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Nonrelativistic strings

e Nonrelativistic string theory has a long and illustrious history,
starting with GO and Danielsson et al.

e This talk: NR string theory from “post-Newtonian” l/c2

expa nsions (cf. Jprgen’s talk)
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The g 1/c? expansion of string theory
An expansion requires a dimensionless parameter.

e This requires a compact direction in target space

/

ho
€= O/FI/(CRZ) = O;el-f?Fz with ¢T = Teff N R/C = Reff
" Refr

Hence:

1/c2—expansion <> expansion around decompactification IimitI

e Nonrelativistic interpretation: Veom ~ 1/ hole/Resf < €
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Expansion of the spectrum and longitudinal T-duality
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e This leads to E = \/m = c2E|_o + Ento + -0+
with
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e Spectrum can be written as
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e T-duality amounts to: R <«
!/
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e T-duality switches between expansions in € and é: |e <> €



Nonrelativistic expansion of string actions  seor.)

e The Polyakov Lagrangian on flat target space is

= VXM X
A i

2 2
e Here, nyn = diag(—c*, ¢, 1,...) and (. selies talk)
gauge fix YaB=Nag

X=x+cy+-,  Yasg=%0as T Vapt

e Splitting the index as M = (A, /) gives the LO and NLO
Lagrangians (Lp = ¢*Lp10 + Lono + -+ )

Equivalent to GO w/o instanton term with Biyq: ~ At

T T : :
Lplo=— QeffaaXAaaXA, Lp.nLo = —78“ [0ax'0%X" + 20,y 0%xa]




The plan

@ String 1/(:2 expansion of closed bosonic string theory
@ Phase space formulation

@ Open strings



String Newton—Cartan geometry from large-c
- — ‘ Geometry ‘ Field content

String 1/¢* expansion of LO: 7*, Hipy
Lorentzian geometry up to NLO: 74, Hipy mar®, iy
up to NNLO: 7y, Hiy, mart, 65y, Burt
etc.
Type 11 SNC Tty Hipy, mar, ¢y (LO and NLO fields from
above)
‘ Type I SNC ‘ T, Hipy. ma™ ‘

° Decom pose metFIC and ItS inVerse adS [Hansen et al., '18; Hansen et al. '20]
2 A B 1 MN -2, ABTM N 1 MN
Gun = c“nag Tm” Tn™ + Uiy, G =TT AT "+ 10

where A, B = 0,1 and Ty ATI+MN = TMAHI\LﬂN =0
e Expand as

Tw® =™+ c2mp? + O(c™?) yyy = Higny + O(c™2)
to get [Andringa et al., '12; Bergshoeff et al. '18]

Gun = Tvn + Hun + O(c™?)
with

A_ B L A B
T™MN = NABTM TN Hun = Huyy + 21na87(m” My



Codimension-2 foliations and the “strong foliation
constraint”

e Historically the "SFC"” played an important role in NRST

dr = wAB ATB

The 1/c2 expansion comes equipped with its own foliation
constraint:
e The beta function of ST at LO in o is Einstein's Eq.

Ruyn = 0, which at LO in 1/c? becomes the Frobenius
condition

HOSHERT (dr) oo (d78) o7 = 0 <= |dr” = a’g A 7P

e Reduces to SFC when o' g = w”g



Expansion generalities

e String Lagrangian schematically of the form L[X; c] and
expands in 1/c? as

(=2) ()
LIX;cl=c L (X)+ L(X)+0(c?)

e A further (functional) Taylor expansion in
X=x+c2y+-- leads to

(=2)
(=2) 0)
LIX;c]=c* L (x)+ | LX) +yM6 é(,\gx)] +0(c™?)

= c®L1o(x) + Laro(x,y) + O(c™?)

= ’subleading fields “remember” lower-order e.o.m.s ‘




Expansion of the Polyakov Lagrangian
e The Polyakov Lagrangian is

= —7\/ 7“58 XM(?gXNGMN

EXPANSION RECIPE:

e Mantra: ‘expand everything‘

XM =M 4 2 M+0( 4
Yap = Y0)as + € V2)ap + O(c™?)
Gap(X) = XM XN Gun(X) = PTap(x) + Hap(x,y) + O(c™?)

where

TQB(X) = 8aXM85XNTMN(X)
Hop(x,y) = 8axM85xNHMN(x) + 28(QXM(95))/NTMN(X) + 8axM85xNyL8LTMN(X)



Expanding the Polyakov Lagrangian to NLO
e This procedure leads to an expansion of the form
Lp = CQEP_LO + Lp.nLo + O(C72)

where

Tefr a
Lp.o=— %/T(())’Y(()?Taﬁ

Tefr o Test o 0Lp.Lo
Lpno = — Te\/ *’Y(o)’Y((g Haops + Te\/ —7(0) G((f;?wTaﬁW(z)w +yM S

with GG = v + YV — ViV the WDW metric

e The LO e.o.m. is
0 = P9, x"9pxteas(d(t* A 78)) ki + “Virasoro”

e If the Frobenius condition is satisfied, a sufficient™ condition
for the above to vanish identically is if ap’ g is traceless, of
which the SFC is a special case



SNC string C NLO string

Tefr aB Tefr aBs mOLpP Lo
5 V100 Hap + =7 V=70 6oy " TasV2rs Ty 5

Lp.nLo = —

e Decompose
Y0)ap = Nabea’es” , V2)as = 2€(a’es) Aab
where a, b are tangent space WS indices

e This results in the Lagrangian

Tet o T o 5Lyc.
where 75 = 75° 4+ 73! and
Aix =4e¢ (Fra® + 7a') Arx F267 1 (nF 0,y + 0, xMyN oyt ™)

e For a®4 = 0 this reproduces the SNC string



Phase space formulation and Poisson brackets

1
= — (P cTXYM(P £ cTXYNun

H
e The relativistic phase Lagrangian is \[ e

L= §£dal (XMPy — 9 H_ — 9T ]

e Momentum expands as Py = c*P(_gya + Pioya + ¢ *Pya+ -
and P; = P(o),' + C72P(2),' + -
e This gives

Lio= 36 do? [)'(AP(_Q)A +"“LO constraints”] ,
Lo = ygdcrl [XIP(O); + XAP(O)A + )’/AP(,Q)A + “LO & NLO constraints”] ,

Lnnio = ygdtfl [XAP@)A + yAP(O)A + 2AP(—2)A + %"Payi + ¥ Poyi + -+ ]

e Hence: ’Poisson brackets change at each order




4
The normal ordering constant

e Gauge-fixed Poisson brackets are
{al, o/} = —iké" at NLO,  {af,p ,} = —%5’7 at NNLO

where x ~ S (i/k)ale ™ " 4+ ... and y' ~ S2(i/k)BLe k"

e Standard approach: [g, p] = ih{q, p} (*)

e However, subleading Lagrangians have non-standard
dimensions; £ = ¢®*L10 + Lnio + ¢ *Lynto + -+
~~ Replace (x) with
[a, ] ikpayip1{a, b}

where ki;(p) is some combination of fundamental constants
with dimensions of [a][b]

+



ONLO:

OGNNLO:

The normal ordering constant (cont'd.)

NLO vacuum aj|0)nLo = 0, with [a}] =length x\/mass/time
Commutator is [af, o’ ] = hkd?, # op. is Ny = Za e

Normal ordering gives

NNLO vacuum ak|0)nnio = Bi|0)nnLo = O for all k > 0, with
[8] = v/mass x length x (time)~>/2

Commutator is now [af, ] = c276’j, subleading # op. is

Ny = 52 B+ 302 i Bli
(with N = Ny + c*QN<2> +4)
Reproduces the same normal ordering constant:

>aldi=3 8" I Y L



The 1/c* expansion of open strings

e v-direction a DD-direction
~> theory defined on a D24-brane

e NLO action in flat TS given by

Sp-NLo = — efr/dQ { ¥ 9o X' DX’ —H/A(SSPLO} —Q/da [y*doxe] . g

[ ] BCS: 77ABX'A6yB|endS = nAByIA5XB| = nijx ”6X1|

= xA and y* satisfy same BCs

ends ends

~~ Revisit T-duality, which in the longitudinal sector is related
the DLCQ of string theory and NCOS

~~ String 1/c2 expansion of the DBI action and D-branes



Summary and Future Directions

WHAT WE HAVE ACHIEVED
e Framework for expanding string theory to any desired order in
1/c?
e Does not need near-critical Kalb—Ramond background

e Reproduces NRST at NLO as well as the GO spectrum (when
taking into account WZ term)

WHAT LIES AHEAD

e beta functions for NRST & 1/c? expansion of NS-NS gravity:
the missing Poisson equation? (cf. jan's talk)

e Open strings and D-branes

e Explore the “landscape” of non-Lorentzian string theories and
their possible holographic dualities
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EXTRA SLIDES: SPECTRUM ON FLAT TARGET
SPACE

7



Fixing the gauge

Flat string I\!C geometry: " = Siys ™t = )1 my” =0,
HI\/IN:(S;\/](S;V with i =2,...,26
Expand rel. WS gauge redundancy

B =gl + T 0T w=wo) + T + 0T
Fix LO and NLO redundancies partially by setting

Y(©)ap = Nap Y(2)ap = 0

This leaves residual redundancy (true at all orders)

5(0,2)(0) = 5(70’2) (U_)a, + g(J(r),z) (0+)8+



Mode expansions and spectrum: LO

e The gauge-fixed P-LO Lagrangian is

T, T.
Loio = %ﬁnaﬁaaxfagxf - %naﬁaaxvaﬁxv

with Virasoro constraints d+x= = 0, leading to
=0 by fixing res. red.

+ +

X = Xét + WRero T + oT-oscillations

e The energy at LO is the 'stringy’ rest mass

0Lp. o WRe
Eo=—Qdot =222 —
Lo §£ 7 9(px?) alg




Mode expansions and spectrum: NLO
e The gauge-fixed P-NLO Lagrangian on flat space is

T i .
effnaﬁaaxlaﬁxl + Teffnaﬁaaytaﬂxt - Teffnaﬂaayvaﬁxv

LpnLo = —

=0

1
WRest
e eom.: 0,0 y' =0,0_y" =0,0_x"= 0 leads to mode

expansions

with Virasoro constraints d-y* =

. . 1 . .
i i i —Ika ~i —iko
X =Xy + =P g [ +a e
0 2’/T Te )I 471' Tef-'f k;ﬁO k
remove osc. from Bj:yi by fixing NLO red.

1
+ _ £
Y= =% 27TTefF

—
poyx(c" +07) + oscillations

e This leads to N — N(oy = hnw and

I9Lp-nLO Ny + Moy a
E _ do 1 — _ _ eff 2
NLO = % 6‘80xt p((])t WRef-'f + 2WReff p(o)



...and combining everything

. we get our previous result:

E = C2E|_o + Envo + O(Ciz)

C2 WReff N(Q) + N(O) Oél
— + + eff p2 + O C72
aleff WRefF 2 WReff () ( )




