Quantum Field Theory on the Lattice

Z. Fodor

Michael Creutz: three talks Zoltan Fodor: four talks

"computational details ... might be better for Zoltan to cover, i.e. things like hybrid monte carlo, the hadron spectrum ... g-2" and QCD thermodynamics.

- Scalar theory, Higgs bound & Monte Carlo
- QCD and hadron spectrum (Wilson)
- QCD thermodynamics (staggered & overlap)
- g-2 of the muon (staggered/Wilson/domain wall/overlap)

・ロット (雪) (日) (日)

Tensions in $(g-2)_{\mu}$: take-home message

[Muon g-2 Theory Initiative, Phys.Rept. 887 (2020) 1-166]

[Budapest-Marseille-Wuppertal-coll., Nature (2021)]

[Muon g-2 coll., Phys. Rev. Lett. 126, 141801 (2021)]

2

イロト イポト イヨト イヨト

2

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・

2

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・

2

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・

æ

イロト イヨト イヨト イヨト

Experiment

Outline

215

æ

イロト イヨト イヨト イヨト

Newly announced result at Fermilab

```
a_{\mu}(\text{FNAL}) = 11\,659\,204.0(5.4)\cdot 10^{-10} (0.46 ppm)
```

・ロト ・聞 ト ・ ヨト ・ ヨト

Newly announced result at Fermilab

```
a_{\mu}(\text{FNAL}) = 11\,659\,204.0(5.4)\cdot 10^{-10} (0.46 ppm)
```

• Equivalent to: bathroom scale sensitive to weight of a single eyelash.

Newly announced result at Fermilab

```
a_{\mu}(\text{FNAL}) = 11\,659\,204.0(5.4)\cdot 10^{-10} (0.46 ppm)
```

• Equivalent to: bathroom scale sensitive to weight of a single eyelash.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• Fully agrees with the BNL E821 measurement

$$a_{\mu}(\text{BNL}) = 11\,659\,209.1(6.3) \cdot 10^{-10}$$
 (0.54 ppm)
 $a_{\mu}(\text{combined}) = 11\,659\,206.1(4.1) \cdot 10^{-10}$ (0.35 ppm)

Newly announced result at Fermilab

```
a_{\mu}(\text{FNAL}) = 11\,659\,204.0(5.4)\cdot 10^{-10} (0.46 ppm)
```

• Equivalent to: bathroom scale sensitive to weight of a single eyelash.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• Fully agrees with the BNL E821 measurement

 $a_{\mu}(BNL) = 11\,659\,209.1(6.3) \cdot 10^{-10}$ (0.54 ppm) $a_{\mu}(combined) = 11\,659\,206.1(4.1) \cdot 10^{-10}$ (0.35 ppm)

• Target uncertainty: (1.6)

a_{μ} in SM

Outline

æ

イロト イヨト イヨト イヨト

Sum over all known physics:

≣ →

Sum over all known physics:

• electrodynamics (QED): γ , leptons

< 同 > < ∃ >

Sum over all known physics:

- electrodynamics (QED): γ, leptons
- electroweak (EW): W, Z, v, Higgs

4 6 1 1 4

Sum over all known physics:

- electrodynamics (QED): γ, leptons
- electroweak (EW): W, Z, v, Higgs
- Istrong (QCD): quarks and gluons

4 6 1 1 4

Sum over all known physics:

1 electrodynamics (QED): γ , leptons

electroweak (EW): W, Z, v, Higgs

strong (QCD): quarks and gluons

 [2006.04822] White Paper of Muon g-2: theory initiative; theory consensus, R-ratio, dispersion relation

Sum over all known physics:

• electrodynamics (QED): γ , leptons

electroweak (EW): W, Z, v, Higgs

strong (QCD): quarks and gluons

• • • • • • • • • • • •

 [2006.04822] White Paper of Muon g-2: theory initiative; theory consensus, R-ratio, dispersion relation

	$a_{\mu} imes$ 10 ⁻¹⁰
QED	11658471.9(0.1)
electroweak	15.4(0.1)
strong	693.7(4.3)
total	11659181.0(4.3)

Sum over all known physics:

• electrodynamics (QED): γ , leptons

electroweak (EW): W, Z, v, Higgs

strong (QCD): quarks and gluons

 [2006.04822] White Paper of Muon g-2: theory initiative; theory consensus, R-ratio, dispersion relation

	$a_{\mu} imes$ 10 ⁻¹⁰
QED	11658471.9(0.1)
electroweak	15.4(0.1)
strong	693.7(4.3)
total	11659181.0(4.3)

4.0 out of the 4.3 error comes from LO hadron vacuum polarisation

Hadronic contributions

• LO hadron vacuum polarization (LO-HVP, $(\frac{\alpha}{\pi})^2$)

イロト イポト イヨト イヨト

Hadronic contributions

• LO hadron vacuum polarization (LO-HVP, $(\frac{\alpha}{\pi})^2$)

• NLO hadron vacuum polarization (NLO-HVP, $(\frac{\alpha}{\pi})^3$)

A (1) > A (2) > A

Hadronic contributions

• LO hadron vacuum polarization (LO-HVP, $(\frac{\alpha}{\pi})^2$)

• NLO hadron vacuum polarization (NLO-HVP, $(\frac{\alpha}{\pi})^3$)

• Hadronic light-by-light (HLbL, $(\frac{\alpha}{\pi})^3$)

- pheno $a_{\mu}^{\text{HLbL}} = 9.2(1.9)$ [Colangelo, Hoferichter, Kubis, Stoffer et al '15-'20]
- lattice a^{HLbL}_µ=7.9(3.1)(1.8) or 10.7(1.5)
 IRBC/UKQCD '19 and Mainz '211

Optical theorem

æ

Optical theorem

Use $e^+e^- \rightarrow$ had data of CMD, SND, BES, KLOE, BABAR, ... systematics limited

A (1) > A (2) > A

Systematic uncertainty: ≈4 times larger than the statistical error (e.g. Davier et al.)

CMD3 [2302.08834] $e^+e^- \rightarrow \pi^+\pi^-$ for \sqrt{s} : 0.60–0.88 GeV

э

(日)

CMD3 [2302.08834] $e^+e^- \rightarrow \pi^+\pi^-$ for \sqrt{s} : 0.60–0.88 GeV

More than 50% of the total HVP contribution to a_{μ}

CMD3 [2302.08834] $e^+e^- \rightarrow \pi^+\pi^-$ for \sqrt{s} : 0.60–0.88 GeV

More than 50% of the total HVP contribution to a_{μ}

A (10) A (10)

CMD3 [2302.08834] $e^+e^- \rightarrow \pi^+\pi^-$ for \sqrt{s} : 0.60–0.88 GeV

More than 50% of the total HVP contribution to a_{μ}

tension: already in earlier data \Rightarrow error inflation

CMD3 [2302.08834] $e^+e^- \rightarrow \pi^+\pi^-$ for \sqrt{s} : 0.60–0.88 GeV

More than 50% of the total HVP contribution to a_{μ}

tension: already in earlier data \Rightarrow error inflation

KLOE & BaBar: $\approx 3\sigma$ (bit different \sqrt{s} range)

CMD3 [2302.08834] $e^+e^- \rightarrow \pi^+\pi^-$ for \sqrt{s} : 0.60–0.88 GeV

More than 50% of the total HVP contribution to a_{μ}

tension: already in earlier data \Rightarrow error inflation

KLOE & BaBar: $\approx 3\sigma$ (bit different \sqrt{s} range)

CMD3 vs. old average: 4.4σ tension

CMD3 [2302.08834] $e^+e^- \rightarrow \pi^+\pi^-$ for \sqrt{s} : 0.60–0.88 GeV

More than 50% of the total HVP contribution to a_{μ}

tension: already in earlier data \Rightarrow error inflation KLOE & BaBar: $\approx 3\sigma$

(bit different \sqrt{s} range)

CMD3 vs. old average: 4.4σ tension

central value: 15 unit shift (remember)
Tensions in the R-ratio method

CMD3 [2302.08834] $e^+e^- \rightarrow \pi^+\pi^-$ for \sqrt{s} : 0.60–0.88 GeV

More than 50% of the total HVP contribution to a_{μ}

tension: already in earlier data \Rightarrow error inflation

KLOE & BaBar: $\approx 3\sigma$ (bit different \sqrt{s} range)

CMD3 vs. old average: 4.4σ tension

central value: 15 unit shift (remember)

< (□) < 三 > (□)

White Paper must further inflate errors: less chance for new physics?

Outline

æ

$a_{\mu}^{\text{LO-HVP}}$ from lattice QCD Nature 593 (2021) 7857, 51

Compute electromagnetic current-current correlator

a^{LO-HVP} from lattice QCD Nature 593 (2021) 7857, 51

Compute electromagnetic current-current correlator

 $C(t) = \langle J_{\mu}(t) J_{\nu}(0) \rangle$

イロト イポト イヨト イヨト

$a_{\mu}^{\text{LO-HVP}}$ from lattice QCD Nature 593 (2021) 7857, 51

Compute electromagnetic current-current correlator

$$C(t) = \langle J_{\mu}(t) J_{\nu}(0) \rangle$$

K(t) describes the leptonic part of diagram

μ

New challenges

э

Lattice spacing 'a' is not an input, α_s is, must be determined 'a' enters into a_u calculation:

э

Lattice spacing 'a' is not an input, α_s is, must be determined 'a' enters into a_{μ} calculation:

- physical value of m_µ
- physical values of m_{π} , m_K

Lattice spacing 'a' is not an input, α_s is, must be determined 'a' enters into a_{μ} calculation:

- physical value of m_µ
- physical values of m_{π}, m_K
- $\longrightarrow \Delta_{\text{scale}} a_{\mu} \sim 2 \cdot \Delta(\text{scale})$

Lattice spacing 'a' is not an input, α_s is, must be determined 'a' enters into a_{μ} calculation:

- physical value of m_µ
- physical values of m_{π}, m_K
- $\longrightarrow \Delta_{\text{scale}} a_{\mu} \sim 2 \cdot \Delta(\text{scale})$
 - For final results: M_{Ω} scale setting $\rightarrow a = (aM_{\Omega})^{\text{lat}}/M_{\Omega}^{\text{exp}}$
 - Experimentally well known: 1672.45(29) MeV [PDG 2018]
 - Moderate *m_q* dependence
 - Can be precisely determined on the lattice

イロト イポト イヨト イヨト

Lattice spacing 'a' is not an input, α_s is, must be determined 'a' enters into a_{μ} calculation:

- physical value of m_µ
- physical values of m_{π}, m_K
- $\longrightarrow \Delta_{\text{scale}} a_{\mu} \sim 2 \cdot \Delta(\text{scale})$
 - For final results: M_{Ω} scale setting $\rightarrow a = (aM_{\Omega})^{\text{lat}}/M_{\Omega}^{\text{exp}}$
 - Experimentally well known: 1672.45(29) MeV [PDG 2018]
 - Moderate *m_q* dependence
 - Can be precisely determined on the lattice
 - Por separation of isospin breaking effects: w₀ scale setting
 - Moderate *m_q* dependence
 - Can be precisely determined on the lattice
 - No experimental value

 \longrightarrow Determine value of w_0 from $M_\Omega \cdot w_0$

 $w_0 = 0.17236(29)(63)[70]$ fm

Noise reduction

• noise/signal in $C(t) = \langle J(t)J(0) \rangle$ grows for large distances

ъ

Noise reduction

• noise/signal in $C(t) = \langle J(t)J(0) \rangle$ grows for large distances

- Low Mode Averaging: use exact (all2all) quark propagator in IR and stochastic in UV
- decrease noise by replacing C(t) by upper/lower bounds above t_c

$$0 \leq C(t) \leq C(t_c) e^{-E_{2\pi}(t-t_c)}$$

Noise reduction

• noise/signal in $C(t) = \langle J(t)J(0) \rangle$ grows for large distances

- Low Mode Averaging: use exact (all2all) quark propagator in IR and stochastic in UV
- decrease noise by replacing C(t) by upper/lower bounds above t_c

$$0 \leq C(t) \leq C(t_c) e^{-E_{2\pi}(t-t_c)}$$

→ few permil level accuracy on each ensemble

Typical lattice runs use L < 6 fm, earlier model estimates gave O(2)% FV effect.

3

• Typical lattice runs use L < 6 fm, earlier model estimates gave O(2)% FV effect.

 $L_{\rm ref}=6.272\,{
m fm}$

$$L_{\rm big} = 10.752\,{\rm fm}$$

• Typical lattice runs use L < 6 fm, earlier model estimates gave O(2)% FV effect.

 $L_{\rm ref}=6.272\,{
m fm}$

$$L_{\rm big} = 10.752\,{\rm fm}$$

< ロ > < 同 > < 回 > < 回 > < 回 >

- 1. $a_{\mu}(big) a_{\mu}(ref)$
 - perform numerical simulations in $L_{big} = 10.752 \, \text{fm}$
 - perform analytical computations to check models

• Typical lattice runs use L < 6 fm, earlier model estimates gave O(2)% FV effect.

 $L_{\rm ref}=6.272\,{
m fm}$

$$L_{\rm big}=10.752\,{\rm fm}$$

< ロ > < 同 > < 回 > < 回 > < 回 >

- 1. $a_{\mu}(big) a_{\mu}(ref)$
 - perform numerical simulations in $L_{\text{big}} = 10.752 \,\text{fm}$
 - perform analytical computations to check models

lattice	NLO XPT	NNLO XPT	MLLGS	HP	RHO
$18.1(2.0)_{stat}(1.4)_{cont}$	11.6	15.7	17.8	16.7	15.2

• Typical lattice runs use L < 6 fm, earlier model estimates gave O(2)% FV effect.

 $L_{\rm ref}=6.272\,{
m fm}$

$$L_{\rm big}=10.752\,{\rm fm}$$

(日)

- 1. $a_{\mu}(big) a_{\mu}(ref)$
 - perform numerical simulations in $L_{\text{big}} = 10.752 \,\text{fm}$
 - perform analytical computations to check models

lattice	NLO XPT	NNLO XPT	MLLGS	HP	RHO
$18.1(2.0)_{stat}(1.4)_{cont}$	11.6	15.7	17.8	16.7	15.2

- 2. $a_{\mu}(\infty) a_{\mu}(big)$
 - use models for remnant finite-size effect of "big" $\sim 0.1\%$

Isospin breaking effects

• Include leading order IB effects: $O(e^2)$, $O(\delta m)$

• Restrict correlator to window between $t_1 = 0.4$ fm and $t_2 = 1.0$ fm

[RBC/UKQCD'18]

э

• Restrict correlator to window between $t_1 = 0.4$ fm and $t_2 = 1.0$ fm

[RBC/UKQCD'18]

Less challenging than full a_µ

イロト イポト イヨト イヨト

• Restrict correlator to window between $t_1 = 0.4$ fm and $t_2 = 1.0$ fm

[RBC/UKQCD'18]

- signal/noise
- finite size effects
- lattice artefacts (short & long)

• Restrict correlator to window between $t_1 = 0.4$ fm and $t_2 = 1.0$ fm

[RBC/UKQCD'18]

- signal/noise
- finite size effects
- lattice artefacts (short & long)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

about two orders of magnitude easier (CPU and manpower)

• Restrict correlator to window between $t_1 = 0.4$ fm and $t_2 = 1.0$ fm

[RBC/UKQCD'18]

- signal/noise
- finite size effects
- lattice artefacts (short & long)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

about two orders of magnitude easier (CPU and manpower)

histogram of 250,000 fits with and without improvements

• Restrict correlator to window between $t_1 = 0.4$ fm and $t_2 = 1.0$ fm

[RBC/UKQCD'18]

- Less challenging than full a_{μ}
 - signal/noise
 - finite size effects
 - lattice artefacts (short & long)

about two orders of magnitude easier (CPU and manpower)

histogram of 250,000 fits with and without improvements

Quantum Field Theory on the Lattice

Crosscheck – overlap

2

Crosscheck – overlap

- compute $a_{\mu,\text{win}}$ with overlap valence
- local current instead of conserved \rightarrow had to compute Z_V
- cont. limit in L = 3 fm box consistent with staggered valence

< 6 b

A B F A B F

イロト イポト イヨト イヨト

5 fully independent results most of them: blinded(*) all agree with each other

5 fully independent results most of them: blinded(*) all agree with each other average: small χ^2 /dof (very conservative errors) no error inflation as for the R-ratio

5 fully independent results most of them: blinded(*) all agree with each other average: small χ^2 /dof (very conservative errors) no error inflation as for the R-ratio lattice vs. R-ratio: 4.9 σ tension

5 fully independent results most of them: blinded(*) all agree with each other average: small χ^2 /dof (very conservative errors) no error inflation as for the R-ratio lattice vs. B-ratio: 4.9 σ tension

QCD compared with QCD

5 fully independent results most of them: blinded(*) all agree with each other average: small χ^2 /dof (very conservative errors) no error inflation as for the R-ratio lattice vs. B-ratio: 4.9 σ tension QCD compared with QCD either new physics or underestimated errors

< 回 > < 三 > < 三 >

Outline

5. Summary

æ

イロト イヨト イヨト イヨト

Final result

Tension: take-home message #1 full g-2

Systematic/statistical error ratios: lattice \approx 2; R-ratio \approx 4

< ロ > < 同 > < 回 > < 回 >

about 4.4–4.9–5.1 σ tensions for distance & energy regions

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

about 4.4–4.9–5.1 σ tensions for distance & energy regions

Lattice window: 0.4-1.0 fm approx. 30% of the total

 e^+e^- window 0.60–0.88 GeV more than 50% of the total

A B F A B F

about 4.4–4.9–5.1 σ tensions for distance & energy regions

Lattice window: 0.4-1.0 fm approx. 30% of the total

 e^+e^- window 0.60–0.88 GeV more than 50% of the total

A B F A B F

about 4.4–4.9–5.1 σ tensions for distance & energy regions

Lattice window: 0.4-1.0 fm approx. 30% of the total

 e^+e^- window 0.60–0.88 GeV more than 50% of the total

< ロ > < 同 > < 回 > < 回 >

