4 ロ) 4 \overline{r}) 4 \overline{z}) 4 \overline{z})

 2990

Intrinsic torsion in Galilean and Carrollian spacetimes from a mathematician's perspective

Kevin van Helden

Non-Relativistic Strings and Beyond Nordita, Stockholm

8 May 2023

Joint work with Eric Bergshoeff, José Figueroa-O'Farrill, Jan Rosseel, Iisakki Rotko and Tonnis ter Veldhuis

Kevin van Helden Non-Relativistic Strings and BeyondNordita, Stockholm (Non-Relativistic Strings and BeyondNordita, Stockholm

Non-relativistic spacetime

- Galilean & Carroll spacetimes
- Intrinsic torsion
	- Independent of connection
	- Characterises geometry

Kevin van Helden Non-Relativistic Strings and BeyondNordita, Stockholm (Non-Relativistic Strings and BeyondNordita, Stockholm

Preview

Theorem

The subrepresentations of the space of all intrinsic torsions on a Galilean/Carroll (p-branes) spacetime are as in the diagrams below. $*$

Kevin van Helden Non-Relativistic Strings and BeyondNordita, Stockholm (Non-Relativistic Strings and BeyondNordita, Stockholm

Inverse Vielbeine and (local) frame fields

M spacetime manifold, x^μ local coordinates on $U \subseteq M$ V fin. dim. vector space with basis $\mathbf{e}_{\hat{A}}$ and dual basis $\mathbf{e}^{\hat{A}}$ Frame $u : V \to T_pM$ \sim Frame bundle $FM \ni u$

Kevin van Helden Non-Relativistic Strings and BeyondNordita, Stockholm (Non-Relativistic Strings and BeyondNordita, Stockholm

Vielbeine and (local) coframe fields

Solder form $\theta \in \Omega^1(F\mathcal{M}, V), \theta_u(X_u) = u^{-1}(\pi_*(X_u))$

Kevin van Helden Non-Relativistic Strings and BeyondNordita, Stockholm (Non-Relativistic Strings and BeyondNordita, Stockholm

Principal bundle

• Some frames are more equal than others:

Structure group $G \subseteq GL(V)$

G is defined by letting $\delta \in \odot^2 W$ and $\eta \in \odot^2$ Ann(W) invariant for some 'transversal' subspace $W \subseteq V$

$$
\downarrow
$$

Transformation rules for
$$
E_{\mu}^{\hat{A}} = (\tau_{\mu}{}^{A}, e_{\mu}{}^{a})
$$
 under *G*:
\n
$$
\delta \tau_{\mu}{}^{A} = \lambda^{A}{}_{B} \tau_{\mu}{}^{B}, \qquad \delta e_{\mu}{}^{a} = \lambda^{a}{}_{b} e_{\mu}{}^{b} - \lambda^{a}{}_{A} \tau_{\mu}{}^{A}.
$$

- A generalization of Galilei and Carroll structures!
- The new smooth structure is a principal G-bundle P

 QQ

Kevin van Helden Non-Relativistic Strings and BeyondNordita, Stockholm (Non-Relativistic Strings and BeyondNordita, Stockholm

Connection

Connection: How to relate copies of G above different points

Connection 1-form
$$
\omega \in \Omega^1(P, \mathfrak{g})
$$
 with $\mathfrak{g} = \text{Lie}(G) = \langle J_{\hat{A}}{}^{\hat{\beta}} \rangle$
 $\sim \Omega := E^* \omega = \Omega_{\mu} dx^{\mu} = J_{\hat{A}}{}^{\hat{\beta}} \omega_{\mu}{}^{\hat{A}}{}_{\hat{B}} dx^{\mu} \in \Omega^1(U, \mathfrak{g})$

↕

Structure group connection (with spin connection ω)

$$
\Omega_{\mu} = \frac{1}{2} \omega_{\mu}{}^{A}{}_{B} J_{A}{}^{B} + \frac{1}{2} \omega_{\mu}{}^{a}{}_{b} J_{a}{}^{b} + \omega_{\mu}{}^{a}{}_{A} G_{a}{}^{A}
$$

rijksuniversiteit groningen

 $2Q$

 4 ロ) 4 何) 4 ヨ) 4 ヨ)

Kevin van Helden Non-Relativistic Strings and BeyondNordita, Stockholm (Non-Relativistic Strings and BeyondNordita, Stockholm

Torsion

Torsion: measures the failure of θ being parallel with respect to ω

Torsion 2-form
$$
\Theta^{\omega} = d\theta + \omega \wedge \theta \in \Omega^{2}(P, V)
$$

\n
$$
\sim T^{\omega} := E^{*}\Theta^{\omega} = dE^{*}\theta + E^{*}\omega \wedge E^{*}\theta \in \Omega^{2}(U, V)
$$
\n
$$
T^{\omega} = (T^{\omega})_{\mu\nu}{}^{\hat{A}}\mathbf{e}_{\hat{A}}dx^{\mu} \wedge dx^{\nu}
$$
\n
$$
\downarrow
$$
\n
$$
(T^{\omega})_{\mu\nu}{}^{\hat{A}} = 2\partial_{\left[\mu} \tau_{\nu\right]}{}^{\hat{A}} - 2\omega_{\left[\mu\right]}{}^{\hat{A}} \tau_{\nu\right]}{}^{\hat{B}}
$$
\n
$$
(T^{\omega})_{\mu\nu}{}^{\hat{a}} = 2\partial_{\left[\mu\right]}{}^{\hat{a}}\nu^{\left[\mu\right]}{}^{\hat{a}} - 2\omega_{\left[\mu\right]}{}^{\hat{a}} \rho_{\nu\right]}{}^{\hat{b}} - 2\omega_{\left[\mu\right]}{}^{\hat{a}} \tau_{\nu\right]}{}^{\hat{A}}
$$
\n*W infinite*

イロト (個) (差) (差) (差) の Q Q

Kevin van Helden Non-Relativistic Strings and BeyondNordita, Stockholm (Non-Relativistic Strings and BeyondNordita, Stockholm

イロト イ押ト イヨト イヨ

iiksuniversiteit

 Ω

Spencer differential

Locally, the Spencer differential ∂ is given by

 $\partial:\Omega(U,\mathfrak{g})\rightarrow\Omega^{2}(U,V)$ $E^*\omega'-E^*\omega \mapsto \mathcal{T}^{\omega'}-\mathcal{T}^{\omega}=\left(E^*\omega'-E^*\omega\right)\wedge E^*\theta$

Intrinsic torsion: Find coker $\partial = \Omega^2(U, V)/$ im ∂ .

↕

Intrinsic torsion: solve the spin connection ω in terms of the torsion components and see what torsion remains.

Kevin van Helden Non-Relativistic Strings and BeyondNordita, Stockholm (Non-Relativistic Strings and BeyondNordita, Stockholm

KORK EXTERNE MORE

At one point in spacetime

If expressions and objects are G-invariant, it suffices to do all calculations above a single point.

• The Spencer differential reduces to

$$
\partial : \text{Hom}(V, \mathfrak{g}) \to \text{Hom}(\Lambda^2 V, V)
$$

$$
(\partial \kappa)(u \wedge v) = \kappa(u)v - \kappa(v)u,
$$

a (linear) map of representations!

• The subspace $W \subset V$ is invariant and creates a subbundle $F \subset TM$.

Theorem

The subrepresentations of the space of all intrinsic torsions on a Galilean/Carroll (p-branes) spacetime are as in the diagram below.*

Kevin van Helden Non-Relativistic Strings and BeyondNordita, Stockholm (Non-Relativistic Strings and BeyondNordita, Stockholm

Generic torsion: adapted connections preserve F

Kevin van Helden Non-Relativistic Strings and BeyondNordita, Stockholm (Non-Relativistic Strings and BeyondNordita, Stockholm

Twistless torsion: if and only if F is involutive \rightsquigarrow sliced spacetime

Kevin van Helden Non-Relativistic Strings and BeyondNordita, Stockholm (Non-Relativistic Strings and BeyondNordita, Stockholm

Kevin van Helden Non-Relativistic Strings and BeyondNordita, Stockholm (Non-Relativistic Strings and BeyondNordita, Stockholm

[Introduction](#page-1-0) [Geometry of Spacetime](#page-3-0) [Results](#page-10-0) [Outlook](#page-16-0)

Classification

Twistless torsion, traceless: absolute world volume

Kevin van Helden Non-Relativistic Strings and BeyondNordita, Stockholm (Non-Relativistic Strings and BeyondNordita, Stockholm

No intrinsic torsion: for $X \in \Gamma(F)$, we have $\mathcal{L}_X \eta = 0$

Kevin van Helden Non-Relativistic Strings and BeyondNordita, Stockholm (Non-Relativistic Strings and BeyondNordita, Stockholm

- • Newton-Cartan geometry
- Limits of General Relativity
- Supersymmetry
- Different symmetry groups (e.g. Aristotelian)
- Irreducibility

Kevin van Helden Non-Relativistic Strings and BeyondNordita, Stockholm (Non-Relativistic Strings and BeyondNordita, Stockholm

References

Thank you!

Eric Bergshoeff, Kevin van Helden, Johannes Lahnsteiner, Luca Romano, and Jan Rosseel. 2023. Generalized Newton-Cartan geometries for particles and strings, Classical and Quantum Gravity 40, DOI 10.1088/1361-6382/acbe8c.

José Figueroa-O'Farrill. 2020. On the intrinsic torsion of spacetime structures, available at [arXiv:2009.01948.](https://arxiv.org/abs/2009.01948)

Kevin van Helden Non-Relativistic Strings and BeyondNordita, Stockholm (Non-Relativistic Strings and BeyondNordita, Stockholm