

Quantum Connections: From Quantum Hall Physics to Optics To Blackholes

Smitha Vishveshwara, University of Illinois at Urbana Champaign

Quantum Connections Series, Summer School In Sweden, 22 June 2023

Π

Universal Physics Across Scales

Dirac and Majorana Fermions Quantum Materials

Kibble-Zurek Physics Cosmic structure formation Vortices in Helium

Higgs-Anderson mechanism Elementary Particles Superconductors

Powerful Symmetry Considerations; E.g. Noether's Theorem

Simple Models---Simple Harmonic Oscillator

Simple Models---Simple Harmonic Oscillator

Trapped particles, Nanomechanics, Phonons, plasmons, other excitations.. Quantum Hall physics, and more....

Lee, Papic, Thomale, PRX(2015)

Inverted Harmonic Oscillator (IHO)

Inverted Harmonic Oscillator (IHO)

"Quantum Escapades" (since early 1900's) Nuclear decay, Scattering, Cosmology Activation, Atomic cooling, Quantum Chaos....

Today's Explorations

In what follows—Part I

Quantum Hall Physics
 Basics, Point Contact, Saddle Potential, Tunneling,

In what follows—Part I

• Quantum Hall Physics Basics, Point Contact, Saddle Potential, Tunneling,

• Quantum Optics Parallels **Coherent States, Squeezing**

In what follows—Part I

 Quantum Hall Physics Basics, Point Contact, Saddle Potential, Tunneling

Quantum Optics Parallels
 Coherent States, Squeezing

ΞĿ

In what follows—Part II

• Quantum Hall Physics

Basics, Point Contact, Saddle Potential, Tunneling, ANYONS

- Quantum Optics Parallels
 Coherent States, Squeezing
- Black hole Dynamics
 Hawking radiation, Quasinormal Modes

In what follows—Part II

• Quantum Hall Physics

Basics, Point Contact, Saddle Potential, Tunneling, ANYONS

- Quantum Optics Parallels
 Coherent States, Squeezing
- Black hole Dynamics

Hawking radiation, Quasinormal Modes

Quantum Hall system

Charged particles in 2D subject to high magnetic fields

Quantized Hall Conductance – $v e^2 /h$ Precise measure related to universal constants

Quantum Hall system

Charged particles in 2D subject to high magnetic fields

Fractional quasiparticles

Quantized Hall Conductance – $v e^2 / h$ Precise measure related to universal constants

Quantum Hall Point Contacts (QPC)

Constrictions which connect opposite edges of the Hall bar

- Quantum Tunneling across QPC
- Probe of fractional charge: Shot noise
- Probe of fractional statistics (anyons): Two-particle correlations

Fractional Charge: E.g. Kane and Fisher, (1994); Saminadayar et al., (1997), R de-Picciotto et al., (1997) Fractional Statistics: Bartolomei at al, Science (2020); Nakamura et al, Nature Physics (2020)

Charged particles in 2D subject to high magnetic fields

$$\mathcal{H} = \frac{1}{2m} (f_{x} + \frac{g_{y}}{c} y)^{2} + \frac{1}{2m} (f_{y} - \frac{g_{y}}{c} x)^{2}$$

Symmetric gauge

Magnetic length

Charged particles in 2D subject to high magnetic fields

$$\mathcal{H} = \frac{1}{2m} (P_{x} + \frac{q_{B}}{c} y)^{2} + \frac{1}{2m} (P_{y} - \frac{q_{B}}{c} x)^{2}$$

Symmetric gauge

Magnetic length

- Choose appropriate conjugate variables
- Map to 1D simple harmonic oscillator, Landau levels
- Each Landau level—infinite degeneracy

Charged particles in 2D subject to high magnetic fields

$$\mathcal{H} = \frac{1}{2m} \left(P_{X} + \frac{q_{B}}{c} y \right)^{2} + \frac{1}{2m} \left(P_{y} - \frac{q_{B}}{c} x \right)^{2}$$

Symmetric gauge

Magnetic length

Charged particles in 2D subject to high magnetic fields

$$\mathcal{H} = \frac{1}{2m} \left(P_{X} + \frac{9B}{C} Y \right)^{2} + \frac{1}{2m} \left(P_{g} - \frac{9B}{C} X \right)^{2}$$

Symmetric gauge

 $l_{g} = \overline{\int k(/(q,B))}$

$$\alpha = \frac{l_{0}}{\sqrt{2}k} (\Pi_{x} - i \Pi_{y}), \quad \alpha = \frac{l_{0}}{\sqrt{2}k} (\Pi_{x} + i \Pi_{y})$$

$$(\alpha, \alpha^{+}) = 1$$

$$M = k \omega_{c} (\alpha^{+} \alpha + \frac{1}{2}), \quad \omega_{c} = \frac{e \Theta}{m}$$

Compare with 1D SHO

$$a_{\pm} = \frac{1}{\sqrt{2kmw}} \left(\pm ip + mw\chi \right)$$

$$H_{SHO} = \frac{p^2}{am} + \frac{1}{2}mw^2\chi^2$$

$$= \frac{1}{k}w(a_{\pm}a_{\pm} - \frac{1}{2})$$

Lowest Landau Level (LLL)

$$H = \frac{(p_i - eA_i)^2}{2m} = \frac{\vec{\Pi}^2}{2m} = \hbar\omega_c \left(n + \frac{1}{2}\right)$$

Projecting to the lowest Landau level: $\Pi_i \rightarrow 0, B \rightarrow \infty, n \rightarrow 0 \dots$

Symmetric gauge: Degenerate states--eigenstates of angular momentum

Lowest Landau Level (LLL)

Symmetric gauge: Degenerate states--eigenstates of angular momentum

$$\phi_m(z) = \frac{1}{\sqrt{2\pi 2^m m!}} z^m e^{-|z|^2/4\ell_B^2}$$

$$E/\hbar\omega_c$$

$$m = 3$$

$$m = 2$$

$$m = 1$$

$$|z| \propto \sqrt{2m\ell_B}$$

X and Y coordinates do not commute

 $\left[R_{y}, R_{x}\right] = [y, x]_{LLL} = il_{B}^{2}$

Projecting to the lowest Landau level: $\Pi_i \to 0, B \to \infty, n \to 0 \dots$

Parallels with Quantum Optics

Quantum Optics Parallels– Quantum Uncertainty

Uncertainty in conjugate quantities: Position-Momentum (also SHO) Number-Phase (single-mode photons)

$$\Delta x \Delta p \ge \frac{\hbar}{2}$$

Quantum Hall: X-Y Angular Momentum-Phase

Quantum Optics Parallels– Quantum Uncertainty

Uncertainty in conjugate quantities: Position-Momentum (also SHO) Number-Phase (single-mode photons)

$$\Delta x \Delta p \ge \frac{\hbar}{2}$$

Quantum Hall: X-Y Angular Momentum-Phase

Coherent States: Respect Minimum uncertainty Superposition of fixed number states

612>= 212>

Quantum Hall LLL Coherent States

Angular momentum eigenstates

 $\hat{L} \ket{n} = n\hbar \ket{n}$

$$|Z\rangle = e^{-|Z|^2/2} \sum_{n=0}^{\infty} \frac{(Z^*)^n}{\sqrt{n!}} |n\rangle$$

Coherent States: Respect Minimum uncertainty Here, in real space---centered around Z; Also, no dynamics (unlike SHO and photons)

Quantum Hall Tunneling and Saddle Potentials

Disorder

Point contact, saddle potential, beam-splitter

Point contact, saddle potential, beam-splitter

Tunneling and Inverted Harmonic Oscillator

Tunneling across saddle In-coming and out-going related by **Bogoliubov Transforms** (cosh, sinh)

Saddle potential and Inverted Harmonic Oscillator

Saddle potential—Ubiquitous—disorder landscape; area-preserving shear deformations

Fertig & Halperin, (1987); Subramanyan et al (2021)

Properties of the Inverted Harmonic Oscillator

$$\hat{H} = \frac{\hat{p}^2}{2} - \frac{\hat{x}^2}{2}$$

Continuous Real Spectrum
 Discrete Imaginary Spectrum

$$E_n^{\pm} = \mp i(n + \frac{1}{2})$$

Resonant/Quasinormal Modes Discrete Imaginary Spectrum

$$H = \frac{p^2}{2} - \frac{x^2}{2} = \frac{1}{2}(su + us) = i\left(u\partial_u + \frac{1}{2}\right) = -i\left(s\partial_s + \frac{1}{2}\right)$$

Saddle potential and squeezing (optics)

$$H'_{s} = U'(y^2 - x^2)$$

Saddle potential

Saddle potential and squeezing (optics)

$$U_{xy} = \frac{1}{2}U^{2} \left[b^{2} - b^{2} \right]$$

$$x = \frac{1}{2} \left(b + b^{4} \right), y = \frac{1}{2}i(b - b^{4})$$

Time Evolution and Squeeze Operator

$$S(\xi) = \exp(\xi \frac{b^{12}}{5} - \xi^{*} \frac{b^{2}}{2})$$

 $\xi = -\frac{bt^{2}}{5} = re^{i\varphi}$

$$H_{s}' = U'(y^{2} - x^{2})$$

Saddle potential

Saddle potential and squeezing (optics)

$$U_{xy} = \frac{1}{2}U^{2} \left[b^{2} - b^{4} \right]$$

$$x = \frac{1}{2} (b + b^{4}), y = \frac{1}{2}i(b - b^{4})$$

Squeeze Operator properties

Coherent States and Squeezing

Time Evolution and Squeeze Operator

$$S(\xi) = \exp(\xi \frac{b^{12}}{5} - \xi^{*} \frac{b^{2}}{2})$$

 $\xi = -\frac{1}{5} = re^{i\varphi}$

$$D(\alpha) = exp(\alpha b^{\dagger} - \alpha^{*}b)$$

Coherent State: $D(\alpha)|o\rangle$
SDS'= $D(\alpha coshr+\alpha^{*}e^{i\varphi}sinhr)$

Saddle potential coherent state dynamics

H= Uxy

- Analogy with quantum optics
- Follows equipotential contours

Saddle acts as squeezing operator

 $re^{i\phi} \equiv Utl^2/\hbar$

• Path:
$$(Xe^{-Utl^2/\hbar}, Ye^{Utl^2/\hbar})$$
Saddle potentials as beam splitters

Did the two particles go in the same direction or different ones?

E.g. Hong, Ou and Mandel (1987)

Fertig & Halperin, (1987); S.V.& N. R. Cooper, (2010); Subramanyan & S.V, (2019)

Quantum Hall Anyon beam-splitter

MESOSCOPIC PHYSICS

Bartolomei et al., Science 368, 173-177 (2020) 10 April 2020

Fractional statistics in anyon collisions

H. Bartolomei¹*, M. Kumar¹*†, R. Bisognin¹, A. Marguerite¹‡, J.-M. Berroir¹, E. Bocquillon¹, B. Plaçais¹, A. Cavanna², Q. Dong², U. Gennser², Y. Jin², G. Fève¹§

Anyon signatures observed in experiments!

Bartolomei at al, Science (2020);

Saddle potential beam-splitter properties

Saddle potential beam-splitter properties

Saddle-defined horizon – Black Hole physics!

Black Hole dynamics and Quantum Hall parallels

Quantum Connections: From Quantum Hall Physics to Optics To Blackholes

Smitha Vishveshwara, University of Illinois at Urbana Champaign

Quantum Connections Series, Summer School In Sweden, 22 June 2023

Π

In what follows—Part II

• Quantum Hall Physics

ANYONS

Basics, Point Contact, Saddle Potential, Tunneling,

 Quantum Optics Parallels Coherent States, Squeezing

-1

V(t)ŢŎ

In what follows—Part II

• Quantum Hall Physics

Basics, Point Contact, Saddle Potential, Tunneling, ANYONS

- Quantum Optics Parallels
 Coherent States, Squeezing
- Black hole Dynamics

Hawking radiation, Quasinormal Modes

Collaborators

Barry Bradlyn UIUC

Nigel Cooper Cambridge Univ.

Suraj Hegde, MPI Dresden

Hans Hansson Stockholm Univ.

Diptiman Sen IISc

Michael Stone UIUC

Varsha Subramanyam UIUC

C. V. Vishveshwara

Point contact, saddle potential, beam-splitter

Saddle potential and squeezing (optics)

$$U_{xy} = \frac{1}{2}U^{2} \left[b^{2} - b^{4} \right]$$

$$x = \frac{1}{2} (b + b^{4}), y = \frac{1}{2}i(b - b^{4})$$

Squeeze Operator properties

Coherent States and Squeezing

Time Evolution and Squeeze Operator

$$S(\xi) = \exp(\xi \frac{b^{12}}{5} - \xi^{*} \frac{b^{2}}{2})$$

 $\xi = -\frac{1}{5} = re^{i\varphi}$

$$D(\alpha) = exp(\alpha b^{\dagger} - \alpha^{*}b)$$

Coherent State: $D(\alpha) | o \rangle$
SDS'= $D(\alpha coshr+\alpha^{*}e^{i\varphi} - sinhr)$

Saddle potential coherent state dynamics

H= Uxy

- Analogy with quantum optics
- Follows equipotential contours

Saddle acts as squeezing operator

 $re^{i\phi} \equiv Utl^2/\hbar$

• Path:
$$(Xe^{-Utl^2/\hbar}, Ye^{Utl^2/\hbar})$$

Did the two particles go in the same direction or different ones?

E.g. Hong, Ou and Mandel (1987)

Reminiscent of Hanbury-Brown Twiss experiments For stellar bodies

Fertig & Halperin, (1987); S.V.& N. R. Cooper, (2010); Subramanyan & S.V, (2019)

HBT (1954)

Did the two particles go in the same direction or different ones?

Quantum Statistics: Bosons: Same Fermions: Different

Anyons: Depends on initial conditions

Did the two particles go in the same direction or different ones?

<u>E.g. Hong,</u> Ou and Mandel (1987)

Two particles in the lowest Landau level!

Fertig & Halperin, (1987); S.V.& N. R. Cooper, (2010); Subramanyan & S.V, (2019)

Two-anyon model

$$H = \frac{1}{4\mu} \left(P_x + \frac{qB}{c} Y \right)^2 + \frac{1}{4\mu} \left(P_y - \frac{qB}{c} X \right)^2$$

+ $\frac{1}{\mu} \left(p_x + \frac{qB}{4c} y \right)^2 + \frac{1}{\mu} \left(p_y - \frac{qB}{4c} x \right)^2$

Center of mass: (\vec{R}, \vec{P}) Relative co-ordinates: (\vec{r}, \vec{p})

Magnetic field B perpendicular to plane

Anyonic feature

$$\psi(-\vec{r}) = e^{\pm i\pi\alpha}\psi(\vec{r})$$

E.g. Leinaas and Myrheim, 1977; Wilczek 1982 Halperin, 1984; Arovas, Schrieffer, Wilczek, 1984

Two-anyon LLL Hilbert space

Center of mass

Relative coordinates

Angular momentum eigenstates

 $\hat{L}\left|n\right\rangle_{c}=n\hbar\left|n\right\rangle_{c}$

$$\hat{L}|k,\alpha\rangle_r = (2k+\alpha)\hbar|k,\alpha\rangle_r$$

Localized (coherent) states

$$|z\rangle_{\alpha} = N_{\alpha,z} \sum_{k=0}^{\infty} \frac{(z^*/2)^{2k+\alpha}}{\sqrt{\Gamma(2k+\alpha+1)}} |k,\alpha\rangle_r$$

T. H. Hansson, J. M. Leinaas, J. Myrheim ,1992 ; H. Kjonsberg and J. M. Leinaas, 1997

Two-anyon LLL Hilbert space

*5*3

Relative coordinates:

Bunching properties

Bunching parameter

$$\chi(|z|,\alpha) \equiv \frac{1}{4l^2} [\langle z|\hat{r}^2|z\rangle_{\alpha} - \langle z|\hat{r}^2|z\rangle_d]$$
$$\langle \hat{r}^2 \rangle \equiv \langle \hat{x}^2 + \hat{y}^2 \rangle$$

Bunching properties

Bunching parameter

$$\chi(|z|,\alpha) \equiv \frac{1}{4l^2} [\langle z|\hat{r}^2|z\rangle_{\alpha} - \langle z|\hat{r}^2|z\rangle_d]$$
$$\langle \hat{r}^2 \rangle \equiv \langle \hat{x}^2 + \hat{y}^2 \rangle$$

Saddle potential beam splitter properties

Behavior of <y₁y₂>

Did the particles go in the same direction or different ones?

S.V. & N. R. Cooper, 2010 V. Subramanyan and S. V. 2019

Saddle potential beam splitter properties

 $\langle \hat{y}_1 \hat{y}_2 \rangle = l^2 e^{2Utl^2/\hbar} \left[\text{Im}[Z]^2 - \frac{1}{4} \text{Im}[z]^2 - \frac{1}{2}\chi + \delta \right]$

Did the particles go in the same direction or different ones?

Depends on statistics and bunching parameter-"DUAL NATURE" $\frac{\alpha = 0}{\alpha = 1/3}$ $\frac{\alpha = 3/5}{-\alpha = 1}$

Behavior of $\langle y_1 y_2 \rangle$

Quantum Hall Anyon beam-splitter

MESOSCOPIC PHYSICS

Bartolomei et al., Science 368, 173-177 (2020) 10 April 2020

Fractional statistics in anyon collisions

H. Bartolomei¹*, M. Kumar¹*†, R. Bisognin¹, A. Marguerite¹‡, J.-M. Berroir¹, E. Bocquillon¹, B. Plaçais¹, A. Cavanna², Q. Dong², U. Gennser², Y. Jin², G. Fève¹§

Anyon signatures observed in experiments!

Bartolomei at al, Science (2020);

Nakamura et al, Nature Physics (2020)

Bartolomei at al, Science (2020)

Saddle potential beam-splitter properties

Saddle-defined horizon – Black Hole physics!

Black Hole dynamics and Quantum Hall parallels:

- Hawking-Unruh Radiation
- Black hole ringdown

Saddle potential and relativistic dynamics

Time evolution

• Saddle acts as squeezing operator

Parallels--commonality in symmetry and algebra; Squeezing and dilation; Lorentz boosts and Bogoliubov transforms

Saddle potential and relativistic dynamics

Time evolution

Saddle acts as squeezing operator

 $re^{i\phi} \equiv Utl^2/\hbar$

Parallels motion of accelerating observer

Rindler coordinates ---accelerating frame as seen by inertial observer

$$x = e^{a\xi} \cosh a\tau$$
 , $t = e^{a\xi} \sinh a\tau$

 $u, v = x \pm t = e^{a(\xi \pm \tau)}$ "Light cone Coordinates"

Rindler Hamiltonian — Time translation generator in Rindler spacetime

Hawking-Unruh Radiation

Hawking-Unruh Radiation

Bogoliubov Transformation/Squeezing

$$\frac{1}{V} \langle 0_M | b_{\Omega}^{\dagger} b_{\Omega} | 0_M \rangle = \frac{1}{e^{2\pi\Omega} - 1}$$

An analogue of Hawking radiation in the quantum Hall effect

Probability of out-going particle

$$P(\epsilon) = \frac{1}{1 + \exp\left(\frac{2\pi eB}{\hbar\lambda}\epsilon\right)}$$

Hawking radiation analog

In-going and out-going states and quantum fields in two frames each related by a Bogoliubov transformation

Rindler (1969); Hawking, (1974); Unruh, (1976); Fertig & Halperin, (1987)

Black holes, information paradox, superconductor analogues

Andreev reflection

Black hole, while accepting particles, reflects quantum information in the outgoing modes.

S. Manikandan and A. Jordan, Phys Rev. D (2020)

IHO and quasinormal modes

Decaying modes intrinsic to system Related to black hole ringdown

Properties of the Inverted Harmonic Oscillator

$$\hat{H} = \frac{\hat{p}^2}{2} - \frac{\hat{x}^2}{2}$$

Continuous Real Spectrum (scattering)
 Discrete Imaginary Spectrum

S-Matrix poles and Wavepackets

0.1

2 3

5

8 x

2

Resonant/Quasinormal Modes Discrete Imaginary Spectrum

Discovery of Gravitational Waves

Feb 2016: First Announcement

PRL 116, 061102 (2016)	Selected for a Viewpoint in <i>Physics</i> PHYSICAL REVIEW LETTERS	week ending 12 FEBRUARY 2016
	Ş	
Observation	of Gravitational Waves from a Binary Black H	lole Merger
	B.P. Abbott et al.*	
	(LIGO Scientific Collaboration and Virgo Collaboration)	
	(Received 21 January 2016; published 11 February 2016)	

Black hole merger

Discovery of Gravitational Waves

Ringdown and Quasinormal Modes

[8] C. V. Vishveshwara, Nature (London) 227, 936 (1970).

Hanford

Extensive numerical simulations Black Hole QNMs in diverse contexts a Stations

Original derivation of black hole QNMs

Scattering of Gravitational Radiation by a Schwarzschild Black-hole

NATURE VOL. 227 AUGUST 29 1970

Wave packet scattering Schwarzschild me

> Wave equation In 'tortoise coordinates'

$$\frac{\partial^2 \Psi}{\partial r_*^2} + V(\ell, r_*)\Psi = 0.$$

Fig. 1. The effective potential V_{eff} for the odd-parity gravitational waves of the lowest mode l=2 plotted against x^* .

C. V. Vishveshwara

 $(n/r)^{-1} dr^2 + r^2 (d\theta^2 + \sin^2\theta d\varphi^2)$ $\frac{\mathrm{d}P}{\mathrm{d}\theta} l(\cos\theta)$

$$ds = -(1 - 2mr) dt + (1 - 2mr) dt + (1 - 2mr) dt + (d\sigma + t) dt d\phi + h_1(r) dr d\phi) \exp(-i\omega t) \sin \theta \frac{d}{dt}$$

C
$$ds^2 = -(1 - 2m/r)dt^2 + (1 - 2m/r)^{-1} dr$$

+ $(h_0(r) dt d\phi + h_1(r) dr d\phi) \exp(-$

off
etric
$$ds^{2} = -(1 - 2m/r)dt^{2} + (1 - 2m) + (h_{0}(r) dt d\phi + h_{1}(r) dr d\phi$$

Original derivation of black hole QNMs

Scattering of Gravitational Radiation by a Schwarzschild Black-hole

NATURE VOL. 227 AUGUST 29 1970

Wave packet scattering off Schwarzschild metric

$$\begin{aligned} \mathrm{d}s^2 &= -\left(1 - 2m/r\right)\mathrm{d}t^2 + \left(1 - 2m/r\right)^{-1}\mathrm{d}r^2 + r^2(\mathrm{d}\theta^2 + \sin^2\theta\,\mathrm{d}\varphi^2) \\ &+ \left(h_0(r)\,\mathrm{d}t\,\mathrm{d}\varphi + h_1(r)\,\mathrm{d}r\,\mathrm{d}\varphi\right)\,\exp(-\mathrm{i}\omega t)\,\sin\,\theta\,\,\frac{\mathrm{d}P}{\mathrm{d}\theta}\,\,l(\,\cos\,\theta) \end{aligned}$$

Wave equation In 'tortoise coordinates'

$$\frac{\partial^2 \Psi}{\partial r_*^2} + V(\ell, r_*)\Psi = 0.$$

Although the scattering of monochromatic waves did not show obvious characteristics of the black hole, I felt that scattering of wave packets might reveal the imprint of the black hole. So, I started pelting the black hole with Gaussian wave packets. If the wave packet was spatially wide, the scattered one was affected very little. It was like a big wave washing over a small pebble. But when the Gaussian became sharper, maxima and minima started emerging, finally levelling off to a set pattern when the width of the Gaussian became comparable to or less than the size of the black hole. The final outcome was a very characteristic decaying mode, to be christened later as the quasinormal mode. The whole experiment was extraordinarily exciting.

C. V. Vishveshwara

 \mathbf{d}

Black hole quasinormal modes in QH point contacts

Wave packet scattering off Schwarzschild metric

$$ds^{2} = \left(1 - \frac{2m}{r}\right) dt^{2} - \left(1 - \frac{2m}{r}\right)^{-1} dr^{2}$$
$$- r^{2} \left(d\theta^{2} + \sin^{2}\theta \, d\phi^{2}\right).$$

Tunneling across saddle potential

$$\left(\frac{1}{e^2B^2}\frac{d^2}{dz^2}-\frac{z^2}{4}\right)f(z)=-i\frac{\epsilon}{\lambda}f(z).$$

Black hole quasinormal modes in QH point contacts

Wave packet scattering off Schwarzschild metric

$$ds^{2} = \left(1 - \frac{2m}{r}\right) dt^{2} - \left(1 - \frac{2m}{r}\right)^{-1} dr^{2}$$
$$- r^{2} \left(d\theta^{2} + \sin^{2}\theta \, d\phi^{2}\right).$$

 $rac{0.24}{0.13}$ $rac{0.13}{0}$ $rac{0.13}{0}$ r **1D Inverted SHO potential scattering**

5-1-3 -12-3

Quasinormal Mode Spectrum!

Tunneling across saddle potential

$$\left(\frac{1}{e^2B^2}\frac{d^2}{dz^2}-\frac{z^2}{4}\right)f(z)=-i\frac{\epsilon}{\lambda}f(z).$$

Black hole quasinormal modes in QH point contacts

Characteristic scales for ringdown: Black hole– One Solar Mass: 0.35ms Quantum Hall—Potential Strength (micron spread) Energy k*125mK: Nanosecond scale

Common IHO model, black hole, QPC

S. Hegde, V. Subramanyan, B. Bradlyn, S.V.; PRL (2019), Ann Phys P. W.A Issue, (2021)

In Summary,

