on worldsheet. Strings become tensionless 
near blackhole event horizons. [AB, Banerjee, Chakrabortty, Chatterjee 2021] 



Other results

Tensionless superstrings: Two varieties depending on the underlying 
Superconformal Carrollian algebra. 

Homogeneous Tensionless Superstrings: Fermions scale in same way.  
Previous construction: Lindstrom, Sundborg, Theodoridis 1991. 
Limiting point of view: AB, Chakrabortty, Parekh 2016.  

Inhomogeneous Tensionless Superstrings: Fermions scale differently. 
New tensionless string!  AB, Banerjee, Chakrabortty, Parekh 2017-18. 



Open questions: Tensionless Strings
Analogous calculation of beta-function=0. Consistent backgrounds?  

Linking up to Gross-Mende high energy string scattering from worldsheet 
symmetries.  

Attacking the Hagedorn transition from the Carroll perspective. Emergent 
degrees of freedom?  [in progress with Banerjee, Mandlik] 

Strings near black holes, strings falling into black holes?  
[in progress with Banerjee, Hartong, Have, Kolekar, Mandlik] 

Extend “Tale of Three” to superstrings. Different superstring theories?  

Intricate web of tensionless superstring dualities? 



Black hole Microstates from Null Strings

AB, Grumiller, Sheikh-Jabbari 2210.10794



Black holes from Null Strings? 

Black hole Null String Wrapping Horizon

Event horizon of black holes are null surfaces.  

In d=3, consider BTZ black holes. Event horizon is a null circle. 

Proposal: A null string wrapping the event horizon contains in its spectrum the micro 
states of a BTZ black hole.  

We can reproduce the Bekenstein-Hawking entropy as well as its logarithmic corrections!  

Possible generalisations to higher dimensions. 



Horizon Strings
Proposal motivated by symmetries. Symmetries of event horizon same as symmetries of 
the null string worldsheet.  

Dynamic horizon on which d.o.f. live is then equivalent to a null string.  

Quantize the null string in Oscillator Vacuum. Use Lightcone gauge for convenience.  

Black hole states: a band of states with sufficiently high level.  

Mass is proportional to the radius of the horizon. Motivated by Near Horizon first law. 
[Donnay et al 2015, Afshar et al 2016].  

Complicated combinatorics leads to entropy and amazing the correct logarithmic 
corrections.  

Can be thought of as a precise formulation of the membrane paradigm.  

Generalization to d=4 with null membranes in progress and showing interesting signs. 



Null strings to BTZ microstates
ILST action:                                                             Metric: 

Gauge fixed action:                                          

Allow strings to wind:    

Null string states over oscillator vacuum:   

Constraints:  

Mass formula:                                   Notice T-duality no more holds.  

Now, microstates of the BTZ blackhole:  

Near horizon first law:                    -> 

Approximation: Large black hole.  

4 Horizon strings and BTZ microstates

4.1 Hilbert space, level-matching, and mass

To construct the physical Hilbert space, we start with classifying states at di↵erent levels N 2 N,

Vacuum: |0, pµ,!i ⌘ |0i

Level 1: J�1|0i, J̃�1|0i

Level 2: J�2|0i, J2
�1|0i, J�1 J̃�1|0i, J̃2

�1|0i, J̃�2|0i

. . .

where pµ =  Bµ0. The level splits into two integers associated with each set of oscillator modes,
N = r + s. For instance, the five states above at level N = 2 have, respectively, (r, s) = (2, 0),
(r, s) = (2, 0), (r, s) = (1, 1), (r, s) = (0, 2) and (r, s) = (0, 2). The levels r, s in turn can be
decomposed into a collection of integers associated with individual creation operators, r =

P
i iri

and s =
P

i isi. For example, the first two states at level N = 2 with r = 2 and s = 0 split,
respectively, into r2 = 1 and r1 = 2 (with all other ri = 0 in each case).

A generic state in the above set,

| i = |pµ, {ri}, {si}, !i, (4.1)

is given by arbitrary combinations of the creation operators J�m, J̃�m acting on the oscillator vac-
uum |0, pµ, !i. Physical states are a subclass of these generic states subject to the constraints
(??). We are interested in physical states without momentum in the radial direction, which in our
lightcone coordinates implies p+ = p�, and we keep p' arbitrary, see (3.14).

We now follow a route analogous to the tensile string [68, 69] and impose the physical state
conditions (??) to obtain the physical Hilbert space. For the zero modes, L0 and M0, these give
us, respectively, a level-matching condition and a formula for the mass spectrum of the theory.
The remaining physical state conditions are automatically satisfied once states are level matched
(for a more detailed treatment, see [63]). By virtue of the oscillator vacuum (3.22)-(3.24), the
requirement L0| i = 0 establishes a level-matching condition

s � r = ! n . (4.2)

From the vanishing of the M0-eigenvalue, M0 | i = 0, we deduce the mass m :=
p

2p+p� of
the state | i,

m2 = (r + s) +
n2

R2
h
. (4.3)

Physical states of a given mass are thus labeled by the integers ri, si,!, and n subject to the level-
matching (4.2) and the mass-shell condition (4.3).

4.2 BTZ black hole microstates

We label BTZ black holes by the horizon string mass m and define the set of BTZ black hole mi-
crostates as the collection of all physical states in the horizon string Hilbert space. Each microstate

|miBTZ = |{ri}, {si}, !, ni (4.4)
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is labeled by a collection of mode excitation numbers ri, si, the winding number !, and the mo-
mentum number n, subject to the level-matching (4.2) and the mass-shell condition (4.3).

The remaining task is to fix the value of the mass m in terms of the geometric input, the value
of the horizon radius Rh. Since m is the mass of our string states at the horizon, on dimensional
grounds it is plausible to identify it (up to some factor) with the near horizon mass of the associated
BTZ black hole. Due to the near horizon first law, the latter scales linearly in the horizon radius
[48, 51], i.e.,

m = Rh . (4.5)

While we could include some arbitrary numerical factor in the relation (4.5), we absorb such a
factor by the freedom to fix the coupling constant , which we shall do below in (6.2).

Elaborate on the near horizon first law....
Plugging the mass (4.5) into the result (4.3),

R2
h = s + r +

n2

R2
h

:= N +
n2

R2
h
, (4.6)

and assuming N � n yields

R2
h = N +

n2

N
+ O(n4/N3) . (4.7)

In the other limit, N ⌧ n, we have instead R2
h = n + N

2 + O(N2/n).

5 Combinatorics of microstates

There are various sectors of states, depending on the behavior of the quantum numbers. We discuss
all of them and determine their respective combinatorics. In all cases, we assume Rh � 1/

p
 to

guarantee the validity of the semiclassical approximation.

5.1 Soft sector

When the string has vanishing momentum, n = 0, we call it soft. In this case, there is a mundane
infinite degeneracy from the winding modes: no amount of winding changes anything about the
spectrum. We thus declare n = 0 states equivalent to each other if they di↵er only by their winding
numbers.

For fixed (large) mass m the counting is now straightforward. The total level N must be large
and splits evenly, s = r = N

2 . The (large) numbers s and r can be partitioned arbitrarily into positive
integers. The number of integer partitions, ⇧(N), is given by the Hardy–Ramanujan formula [72]
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is labeled by a collection of mode excitation numbers ri, si, the winding number !, and the mo-
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The remaining task is to fix the value of the mass m in terms of the geometric input, the value
of the horizon radius Rh. Since m is the mass of our string states at the horizon, on dimensional
grounds it is plausible to identify it (up to some factor) with the near horizon mass of the associated
BTZ black hole. Due to the near horizon first law, the latter scales linearly in the horizon radius
[48, 51], i.e.,

m = Rh . (4.5)

While we could include some arbitrary numerical factor in the relation (4.5), we absorb such a
factor by the freedom to fix the coupling constant , which we shall do below in (6.2).
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Finally, we introduce lightcone coordinates x± = ± 1
p

2
r e±at to bring the Rindler metric into

Minkowski form,
ds2
⇡ �2 dx+ dx� + R2

h d�2 = Gµ⌫ dxµ dx⌫ . (3.6)

This metric is the starting point for our analysis of null strings on the (non-extremal) BTZ black
hole horizon

3.2 Horizon Strings: The basic set up

The version of the ILST action that we would be interested in for our analysis is

S =


2

Z
d⌧ d�

�
Va@aXµ

� �
Vb@bX⌫

�
Gµ⌫(X) . (3.7)

The metric that we pick for the target space is the BTZ metric evaluated in a suitable gauge and a
co-rotating frame zooming onto the horizon (with radius Rh)

Gµ⌫ dXµ dX⌫ = �2 dx+ dx� + R2
h d�2 = �2 dx+ dx� + d'2 . (3.8)

This is the same as the one we obtained above in (3.6). The lightcone coordinates x± take arbitrary
real values, and the angular coordinate is periodic, � ⇠ � + 2⇡. The gauge-fixed version of the null
string action (3.7) for the target space metric (3.8) simplifies to

Sgf =


2

Z
d⌧ d�

⇣
� 2(@⌧X+)(@⌧X�) + (@⌧X')2

⌘
(3.9)

where X' = Rh X�. Varying the gauge-fixed action (3.9) yields the equation of motion

@2
⌧X
µ = 0 (3.10)

solved as before by the mode expansion

Xµ(⌧,�) = xµ + Aµ0� + Bµ0⌧ + i
X

n,0

1
n

⇣
Aµn � in⌧Bµn

⌘
e�in� . (3.11)

Additionally, we now allow closed strings to wind around the compact '-direction,

X'(� + 2⇡, ⌧) = X'(�, ⌧) + 2⇡Rh ! ! 2 Z (3.12)

and have identifications X±(� + 2⇡, ⌧) = X±(�, ⌧), implying

A'0 = Rh!, A±0 = 0. (3.13)

As usual in string theory [68, 69], the momentum along the circle is quantized in units of one over
its radius.

p' =  B'0 =
n

Rh
n 2 Z (3.14)

We refer to null strings on the BTZ black hole horizon as “horizon strings”.
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Entropy of BTZ black hole
States from different sectors (complicated combinatorics): 

Soft: string momentum vanishes 

High momentum sector               Exponentially suppressed.               also exponentially suppressed.  

Generic sector, typical microstates     

Non-winding sector  

Full partition function:  

Bekenstein-Hawking entropy: 

We fix                   This gives                        . We cannot get the 3/16 from anything yet. Only input!  

But the coefficient of the log term is the real surprise. Unexpected! Must be something very deep! 

From the range of the momentum number, we deduce an interesting physical fact: Since the
momentum number generically scales at most like O(N3/4), the quantity m2/ changes likeO(

p
N).

We conclude that we must consider Gaussian fluctuations of the level N.
We can finally be precise about the allowed mass range in our definition of BTZ microstates.

We cannot insist on a fixed value of m but instead must allow fluctuations of the mass, m! m+�m,
of order unity to guarantee Gaussian fluctuations in N.2

�m = O(1) $ �N = O
�p

N
�

(5.5)

While it was pure combinatorics that drove us to consider Gaussian fluctuations (5.5), such fluctua-
tions may have been anticipated on physical grounds, as we are in an ensemble of fixed temperature
rather than fixed energy.

The number of generic microstates subject to the fluctuations (5.5) is then given by

Zgeneric(N) =
N+O(

p
N)X

N0=N
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generic(N0) '

1
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✓
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r

N
3

◆
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5.4 Non-winding sector

There is one remaining sector, namely ! = 0. In this case, the level-matching (4.2) implies s = r,
exactly as in the soft sector. However, since the momentum number n appears in the mass-shell
condition (4.3), we get a cuto↵ on the spectrum.

For compatibility with the generic sector, we allow the same range of mass fluctuations and
hence get Gaussian fluctuations of the level N. We obtain

Z!=0(N) =
N+O(

p
N)X

N0=N

O(N3/4
0 )X

n=1

⇧2
⇣N0
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While the generic sector contains infinitely more states than the non-winding sector, the ap-
proximate equality Zgeneric(N) ' Z!=0(N) shows that the non-winding and the generic sectors yield
the same leading and subleading result for the partition function.

5.5 Full partition function

The final result of our combinatorial excursion is the partition function of BTZ black hole mi-
crostates

ZBTZ = Zsoft + Zn�N + Zn⇡N + Zgeneric + Z!=0 . (5.8)

For large horizon radii, the partition function is dominated by the contribution from the generic
sector

ZBTZ(Rh) ⇡ Zgeneric(R2
h) ' R�3/2

h exp
✓
2⇡Rh

r


3

◆
(5.9)

2 It is reassuring that the near horizon analysis in [51, 52] leads to analog conclusions. Namely, if we want Gaussian
fluctuations in the BTZ black hole mass as measured by an asymptotic observer, �M = O(

p
M), we need to allow order

unity fluctuations of the black hole mass as measured by a near horizon observer, �m = O(1). It works because M and
m are related by a Sugawara construction, yielding M / m2. This implies M + �M / (m + �m)2 = m2 +mO(�m), from
which we deduce �M /

p
MO(�m).
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is labeled by a collection of mode excitation numbers ri, si, the winding number !, and the mo-
mentum number n, subject to the level-matching (4.2) and the mass-shell condition (4.3).

The remaining task is to fix the value of the mass m in terms of the geometric input, the value
of the horizon radius Rh. Since m is the mass of our string states at the horizon, on dimensional
grounds it is plausible to identify it (up to some factor) with the near horizon mass of the associated
BTZ black hole. Due to the near horizon first law, the latter scales linearly in the horizon radius
[48, 51], i.e.,

m = Rh . (4.5)

While we could include some arbitrary numerical factor in the relation (4.5), we absorb such a
factor by the freedom to fix the coupling constant , which we shall do below in (6.2).

Elaborate on the near horizon first law....
Plugging the mass (4.5) into the result (4.3),

R2
h = s + r +

n2

R2
h

:= N +
n2

R2
h
, (4.6)

and assuming N � n yields

R2
h = N +

n2

N
+ O(n4/N3) . (4.7)

In the other limit, N ⌧ n, we have instead R2
h = n + N

2 + O(N2/n).

5 Combinatorics of microstates

There are various sectors of states, depending on the behavior of the quantum numbers. We discuss
all of them and determine their respective combinatorics. In all cases, we assume Rh � 1/

p
 to

guarantee the validity of the semiclassical approximation.

5.1 Soft sector

When the string has vanishing momentum, n = 0, we call it soft. In this case, there is a mundane
infinite degeneracy from the winding modes: no amount of winding changes anything about the
spectrum. We thus declare n = 0 states equivalent to each other if they di↵er only by their winding
numbers.

For fixed (large) mass m the counting is now straightforward. The total level N must be large
and splits evenly, s = r = N

2 . The (large) numbers s and r can be partitioned arbitrarily into positive
integers. The number of integer partitions, ⇧(N), is given by the Hardy–Ramanujan formula [72]
[OEIS: A000041]

⇧(N) ⇡
1

4
p

3 N
exp
✓
2⇡
r

N
6

◆
. (5.1)

Thus, the contribution to the partition function from the soft sector (at fixed m) is given by

Zsoft(N) = ⇧2
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Here and in what follows, we use ' to denote the approximation of ln Z to the leading O(
p

N)
and subleading O(ln N) contributions, while dropping terms subleading to these. This simplifica-
tion has the added benefit that we can assume non-negative ! and n since considering all possible
sign combinations would produce some overall factor of order unity in the partition function. We
make this assumption from now on.

5.2 High momentum sector

Consider the opposite of the soft sector: The mass is dominated by high momentum, n � N.
Level-matching (4.2) then implies vanishing winding number !. So we get the same result as for
the soft sector (5.2), but N, while it still can be a large number, is now much smaller than m2/.

Therefore, this sector is suppressed exponentially as compared to the soft sector and, as we
shall see, also as compared to the sectors below. The same logic applies to the sector n ⇡ N.
Thus, we conclude that typical microstates require large levels, N � n, and the contributions to the
partition function Zn�N + Zn⇡N are negligible for large masses.

5.3 Generic sector

The higher the level, the stronger the exponential enhancement in the integer partitions (5.1). Thus,
typical microstates require N � n. Generically, there are no further constraints on winding or
momentum other than level-matching and mass-shell conditions. In particular, generically neither
of them vanish, n > 0, ! > 0. To reduce clutter, we assume N is even (none of our results change
essentially for odd N).

A curious aspect of the mass-shell condition (4.3) is that changing the momentum number
n alters the almost-integer number m2/ slightly. So we should not consider a fixed mass in our
ensemble but allow for a range, depending on the allowed range of the momentum number. For the
time being, we fix the level N but permit varying the mass by changing the momentum number.

The partition function in the generic sector for fixed N

Zfixed
generic(N) =

N
2X

l=1

⇧
⇣

N
2 � l
⌘
⇧
⇣

N
2 + l
⌘
⌧(2l) (5.3)

involves the number of divisors ⌧(k) of the integer k. It appears due to the level-matching condition
(4.2), which requires the di↵erence of the levels s � r to be the product ! n.

The combinatorial problem (5.3) is not trivial but solvable at large N 1.

Zfixed
generic(N) '

1
N5/4 exp

✓
2⇡
r

N
3

◆
(5.4)

We recover the same exponential degeneracy as in the soft sector (5.2) but with a monomial en-
hancement in N, plus other subleading corrections.

It can be shown that the essential part of the partition function Zfixed
generic(N) comes from levels

r in the range N/2 � O(N3/4) to N/2 � O(1), implying typical ranges of winding and momentum
numbers between O(1) and O(N3/4).

1We thank our colleagues at the mathematics departments at TU Wien and IPM Tehran for helpful discussions and
proofs, in particular Bernhard Gittenberger, Martin Rubey, Iman Eftekhari, and S.M. Hadi Hedayatzadeh.
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1
N5/4 exp

✓
2⇡
r

N
3

◆
(5.4)

We recover the same exponential degeneracy as in the soft sector (5.2) but with a monomial en-
hancement in N, plus other subleading corrections.

It can be shown that the essential part of the partition function Zfixed
generic(N) comes from levels

r in the range N/2 � O(N3/4) to N/2 � O(1), implying typical ranges of winding and momentum
numbers between O(1) and O(N3/4).

1We thank our colleagues at the mathematics departments at TU Wien and IPM Tehran for helpful discussions and
proofs, in particular Bernhard Gittenberger, Martin Rubey, Iman Eftekhari, and S.M. Hadi Hedayatzadeh.

– 14 –
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where we used the relation (4.7) between the level N and the horizon radius Rh. The approximation
of the partition function (5.9) is the main result of our counting. It is valid for large horizon radii,
Rh � 1/

p
, which permits comparing with semiclassical results for the black hole entropy.

6 Bekenstein–Hawking law

Summarizing the combinatorics, we find the entropy of our horizon string microstates is given by
the logarithm of the partition function (5.9), viz.,

S = ln ZBTZ = 2⇡Rh

r


3
�

3
2

ln Rh + o(ln Rh) . (6.1)

The entropy (6.1) contains the correct scaling with the area of the BTZ event horizon, 2⇡Rh, and
a well-known numerical factor � 3

2 in front of the logarithmic corrections (see, e.g., [66]). The
sub-subleading terms are small as compared to ln Rh but still infinite for Rh ! 1. In particular,
they are not of order unity.3 Comparison with the BH-law (1.1) fixes the coupling constant as

 =
3

16G2 . (6.2)

The scaling with 1/G2 follows from dimensional analysis. The numerical coe�cient 3/16 is a
non-trivial input and cannot be derived within the setup presented here.

Since the log corrections to the entropy depend on the thermodynamical ensemble let us finally
check if we are in the right ensemble. From near horizon considerations we have fixed the tem-
perature, and the tensionless string spectrum forced us to let the asymptotic mass have a Gaussian
profile.4 The metric (3.8) in a co-rotating frame has fixed angular momentum. In the conventions
of [66], we thus have a mixed ensemble and should get a coe�cient of � 3

2 in front of the log
corrections. This is precisely what we obtained in our main result (6.1).

7 Concluding remarks

Based on the matching of symmetries of the horizon, we formulated and implemented the idea that
microstates of a 3d black hole are physical states (4.4) of a null string theory. Typical microstates
are excited strings with nonzero winding around the angular direction. The growth of their degener-
acy with the exponential of the square root of the excitation number (5.6) is a known characteristic
feature of strings [74–76]. This degeneracy correctly accounts for the Bekenstein–Hawking en-
tropy and its subleading log corrections (6.1).

Before addressing generalizations, we discuss similarities and key di↵erences to some previ-
ous proposals for black hole microstates. Our construction can be viewed as an implementation of

3This is qualitatively di↵erent from the precision counting e.g. in [73], where the next term is of order unity.
4It is reassuring that the near horizon analysis in [51, 52] leads to analogous conclusions. Namely, if we want

Gaussian fluctuations in the BTZ black hole mass as measured by an by an asymptotic observer, �M = O(
p

M), we need
to allow order unity fluctuations of the black hole mass as measured by a horizon observer, �m = O(1). It works because
M and m are related by a Sugawara construction, yielding M / m2. This implies M +�M / (m+�m)2 = m2 +mO(�m),
from which we deduce �M /

p
MO(�m).
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1 Introduction and motivation

Black holes and string theory have a long and intimate relationship, see [1–23] and Refs. therein.
An emblematic result by Strominger and Vafa is the microscopic origin of the Bekenstein–Hawking
(BH) entropy

S BH =
Area
4G

(1.1)

of certain extremal black holes [11]. The BH-law (1.1) is a template for falsification in quantum
gravity, given the paucity of experimental data (see e.g. Sec. 10.2 in [24]). That is why the hep-th
and gr-qc communities spent a lot of resources deriving the BH-law microscopically for more
general black holes [25–36] (see also [37] for an alternative proposal).

– 1 –

From the range of the momentum number, we deduce an interesting physical fact: Since the
momentum number generically scales at most like O(N3/4), the quantity m2/ changes likeO(

p
N).

We conclude that we must consider Gaussian fluctuations of the level N.
We can finally be precise about the allowed mass range in our definition of BTZ microstates.

We cannot insist on a fixed value of m but instead must allow fluctuations of the mass, m! m+�m,
of order unity to guarantee Gaussian fluctuations in N.2

�m = O(1) $ �N = O
�p

N
�

(5.5)

While it was pure combinatorics that drove us to consider Gaussian fluctuations (5.5), such fluctua-
tions may have been anticipated on physical grounds, as we are in an ensemble of fixed temperature
rather than fixed energy.

The number of generic microstates subject to the fluctuations (5.5) is then given by

Zgeneric(N) =
N+O(

p
N)X

N0=N

Zfixed
generic(N0) '

1
N3/4 exp

✓
2⇡
r

N
3

◆
. (5.6)

5.4 Non-winding sector

There is one remaining sector, namely ! = 0. In this case, the level-matching (4.2) implies s = r,
exactly as in the soft sector. However, since the momentum number n appears in the mass-shell
condition (4.3), we get a cuto↵ on the spectrum.

For compatibility with the generic sector, we allow the same range of mass fluctuations and
hence get Gaussian fluctuations of the level N. We obtain

Z!=0(N) =
N+O(

p
N)X

N0=N

O(N3/4
0 )X

n=1

⇧2
⇣N0

2

⌘
'

1
N3/4 exp

✓
2⇡
r

N
3

◆
. (5.7)

While the generic sector contains infinitely more states than the non-winding sector, the ap-
proximate equality Zgeneric(N) ' Z!=0(N) shows that the non-winding and the generic sectors yield
the same leading and subleading result for the partition function.

5.5 Full partition function

The final result of our combinatorial excursion is the partition function of BTZ black hole mi-
crostates

ZBTZ = Zsoft + Zn�N + Zn⇡N + Zgeneric + Z!=0 . (5.8)

For large horizon radii, the partition function is dominated by the contribution from the generic
sector

ZBTZ(Rh) ⇡ Zgeneric(R2
h) ' R�3/2

h exp
✓
2⇡Rh

r


3

◆
(5.9)

2 It is reassuring that the near horizon analysis in [51, 52] leads to analog conclusions. Namely, if we want Gaussian
fluctuations in the BTZ black hole mass as measured by an asymptotic observer, �M = O(

p
M), we need to allow order

unity fluctuations of the black hole mass as measured by a near horizon observer, �m = O(1). It works because M and
m are related by a Sugawara construction, yielding M / m2. This implies M + �M / (m + �m)2 = m2 +mO(�m), from
which we deduce �M /

p
MO(�m).
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A theory of Black holes based on Null Membranes?
Looks like the theory of null strings has something deep to say about BTZ microstates.  

Of course, there are questions. This is an effective theory.  

How can you make this quantum mechanically consistent? What about anomalies? 

Relatedly: Dimensions? Looks like D=3 for the moment. Add spectator D=23 dimensions? 
Wish away KK modes?  

But can we go further? Null 2-branes for D=4 Blackholes?  

Classical analysis [in progress AB, DG, MMS, others] seems to indicate that we do have an 
analogous infinite dimensional symmetry related to BMS4 at play here.  

Is it possible to quantise this? Can the infinite dimensional algebra work its magic again, 
unlike the relativistic case? We hope to come back with answers. 



Thank you! 


