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Singularities in General Relativity
The notion of singularities in GR can be unfolded according to the following layers:

1 coordinate singularity

2 curvature singularity

3 geodesic incompleteness

Example (Schwarzschild metric):

ds
2 = −

(
1−

2M
r

)
dt

2 +
dr2(

1− 2M
r

) + r
2
dθ

2 + r
2 sin2

θ dφ
2

The Schwarzschild metric:

1 admits a coordinate singularity at r = 2M .

2 admits a curvature singularity at r = 0.

3 is geodesically incomplete.
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The Schwarzschild metric:

1 admits a coordinate singularity at r = 2M .

Changing the time coordinate allows to reexpress it in the ingoing Eddington–Finkelstein coordinates:
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2 admits a curvature singularity at r = 0.

3 is geodesically incomplete.
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The Schwarzschild metric:

1 admits a coordinate singularity at r = 2M .

2 admits a curvature singularity at r = 0.

Although the Ricci scalar vanishes (R = 0), the Kretschmann scalar:

RµνρσR
µνρσ =

48M2

r6
diverges at r → 0.

3 is geodesically incomplete.
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The Schwarzschild metric:

1 admits a coordinate singularity at r = 2M .

2 admits a curvature singularity at r = 0.

3 is geodesically incomplete.

There are geodesics which have bounded proper time only.

They reach the singularity at r = 0 after finite proper time.



Singularities in General Relativity
The notion of singularities in GR can be unfolded according to the following layers:
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3 geodesic incompleteness
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The Schwarzschild metric:

1 admits a coordinate singularity at r = 2M .

2 admits a curvature singularity at r = 0.

3 is geodesically incomplete.

The determinant det g = −r4 sin2 θ vanishes at r = 0, so that the metric is not invertible there.

Question: Is there a meaningful sense in which (pseudo)-Riemannian geometry

becomes non-Riemannian at singularities?



Double Field Theory (DFT)
Stringy geometry

Spacetime is doubled xA = (x̃µ, xµ) and ∂A = (∂̃µ, ∂µ)
where A ∈ {1, . . . , 2D} and µ ∈ {1, . . . , D}

Spacetime is endowed with a canonical O(D,D) metric JAB =
(

0 1
1 0

)
.

Section condition ∂A∂A ∼ 0

Doubled diffeomorphisms (L̂XY )A = XB∂BY
A + (∂AXC − ∂CXA)Y C

Fundamental fields

Fundamental objects of the theory are the generalized metricHAB and the dilaton d.

HAB = HBA
Symmetric

, HACHBDJCD = JAB
O(D,D)

Curvature

The fundamental O(D,D) variables can be used to build O(D,D)-curvature tensors

generalising the Ricci calculus of General Relativity:

A generalised Ricci scalarR(H, d)

A generalised Ricci tensorRAB(H, d)
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Double Field Theory (DFT)
The DFT action reads

SDFT =

∫
d

2D
X e
−2dR(H, d)

where the generalised Ricci scalarR(H, d) is the unique O(D,D) scalar built in terms of second

derivatives of the fundamental O(D,D) variablesH and d.

Substituting into the O(D,D) variables the Riemannian parameterisation in terms of (gµν , Bµν , φ):

O(D,D) dilaton e
−2d =

√
−ge−2φ

Generalized metric HAB =

(
g−1 −g−1B

Bg−1 g − Bg−1B

)
=

(
1 0

B 1

)(
g−1 0

0 g

)(
1 −B

0 1

)
yields the universal spacetime low-energy action for the closed string massless (NS-NS) sector

ubiquitous in all string theories:∫
dDx

√
−g e−2φ

(
Rg + 4∂µφ∂µφ− 1

12HλµνH
λµν
)

where H = dB

The action is invariant under the doubled diffeomorphisms:

(Undoubled) Diffeomorphisms: δξgµν = Lξgµν , δξBµν = LξBµν , δξφ = Lξφ

B-gauge transformations: δΛBµν = ∂µΛν − ∂νΛµ
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Summary of this talk
Background

The stringy geometry of DFT can accommodate not only Riemannian geometries

but also non-Riemannian ones.

Main result

What appear as genuine singularities in conventional GR geometry can be recast as regular DFT

geometry with a non-Riemannian sector.

Applications

We identify among this class physically relevant examples and show their geodesic completeness.



Summary of this talk
Background

The stringy geometry of DFT can accommodate not only Riemannian geometries

but also non-Riemannian ones.

Solutions to the defining equations of the DFT generalised metricH are classified by two

non-negative integers (n, n̄) such that 0 ≤ n+ n̄ ≤ D.

Example: supergravity (0, 0), Gomis–Ooguri NR string (1, 1)

The geometry of the (undoubled) D-dimensional spacetime is generically characterised by:

n+ n̄ longitudinal directions

D − (n+ n̄) transverse directions.

Particles freeze along the n+ n̄ directions and strings become (anti)-chiral along n (resp. n̄)

directions.

Main result

What appear as genuine singularities in conventional GR geometry can be recast as regular DFT

geometry with a non-Riemannian sector.

Applications

We identify among this class physically relevant examples and show their geodesic completeness.



Summary of this talk
Background

The stringy geometry of DFT can accommodate not only Riemannian geometries

but also non-Riemannian ones.

Main result

What appear as genuine singularities in conventional GR geometry can be recast as regular DFT

geometry with a non-Riemannian sector.

Specifically, we exhibit a class of supergravity spacetimes featuring genuine curvature singularities in

Riemannian geometry, for which we prove that:

The corresponding DFT generalised metric can be made regular via a suitable use of doubled

diffeomorphisms.

The corresponding O(D,D)-covariant curvature tensors are all regular, in contradistinction to

their Riemannian counterparts.

Applications

We identify among this class physically relevant examples and show their geodesic completeness.



Summary of this talk
Background

The stringy geometry of DFT can accommodate not only Riemannian geometries

but also non-Riemannian ones.

Main result

What appear as genuine singularities in conventional GR geometry can be recast as regular DFT

geometry with a non-Riemannian sector.

Applications

We identify among this class physically relevant examples and show their geodesic completeness.

D = 2 Black hole solution Witten 1991

D = 4 Spherical solution Burgess, Myers, Quevedo 1994

D = 10 Black 5-brane Horowitz, Strominger 1991



Main ansatz
We focus on the following supergravity ansatz, with xµ = (t, y, zi):

Metric ds2 =
1

F (x)

(
−dt2 + dy2

)
+Gij(x)dzidzj

Kalb–Ramond field B = ±
1

F (x)
dt ∧ dy +

1
2
βµν(x)dxµ ∧ dxν

Dilaton scalar e
−2φ = F (x)Ψ(x)

where Gij , βµν and Ψ are assumed to be regular.

The latter ansatz encompasses the previously mentioned examples and (hopefully) more.

The only source of singularity is therefore F → 0, which clearly features a coordinate singularity.

Generically, the metric features a curvature singularity:

R→∞ , RµνρσR
µνρσ →∞ whenever F → 0.
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Main observation
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The coordinate singularity is absent from the O(D,D) fundamental variables i.e. no negative power

of F appears (c.f. Lee, Park 13’, Blair 15’, Berman, Blair and Otsuki 19’, Blair 19’ for earlier examples)

In the limit F → 0, the generalised metricHAB becomes non-Riemannian of type (1, 1):

H
µν =

(0 0 0
0 0 0
0 0 Gij

)
, Kµν =

(
0 0 0
0 0 0
0 0 Gij

)
, β = βµνdx

µ ∧ dxν

Xµ =
1
√

2

(
±1 1 0

)
, X̄µ =

1
√

2

(
∓1 1 0

)
, Y

µ =
1
√

2

(
±1
1
0

)
, Ȳ

µ =
1
√

2

(
∓1
1
0

)



Main observation
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The parameterisation of the generalised metricH depends of the spacetime point:

Riemannian at F 6= 0.

non-Riemannian at F = 0.

The GR limit Regular→ Singular is traded for the DFT limit Riemannian→ non-Riemannian.

The Kalb–Ramond field B = ± 1
F dt ∧ dy + · · · plays a crucial rôle in regularisingH.

In particular, whenever ± 1
F dt ∧ dy is pure gauge, the curvature singularity of the GR metric is

eliminated through doubled diffeomorphisms, hence is a coordinate singularity in DFT.



Geodesics
The notion of DFT geodesics for Riemannian generalised metrics agree with the conventional GR

one computed in the string frame. Since the DFT geometry is regular, we expect the null and timelike

geodesics associated with our supergravity ansatz to be complete.

Focusing on particular supergravity solutions, we verify that this is indeed the case:

D = 2 Black hole solution Witten 1991

D = 4 Spherical solution Burgess, Myers, Quevedo 1994

D = 10 Black 5-brane Horowitz, Strominger 1991

Additionally, it can be checked that the corresponding geodesic deviation remains regular:

D2ξµ

dλ2 = R
µ
νρσẋ

ν
ẋ
ρ
ξ
σ

Hence, despite featuring a curvature singularity, the physically measurable quantities of these

solutions remain finite.

From the general behavior of particles and strings on non-Riemannian backgrounds, we expect that:

geodesics freeze on non-Riemannian points F = 0

strings become chiral at F = 0



Example (D = 2 black hole)
The D = 2 black hole solution from Witten 1991 reads:

ds2 =
dy+dy−

F (y+, y−)
and H = 0 with F = −1 +

y+y−

l2
=

F

|F |
e
−2φ

.

The latter solves the supergravity field equations with cosmological constant ΛDFT = −
2
l2

.

The Ricci scalar reads R = −
4
l2F

so that the hyperbola y+
y
− = l

2 is a curvature singularity.

Although the H-flux is trivial, we introduce a pure gauge B-field as B = ±
1
F

dy+ ∧ dy−.

The resulting generalised metric is non-Riemannian regular on the hyperbola.

Timelike geodesics will never reach the non-Riemannian hyperbola while null ones may approach

only at past or future infinity (freezing).

Although certain components of the Riemann tensor diverge, the contraction with ẋ remain finite so

that the geodesic deviation
D2ξµ

dλ2 = R
µ
νρσẋ

ν
ẋ
ρ
ξ
σ is regular, with vanishing norm

∣∣D2ξ

dλ2

∣∣2 = 0.

One of
{
y+, y−

}
is chiral and the other anti-chiral on the non-Riemannian hyperbola.



Summary
We identify a class of singular supergravity spacetimes as regular DFT geometries by re-analysing

the three layers of singularities from a DFT perspective:

1 coordinate singularity: The curvature singularity of Riemannian geometry appears as a

coordinate singularity within DFT which can be removed by doubled diffeomorphisms.

2 curvature singularity: All DFT curvature tensors are regular, as a consequence of the

regularity of the generalised metric and dilaton field.

3 geodesic incompleteness: Focusing on particular known supergravity solutions, it is shown

that the non-Riemannian points F = 0 form an impenetrable sphere where particles freeze

and strings become chiral. Computed in the string frame, geodesics outside the

non-Riemannian sphere are complete with no singular deviation.

Relying on the geometry of DFT allows to address the singularity problem for this class already at the

classical level (no α′-expansion required).

Exploring the non-Riemannian sector of DFT allows to go beyond supergravity and to accommodate

nonrelativistic physical theories (e.g. Gomis–Ooguri string, see e.g. Ko, Melby-Thompson, Meyer and Park

15’, Berman, Blair and Otsuki 19’, Cho and Park 19’, Blair 20’, Park and Sugimoto 20’, Gallegos, Gürsoy, Verma and

Zinnato 20’, Blair, Oling, and Park 20’, etc. ) as well as to shed new light on issues within GR.

Thank you for your attention!
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