

QUANTUM CONNECTIONS PART 2

The ultimate limits of privacy ...
...for the paranoid ones

Artur Ekert

Outline

\bigcirc Is there a perfect cipher?

○ Key distribution - the holy grail of cryptography

○ Privacy amplification / randomness extraction

○ For whom the Bell tolls

○ Less reality more security

O Device independent cryptography

We all have secrets...

Eavesdropper

Quest for a perfect cipher

It starts with writing...

Hieroglyphs
Egypt, circa 3300 BC

Cuneiform

Sumer, circa 3300 BC

Basic techniques

- PERMUTATIONS
- SCYTALE (400 BC)
- SUBSTITUTIONS
- CAESAR SIPHER (50 BC)
- PERMUTATIONS + SUBSTITUTIONS

ABCDEFGHIJKLMNOPQRSTUVWXYZ ABCDEFGHIJKLMNOPQRSTUVWXYZ

ABCDEFGHIJKLMNOPQRSTUVWXYZ
DEFGHIJKLMNOPQRSTUVWXYZABC

ATTACKTOMORROW
D W W DF NWR PRUURZ

Code-makers versus code-breakers

Julius Caesar (100-44 BC)

ABCDEFGHIJKLMNOPQRSTUVWXYZ

NWDEAPYFGTIJUKLMOZQRSBVCXH
$\approx 4 \times 10^{26}$ SUBSTITUTIONS

Al Kindi
(800-873)

Counterexamples - Lipograms

> That's right - this is a lipogram - a book, paragraph or similar thing in writing that fails to contain a symbol, particularly that symbol fifth in rank out of 26 (amidst 'd' and 'f') and which stands for a vocalic sound such as that in 'kiwi'. I won't bring it up right now, to avoid spoiling it...

The most famous lipogram: Georges Perec, La Disparition (1969) 85000 words without the letter e:

Tout avait l'air normal, mais tout s'affirmait faux. Tout avait l'air normal, d'abord, puis surgissait l'inhumain, l'affolant. Il aurait voulu savoir où s'articulait l'association qui l'unissait au roman : sur son tapis, assaillant à tout instant son imagination, ...

English translator, Gilbert Adair, in A Void, succeeded in avoiding the letter e as well

Gottlob Burmann (1737-1805) R-LESS POETRY. An obsessive dislike for the letter r; wrote 130 poems without using that letter, he also omitted the letter r from his daily conversation for 17 years...

Polyalphabetic ciphers

CODEMAKERS

CODEBREAKERS

Leone Battista Alberti (1404-1472)

Johannes Trithemius (1462-1516)
Blaise de Vigenere (1523-1596)

Alberti's encryption disk
Sequence of substitutions e.g.
7, 14, 19

Plaintext: S ELL
Cryptogram: Z S E S

Charles Babbage (1791-1871)

From Alberti's disk to rotor machines

CODEMAKERS

Arthur Scherbius (1878-1929)

CODEBREAKERS

Marian Rejewski (1905-1980)

The Poles who broke Enigma

(BS-4 Section)

Is there a perfect cipher?

SCYTALE 400BC

ALBERTI'S DISC 1450

ENIGMA 1940

One-time pad

message	0	1	1	1	0	1	0		0	1	1	
key	0	1	0	1	1	1	0	0	0	1	0	0
cryptogram	0	0	1	0	1	0			0	0		1

0	0	1	0	1	0	0	0	0	1
cryptogram									
0	1	0	1	1	1	0	0	1	0
key									
0	1	1	1	0	1	0	0	1	1
message									

Public Key Cryptosystems

Quest for perfect secrecy

Post-quantum: there is still room for improvement

Report on the Security of LWE: Improved Dual Lattice Attack

The Center of Encryption and Information Security - MATZOV* ${ }^{*}$ IDF

Abstract

Many of the leading post-quantum key exchange and signature schemes rely on the conjectured hardness of the Learning With Errors (LWE) and Learning With Roundin (LWR) problems and their algebraic variants, including 3 of the 6 finalists in NIST's PQC process. The best known cryptanalysis techniques against these problems PQC process. The best known cryptanalysis techniques against these problems are primal and dual lattice attacks, where dual attacks are generally considered less prac tical.

In this report, we present several algorithmic improvements to the dual lattice attack, which allow it to exceed the efficiency of primal attacks. In the improved attack, we enumerate over more coordinates of the secret and use an improved distinguisher based on FFT. In addition, we incorporate improvements to the estimates of the cost of perform in we incorporate improvements to the estimates of the cont product

Comt
Saber an
olds defir

SOLILOQUY: A CAUTIONARY TALE

Peter Campbell, Michael Groves and Dan Shepherd CESG, Cheltenham, UK

1. Introduction

The Sollloquy primitive, first proposed by the third author in 2007 , based on cyclic lattices. It has very good efficiency properties, both terms of public key size and the speed of encryption and decryption. Th are straightforward techniques for turning Soliloquy into a key exchan or other public-key protocols. Despite these properties, we abandoned search on Soliloquy after developing (2010 to 2013) a reasonably effici quantum attack on the primitive. A similar quantum algorithm has been

Cryptology ePrint Archive

Paper 2022/975
An efficient key recovery attack on SIDH (preliminary version)

Wouter Castryck, KU Leuven
Thomas Decru, KU Leuven
Abstract
We present an efficient key recovery attack on the Supersingular Isogeny Diffie-Hellman protocol (SIDH), based on a "glue-and-split" theorem due to Kani. Our attack exploits the existence of a small non-scalar endomorphism on the starting curve, and it also relies on the auxiliary torsion point information that Alice and Bob share during the protocol. Our Magma implementation breaks the instantiation SIKEp434, which aims at security level 1 of the PostQuantum Cryptography standardization process currently ran by NIST, in about one hour on a single core. This is a preliminary version of a longer article in preparation.

Key distribution problem

The key should be random, sufficiently long and secret (known only to Alice and Bob)

| 0 | $?$ | $?$ | 1 | ? | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |$|$? ? ?

E

Probability of Eve guessing the key correctly should be very close to $\frac{1}{2^{n}}$

Privacy amplification

For independent bits try parity

$$
x_{1} \oplus x_{2} \oplus x_{3} \ldots
$$

Suppose Eve knows one of the two bits, but Alice and Bob are not sure which one

$$
k=x_{1} \oplus x_{2}
$$

Randomness extraction

Weak source of randomness

$$
\begin{aligned}
& \text { Min-entropy: } \\
& H_{\min }(A)=-\log \left(\max _{a} p_{\operatorname{pr}[a] s s}(A)\right. \\
& H_{\min }(A) \geq m: \\
& \forall a \in\{0,1\}^{n}, \quad \operatorname{Pr}[a] \leq 2^{-m}
\end{aligned}
$$

Weak source of randomness

Uniform distribution

Randomness extraction

- Impossible to achieve deterministically
, Possible with an additional short random seed

Weak source of randomness

Uniform distribution

Randomness extraction

- Def.[Randomness extractor]: A function $\operatorname{Ext}(A, S):\{0,1\}^{n} \times\{0,1\}^{d} \rightarrow\{0,1\}^{\ell}$ is called a strong (m, ε)-randomness extractor if for

1. $S=U_{d}$
2. any P_{A} with $H_{\min }(A) \geq m$
we have

(Strong extractor: the seed is made public during the OKD protocol)

Privacy amplification

Alice and Bob can turn their partially secure key into a secure key as long as they can estimate how much Eve knows about the raw key.

0	1	0	1	1	1	0	0	1	0

Probability of Eve guessing the key correctly should be very close to $\frac{1}{2^{n}}$

$$
\begin{gathered}
H_{\min }(X \mid E)=-\log p_{\text {guess }}(X \mid E) \\
l=H_{\min }(X \mid E)-2 \log \frac{1}{2 \delta}
\end{gathered}
$$

Extractors

Raw key		
$H_{\min }(X \mid E)$		
Eve's uncertainty		
K	$2 \log \frac{1}{2 \delta}$	
δ secure key		

$$
l=H_{\min }(X \mid E)-2 \log \frac{1}{2 \delta}
$$

How to find out how much Eve knows?

$$
\begin{aligned}
& \begin{array}{l|l|l|l|l|l|l|l|}
\hline 0 & ? & ? & 1 & ? & 0 & 0 & \text { ? }
\end{array} \\
& \text { E }
\end{aligned}
$$

Quantum cryptography

Device independence etc

The story of worry

Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?

A. Einstein, B. Podolsky and N. Rosen, Institute for Advanced Study, Princeton, New Jersey (Received March 25, 1935)

In a complete theory there is an element corresponding to each element of reality. A sufficient condition for the reality of a physical quantity is the possibility of predicting it with certainty, without disturbing the system. In quantum mechanics in the case of two physical quantities described by non-commuting operators, the knowledge of one preciudes the knowledge of the other. Then either (1) the description of reality given by the wave function in

1.

ANY serious consideration of a physical theory must take into account the distinction between the objective reality, which is
quantum mechanics is not complete or (2) these two quantities cannot have simultaneous reality. Consideration of the problem of making predictions concerning a system on the basis of measurements made on another system that had previously interacted with it leads to the result that if (1) is false then (2) is also false. One is thus led to conclude that the description of reality as given by a wave function is not complete.

Whatever the meaning assigned to the term complete, the following requirement for a complete theory seems to be a necessary one: every element of the physical reality must have a counterpart in the physical theory. We shall call this the

"...If without any way disturbing a system, we can predict with certainty the value of a physical quantity then there exists an element of physical reality corresponding to this physical quantity..."

It is only in the case in which positive answers may be given to both of these questions, that the concepts of the theory may be said to be satisfactory. The correctness of the theory is judged by the degree of agreement between the conclusions of the theory and human experience. This experience, which alone enables us to make inferences about reality, in physics takes the form of experiment and measurement. It is the second question that we wish to consider here, as applied to quantum mechanics.
comprenensive demmition or reanty is, nowever, unnecessary for our purpose. We shall be satisfied with the following criterion, which we regard as reasonable. If, without in any way disturbing a system, we can predict with certainty (i.e., with probability equal to unity) the value of a physical quantity, then there exists an element of physical reality corresponding to this physical quantity. It seems to us that this criterion, while far from exhausting all possible ways of recognizing a physical reality, at least provides us with one

Enter John Bell

Hmmmmmm.....
It is a testable proposition...

Bell's inequalities...

One of these terms is 0 and the other is ± 2

$$
S= \pm 2 \quad \text { hence } \quad-2 \leq\langle S\rangle \leq 2
$$

John Clauser - postdocs have ideas...

Alain Aspect and his quantum magic

Less reality more security

PHOTONS DO NOT CARRY PREDETERMINED VALUES OF POLARIZATIONS

IF THE VALUES DID NOT EXIST PRIOR TO MEASUREMENTS THEY WERE NOT AVAILABLE TO ANYBODY INCLUDING EAVESDROPPERS

TESTING FOR THE VIOLATION OF BELL'S INEQUALITIES
= TESTING FOR EAVESDROPPING

Quantum cryptography

Device independence etc

You need some mathematical gymnastics

Eve uses the same strategy in each round, independently of all other rounds

Quantum Asymptotic Equipartition Property M. Tomamichel et al (2009) IDD CASE

Eve distributes the key!

And all this can be demonstrated...

At the mercy of Eve

Ekert 91

Device-independent

Towards device-independent crypto

A. Acin, N. Brunner, N. Gisin, S. Massar, V. Scarani
[Ekert, 91] \longrightarrow [Barrett, Hardy \& Kent, 05] \longrightarrow [Pironio et al., 09]
[Mayers \& Yao, 98]
Main ideas

Proof of concept
IID + asymptotic: tight rates \& noise tolerance
[AF, Renner \& Vidick, 16] \longleftarrow [Reichardt, Unger \& Vazirani, 13]
General security:
tight rates \& noise tolerance
[Dupuis, Fawzi \& Renner, 16]
[Dupuis \& Fawzi, 18]
Entropy accumulation theorem
[Vazirani \& Vidick, 14]
[Miller \& Shi, 14]
General security

EAT...

i.i.d. device

independent and

dentical

behaviour

General device

Entropy Accumulation Theorem (EAT) allows us to reduce arbitrary strategies to i.i.d. strategies and enables simple device-independent security proofs.

You can have your key and EAT it

1. Winning a non-local game
2. Entropy accumulation (Reduction to IID)
3. Quantum-proof extractors
4. Secrecy

$$
H(A \mid E) \geq f(\text { win prob. })
$$

$$
\downarrow
$$

$$
H_{\min }^{\varepsilon}(\mathbf{A} \mid \mathbf{E})_{\rho} \geq n H(A \mid E)_{\sigma}-c_{\varepsilon} \sqrt{n}
$$

$$
\downarrow
$$

$$
\left\|\rho_{\operatorname{Ext}(A, S) S E}-\rho_{U_{\ell}} \otimes \rho_{S E}\right\| \leq \varepsilon
$$

$$
(1-\operatorname{Pr}(\text { abort }))\left\|\rho_{K_{A} E}-\rho_{U_{\ell}} \otimes \rho_{E}\right\| \leq \varepsilon_{\text {sec }}
$$

And this is for real

Article $\quad 95884$ secret bits in 8 hours
 Experimental quantum key distribution certified by Bell's theorem

It is because of quantum crypto we still keep testing Bell inequalities...
Highlights Recent Accepted Collections Authors Referees Search Press About

Toward a Photonic Demonstration of Device-Independent

Article

A device-independent quantum key distribution system for distant users

https://doi.org/10.1038//541586-022-04891-y	Wei Zhang ${ }^{1,2,9}$, Tim van Leent ${ }^{1,2,9}$, Kai Redeker ${ }^{1,2,9}$, Robert Garthoff ${ }^{1,2,9}$, René Schwonnek ${ }^{3,4}$, Florian Fertig ${ }^{1,2}$, Sebastian Eppelt ${ }^{1,2}$, Wenjamin Rosenfeld ${ }^{1{ }^{12}}$, Valerio Scarani ${ }^{5}{ }^{5}$, Charles C.-W. Lim ${ }^{4.58 \boxtimes}$ \& Harald Weinfurter ${ }^{1,27 \boxtimes}$
Received: 8 October 2021	
Accepted: 20 May 2022	
Published online: 27 July 2022	Device-independent quantum key distribution (DIQKD) enables the generation of secret keys over an untrusted channel using uncharacterized and potentially untrusted devices ${ }^{1-9} \cdot$ The proper and secure functioning of the devices can be certified by a statistical test using a Bell inequality ${ }^{10-12}$. Thistest originates from the foundations of quantum physics and also ensures robustness against implementation
Open access	
(Check for updates	

Thirty years ago...

From Oxford in 1991...

PHYSICAL REVIEW
LETTERS

Volume 67

...to China in 2019

Article

Entanglement-based secure quantum

 cryptography over 1,120 kilometres Ji-Gang Ren ${ }^{12,3}$, Wen-Qi Cai ${ }^{123}$, Wei-Yue Liu u^{123}, Shuang-Lin $L^{1 i^{123}}$, Rong Shu ${ }^{23,4}$,
 Chao-Yang Luans ${ }^{12,3}$, Xiang-Bin Wang ${ }^{2}$, Feihu Xu ${ }^{12,3,}$, Jian-Yu Wang ${ }^{23,}$, Cheng-Zhi Peng ${ }^{12,38}$ Artur K. Ekert ${ }^{78} \&$ Jian-Wei Pan $^{12,3 \boxtimes}$

Practical application of the generalized Bell's theorem in the so-called key distribution process in cryplography is reported. The proposed scheme is based on the Bohm's version of the Einstein-Podolsk. PACS numbers: 03.65. Bz, 42.80.Sa, 89.70.+c

Crypto helps quantum foundations

Nobel 2022

End of worries?

You need perfect randomness, right?

