Intrinsic torsion in Galilean and Carrollian spacetimes from a mathematician's perspective

Kevin van Helden

Non-Relativistic Strings and Beyond Nordita, Stockholm

8 May 2023

Joint work with Eric Bergshoeff, José Figueroa-O'Farrill, Jan Rosseel, Iisakki Rotko and Tonnis ter Veldhuis

イロト イ理ト イヨト イヨト

Kevin van Helden

Result

Non-relativistic spacetime

- Galilean & Carroll spacetimes
- Intrinsic torsion
 - Independent of connection
 - Characterises geometry

Kevin van Helden

on-Relativistic Strings and BeyondNordita. Stockholm

Introduction	Geometry of Spacetime	Outlook
○●	0000000	00

Preview

Theorem

The subrepresentations of the space of all intrinsic torsions on a Galilean/Carroll (p-branes) spacetime are as in the diagrams below.*

Kevin van Helden

Inverse Vielbeine and (local) frame fields

M spacetime manifold, x^{μ} local coordinates on $U \subseteq M$ *V* fin. dim. vector space with basis $\mathbf{e}_{\hat{A}}$ and dual basis $\mathbf{e}^{\hat{A}}$ **Frame** $u: V \to T_p M \longrightarrow$ **Frame bundle** $FM \ni u$

Kevin van Helden

n-Relativistic Strings and BevondNordita. Stockholm

Results O

Vielbeine and (local) coframe fields

Solder form $\theta \in \Omega^1(FM, V), \theta_u(X_u) = u^{-1}(\pi_*(X_u))$

Kevin van Helden

Introduction 00	Geometry of Spacetime	Outlook 00

Principal bundle

• Some frames are more equal than others:

Structure group $G \subseteq GL(V)$

G is defined by letting $\delta \in \odot^2 W$ and $\eta \in \odot^2 Ann(W)$ invariant for some 'transversal' subspace $W \subseteq V$

Transformation rules for $E_{\mu}^{\hat{A}} = (\tau_{\mu}{}^{A}, e_{\mu}{}^{a})$ under *G*: $\delta \tau_{\mu}{}^{A} = \lambda^{A}{}_{B}\tau_{\mu}{}^{B}, \qquad \delta e_{\mu}{}^{a} = \lambda^{a}{}_{b}e_{\mu}{}^{b} - \lambda^{a}{}_{A}\tau_{\mu}{}^{A}.$

- A generalization of Galilei and Carroll structures!
- The new smooth structure is a principal G-bundle P

< □ > < 同 > < 回 > < 回 >

Kevin van Helden

Introduction	Geometry of Spacetime	Outlook
00	0000000	00

Connection

Connection: How to relate copies of G above different points

Connection 1-form
$$\omega \in \Omega^1(P, \mathfrak{g})$$
 with $\mathfrak{g} = \text{Lie}(G) = \langle J_{\hat{A}}^{\hat{B}} \rangle$
 $\rightsquigarrow \Omega := E^* \omega = \Omega_\mu dx^\mu = J_{\hat{A}}^{\hat{B}} \omega_\mu^{\hat{A}}{}_{\hat{B}} dx^\mu \in \Omega^1(U, \mathfrak{g})$

\$

Structure group connection (with spin connection ω)

$$\Omega_{\mu} = rac{1}{2} \omega_{\mu}{}^{A}{}_{B} J_{A}{}^{B} + rac{1}{2} \omega_{\mu}{}^{a}{}_{b} J_{a}{}^{b} + \omega_{\mu}{}^{a}{}_{A} G_{a}{}^{A}$$

rijksuniversiteit groningen

イロト イ理ト イヨト イヨト

Kevin van Helden

Introduction	Geometry of Spacetime	Outlook
00	0000●00	00

Torsion

Torsion: measures the failure of θ being parallel with respect to ω

Torsion 2-form
$$\Theta^{\omega} = d\theta + \omega \land \theta \in \Omega^{2}(P, V)$$

 $\rightsquigarrow T^{\omega} := E^{*}\Theta^{\omega} = dE^{*}\theta + E^{*}\omega \land E^{*}\theta \in \Omega^{2}(U, V)$
 $T^{\omega} = (T^{\omega})_{\mu\nu}{}^{\lambda}\mathbf{e}_{\lambda}dx^{\mu} \land dx^{\nu}$
 \uparrow
 $(T^{\omega})_{\mu\nu}{}^{A} = 2\partial_{[\mu}\tau_{\nu]}{}^{A} - 2\omega_{[\mu}{}^{A}{}_{B}\tau_{\nu]}{}^{B}$
 $(T^{\omega})_{\mu\nu}{}^{a} = 2\partial_{[\mu}e_{\nu]}{}^{a} - 2\omega_{[\mu}{}^{a}{}_{b}e_{\nu]}{}^{b} - 2\omega_{[\mu}{}^{a}{}_{A}\tau_{\nu]}{}^{A}$

(日)(四)(日)(日)

э

Kevin van Helden

lesults

イロト イポト イヨト イヨ

rijksuniversiteit groningen

Spencer differential

Locally, the Spencer differential ∂ is given by

 $\partial: \Omega(U, \mathfrak{g}) \to \Omega^2(U, V)$ $E^*\omega' - E^*\omega \mapsto T^{\omega'} - T^{\omega} = (E^*\omega' - E^*\omega) \wedge E^*\theta$

Intrinsic torsion: Find coker $\partial = \Omega^2(U, V) / \text{im } \partial$.

\$

Intrinsic torsion: solve the spin connection ω in terms of the torsion components and see what torsion remains.

Kevin van Helden

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

At one point in spacetime

If expressions and objects are *G*-invariant, it suffices to do all calculations above a single point.

• The Spencer differential reduces to

$$\partial$$
: Hom $(V, \mathfrak{g}) \rightarrow$ Hom $(\Lambda^2 V, V)$
 $(\partial \kappa)(u \wedge v) = \kappa(u)v - \kappa(v)u,$

a (linear) map of representations!

• The subspace $W \subset V$ is invariant and creates a subbundle $F \subset TM$.

Theorem

The subrepresentations of the space of all intrinsic torsions on a Galilean/Carroll (p-branes) spacetime are as in the diagram below.*

Kevin van Helden

coker ∂

 \mathcal{T}

 $\mathcal{T}^{\mathrm{tr}}$

Kevin van Helden

0

Introduction 00	Geometry of Spacetime 0000000	Results	Outlook 00

<u>Twistless torsion</u>: if and only if *F* is involutive \sim sliced spacetime

Kevin van Helden

Kevin van Helden

Introduction	Geometry of Spacetime	Results	Outlook
00	0000000		00

Kevin van Helden

on-Relativistic Strings and Beyond Nordita, Stockholm

Introduction	Geometry of Spacetime	Results	Outlook
00	0000000		00

<u>No intrinsic torsion</u>: for $X \in \Gamma(F)$, we have $\mathcal{L}_X \eta = 0$

Kevin van Helden

on-Relativistic Strings and Beyond Nordita, Stockholm

00

Discussion

- Newton-Cartan geometry
- Limits of General Relativity
- Supersymmetry
- Different symmetry groups (e.g. Aristotelian) ۰
- Irreducibility

Kevin van Helden

References

Thank you!

Eric Bergshoeff, Kevin van Helden, Johannes Lahnsteiner, Luca Romano, and Jan Rosseel. 2023. *Generalized Newton-Cartan geometries for particles and strings*, Classical and Quantum Gravity **40**, DOI 10.1088/1361-6382/acbe8c.

José Figueroa-O'Farrill. 2020. On the intrinsic torsion of spacetime structures, available at arXiv:2009.01948.

Kevin van Helden